Skip to content
2000
Volume 20, Issue 2
  • ISSN: 2772-4328
  • E-ISSN: 2772-4336

Abstract

Predictions are made by artificial intelligence, especially through machine learning, which uses algorithms and past knowledge. Notably, there has been an increase in interest in using artificial intelligence, particularly generative AI, in the pharmacovigilance of pharmaceuticals under development, as well as those already in the market. This review was conducted to understand how generative AI can play an important role in pharmacovigilance and improving drug safety monitoring. Data from previously published articles and news items were reviewed in order to obtain information. We used PubMed and Google Scholar as our search engines, and keywords (pharmacovigilance, artificial intelligence, machine learning, drug safety, and patient safety) were used. In toto, we reviewed 109 articles published till 31st January 2024, and the obtained information was interpreted, compiled, evaluated, and conclusions were reached. Generative AI has transformative potential in pharmacovigilance, showcasing benefits, such as enhanced adverse event detection, data-driven risk prediction, and optimized drug development. By making it easier to process and analyze big datasets, generative artificial intelligence has applications across a variety of disease states. Machine learning and automation in this field can streamline pharmacovigilance procedures and provide a more efficient way to assess safety-related data. Nevertheless, more investigation is required to determine how this optimization affects the caliber of safety analyses. In the near future, the increased utilization of artificial intelligence is anticipated, especially in predicting side effects and Adverse Drug Reactions (ADRs).

Loading

Article metrics loading...

/content/journals/crcep/10.2174/0127724328311400240823062829
2024-09-05
2025-05-29
Loading full text...

Full text loading...

References

  1. HaubenM. Artificial intelligence and data mining for the pharmacovigilance of drug–drug interactions.Clin. Ther.202345211713310.1016/j.clinthera.2023.01.00236732152
    [Google Scholar]
  2. RyanD.K. MacleanR.H. BalstonA. ScourfieldA. ShahA.D. RossJ. Artificial intelligence and machine learning for clinical pharmacology.Br. J. Clin. Pharmacol.202337845024
    [Google Scholar]
  3. SalasM. PetracekJ. YalamanchiliP. AimerO. KasthurilD. DhingraS. JunaidT. BosticT. The use of artificial intelligence in pharmacovigilance: A systematic review of the literature.Pharmaceut. Med.202236529530610.1007/s40290‑022‑00441‑z35904529
    [Google Scholar]
  4. MontastrucF. StorckW. de CanecaudeC. VictorL. LiJ. CesbronC. ZelmatY. BarusR. Will artificial intelligence chatbots replace clinical pharmacologists? An exploratory study in clinical practice.Eur. J. Clin. Pharmacol.202379101375138410.1007/s00228‑023‑03547‑837566133
    [Google Scholar]
  5. BajwaJ. MunirU. NoriA. WilliamsB. Artificial intelligence in healthcare: Transforming the practice of medicine.Future Healthc. J.202182e188e19410.7861/fhj.2021‑009534286183
    [Google Scholar]
  6. YuK.H. BeamA.L. KohaneI.S. Artificial intelligence in healthcare.Nat. Biomed. Eng.201821071973110.1038/s41551‑018‑0305‑z31015651
    [Google Scholar]
  7. AlvaroN. ConwayM. DoanS. LofiC. OveringtonJ. CollierN. Crowdsourcing Twitter annotations to identify first-hand experiences of prescription drug use.J. Biomed. Inform.20155828028710.1016/j.jbi.2015.11.00426556646
    [Google Scholar]
  8. CalixR.A. GuptaR. GuptaM. JiangK. Deep gramulator: Improving precision in the classification of personal health-experience tweets with deep learning.Proc IEEE Int Conf Bioinformatics Biomed20171154115910.1109/BIBM.2017.8217820
    [Google Scholar]
  9. CocosA. FiksA.G. MasinoA.J. Deep learning for pharmacovigilance: Recurrent neural network architectures for labeling adverse drug reactions in Twitter posts.J. Am. Med. Inform. Assoc.201724481382110.1093/jamia/ocw18028339747
    [Google Scholar]
  10. NiaziS.K. MariamZ. Computer-aided drug design and drug discovery: A prospective analysis.Pharmaceuticals20231712210.3390/ph1701002238256856
    [Google Scholar]
  11. EshlemanR. SinghR. Leveraging graph topology and semantic context for pharmacovigilance through twitter-streams.BMC Bioinformatics201617S13Suppl. 1333510.1186/s12859‑016‑1220‑527766937
    [Google Scholar]
  12. GuptaJ. PatrickJ. PoonS. Clinical safety incident taxonomy performance on C4.5 decision tree and random forest.Stud. Health Technol. Inform.2019266838831397306
    [Google Scholar]
  13. NikfarjamA. SarkerA. O’ConnorK. GinnR. GonzalezG. Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features.J. Am. Med. Inform. Assoc.201522367168110.1093/jamia/ocu04125755127
    [Google Scholar]
  14. Gavrielov-YusimN. KürzingerM.L. NishikawaC. PanC. PougetJ. EpsteinL.B.H. GolantY. Tcherny-LessenotS. LinS. HamelinB. JuhaeriJ. Comparison of text processing methods in social media–based signal detection.Pharmacoepidemiol. Drug Saf.201928101309131710.1002/pds.485731392844
    [Google Scholar]
  15. BasileA.O. YahiA. TatonettiN.P. Artifcial intelligence for drug toxicity and safety.Trends Pharmacol. Sci.201940962463510.1016/j.tips.2019.07.00531383376
    [Google Scholar]
  16. MénardT. BarmazY. KoneswarakanthaB. BowlingR. PopkoL. Enabling data-driven clinical quality assurance: Predicting adverse event reporting in clinical trials using machine learning.Drug Saf.20194291045105310.1007/s40264‑019‑00831‑431123940
    [Google Scholar]
  17. DandalaB. JoopudiV. DevarakondaM. Adverse drug events detection in clinical notes by jointly modeling entities and relations using neural networks.Drug Saf.201942113514610.1007/s40264‑018‑0764‑x30649738
    [Google Scholar]
  18. DavazdahemamiB. DelenD. A chronological pharmacovigilance network analytics approach for predicting adverse drug events.J. Am. Med. Inform. Assoc.201825101311132110.1093/jamia/ocy09730085102
    [Google Scholar]
  19. De PretisF. LandesJ. PedenW. Artificial intelligence methods for a Bayesian epistemology-powered evidence evaluation.J. Eval. Clin. Pract.202127350451210.1111/jep.1354233569874
    [Google Scholar]
  20. MowerJ. CohenT. SubramanianD. Complementing observational signals with literature-derived distributed representations for postmarketing drug surveillance.Drug Saf.2020431677710.1007/s40264‑019‑00872‑931646442
    [Google Scholar]
  21. WangM. MaX. SiJ. TangH. WangH. LiT. OuyangW. GongL. TangY. HeX. HuangW. LiuX. Adverse drug reaction discovery using a tumor-biomarker knowledge graph.Front. Genet.20211162565910.3389/fgene.2020.62565933584816
    [Google Scholar]
  22. LavesM.H. IhlerS. OrtmaierT. KahrsL.A. Quantifying the uncertainty of deep learning-based computer-aided diagnosis for patient safety.Curr. Dir. Biomed. Eng.20195122322610.1515/cdbme‑2019‑0057
    [Google Scholar]
  23. LeibigC. BrehmerM. BunkS. ByngD. PinkerK. UmutluL. Combining the strengths of radiologists and AI for breast cancer screening: A retrospective analysis.Lancet Digit. Health202247e507e51910.1016/S2589‑7500(22)00070‑X35750400
    [Google Scholar]
  24. Ben AbachaA. ChowdhuryM.F.M. KaranasiouA. MrabetY. LavelliA. ZweigenbaumP. Text mining for pharmacovigilance: Using machine learning for drug name recognition and drug–drug interaction extraction and classification.J. Biomed. Inform.20155812213210.1016/j.jbi.2015.09.01526432353
    [Google Scholar]
  25. BouzilléG. MorivalC. WesterlynckR. LemordantP. ChazardE. LecorreP. BusnelY. CuggiaM. An Automated detection system of drug-drug interactions from electronic patient records using big data analytics.Stud. Health Technol. Inform.2019264454931437882
    [Google Scholar]
  26. HungT.N.K. LeN.Q.K. LeN.H. Van TuanL. NguyenT.P. ThiC. KangJ.H. An AI-based prediction model for drug-drug interactions in osteoporosis and paget’s diseases from SMILES.Mol. Inform.2022416210026410.1002/minf.20210026434989149
    [Google Scholar]
  27. EvansH.P. AnastasiouA. EdwardsA. HibbertP. MakehamM. LuzS. SheikhA. DonaldsonL. Carson-StevensA. Automated classification of primary care patient safety incident report content and severity using supervised machine learning (ML) approaches.Health Informatics J.20202643123313910.1177/146045821983310230843455
    [Google Scholar]
  28. MarellaW.M. SparnonE. FinleyE. Screening electronic health record-related patient safety reports using machine learning.J Patient Saf.2017131313610.1097/PTS.000000000000010424721977
    [Google Scholar]
  29. YangJ WangL PhadkeNA WicknerPG ManciniCM BlumenthalKG Development and validation of a deep learning model for detection of allergic reactions using safety event reports across hospitals.JAMA2020311e202283610.1001/jamanetworkopen.2020.22836
    [Google Scholar]
  30. ChandakP. TatonettiN.P. Using machine learning to identify adverse drug efects posing increased risk to women.Patterns20201710010810.1016/j.patter.2020.10010833179017
    [Google Scholar]
  31. CorreiaP.L. DurandJ. DognéJ.M. An application of machine learning in pharmacovigilance: Estimating likely patient genotype from phenotypical manifestations of fuoropyrimidine toxicity.Clin. Pharmacol. Ther.2020107494494710.1002/cpt.178931955411
    [Google Scholar]
  32. BlumenthalK.G. KuhlenJ.L.Jr WeilA.A. VarugheseC.A. KubiakD.W. BanerjiA. ShenoyE.S. Adverse drug reactions associated with ceftaroline use: A 2-center retrospective cohort.J. Allergy Clin. Immunol. Pract.20164474074610.1016/j.jaip.2016.03.00827130709
    [Google Scholar]
  33. ChenZ. ZhangH. GeorgeT.J. GuoY. ProsperiM. GuoJ. BraithwaiteD. WangF. KibbeW. WagnerL. BianJ. Simulating colorectal cancer trials using real-world data.JCO Clin. Cancer Inform.202266e210019510.1200/CCI.21.0019535839432
    [Google Scholar]
  34. BordukovaM. MakarovN. Rodriguez-EstebanR. SchmichF. MendenM.P. Generative artificial intelligence empowers digital twins in drug discovery and clinical trials.Expert Opin. Drug Discov.2024191334210.1080/17460441.2023.227383937887266
    [Google Scholar]
  35. ArsèneS. ParèsY. TixierE. Granjeon-NoriotS. MartinB. BruezièreL. CoutyC. CourcellesE. KahoulR. PitratJ. GoN. MonteiroC. Kleine-SchultjannJ. JemaiS. PhamE. BoisselJ.P. KuleszaA. In silico clinical trials: Is it possible?Methods Mol. Biol.20242716519910.1007/978‑1‑0716‑3449‑3_437702936
    [Google Scholar]
  36. BarufaldiB. GomesJ.V. SilvaF.T.M. do RêgoT.G. MalheirosY. VentT.L. GastouniotiA. MaidmentA.D.A. Assessment of volumetric dense tissue segmentation in tomosynthesis using deep virtual clinical trials.Pattern Recognit.202415311049410.1016/j.patcog.2024.11049438706638
    [Google Scholar]
  37. AkiyaI. IshiharaT. YamamotoK. Comparison of synthetic data generation techniques for control group survival data in oncology clinical trials: Simulation study.JMIR Med. Inform.202412v12i2e5511810.2196/55118
    [Google Scholar]
  38. PawłowskiT. BokotaG. LazarouG. KierzekA.M. SrokaJ. Emulation of quantitative systems pharmacology models to accelerate virtual population inference in immuno-oncology.Methods202422311812610.1016/j.ymeth.2023.12.00638246229
    [Google Scholar]
  39. MeyboomR.H.B. EgbertsA.C. GribnauF.W.J. HeksterY.A. Pharmacovigilance in perspective.Drug Saf.199921642944710.2165/00002018‑199921060‑0000110612268
    [Google Scholar]
  40. CarpenterK.A. AltmanR.B. Using GPT-3 to build a lexicon of drugs of abuse synonyms for social media pharmacovigilance.Biomolecules202313238710.3390/biom1302038736830756
    [Google Scholar]
  41. HenryS. BuchanK. FilanninoM. StubbsA. UzunerO. 2018 n2c2 shared task on adverse drug events and medication extraction in electronic health records.J. Am. Med. Inform. Assoc.202027131210.1093/jamia/ocz16631584655
    [Google Scholar]
  42. GregerR. WangemannP. Loop diuretics.Ren. Physiol.1987103-41741833330836
    [Google Scholar]
  43. RoccaA. MaltoniR. BravacciniS. DonatiC. AndreisD. Clinical utility of fulvestrant in the treatment of breast cancer: A report on the emerging clinical evidence.Cancer Manag. Res.201810103083309910.2147/CMAR.S13777230214302
    [Google Scholar]
  44. ZhouS.F. Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4.Curr. Drug Metab.20089431032210.2174/13892000878422066418473749
    [Google Scholar]
  45. RugoH.S. AndréF. YamashitaT. CerdaH. ToledanoI. StemmerS.M. JuradoJ.C. JuricD. MayerI. CiruelosE.M. IwataH. ConteP. CamponeM. WilkeC. MillsD. LteifA. MillerM. GaudenziF. LoiblS. Time course and management of key adverse events during the randomized phase III SOLAR-1 study of PI3K inhibitor alpelisib plus fulvestrant in patients with HR-positive advanced breast cancer.Ann. Oncol.20203181001101010.1016/j.annonc.2020.05.00132416251
    [Google Scholar]
  46. ChimirriS. AielloR. MazzitelloC. MumoliL. PalleriaC. AltomonteM. CitraroR. De SarroG. Vertigo/dizziness as a Drugs’ adverse reaction.J. Pharmacol. Pharmacother.201341_ supplSuppl. 1S104S10910.4103/0976‑500X.12096924347974
    [Google Scholar]
  47. XueV.W. LeiP. ChoW.C. The potential impact of ChatGPT in clinical and translational medicine.Clin. Transl. Med.2023133e121610.1002/ctm2.121636856370
    [Google Scholar]
  48. Stokel-WalkerC. Van NoordenR. What ChatGPT and generative AI mean for science.Nature2023614794721421610.1038/d41586‑023‑00340‑636747115
    [Google Scholar]
  49. Patel SB, Lam K, Liebrenz M. ChatGPT: friend or foe. Lancet Digit Health 2023; 5(3): e102.
  50. HurbenA.K. ErberL. Developing role for artificial intelligence in drug discovery in drug design, development, and safety assessment.Chem. Res. Toxicol.202235111925192810.1021/acs.chemrestox.2c0026936179327
    [Google Scholar]
  51. PinheiroL.C. KurzX. Artificial intelligence in pharmacovigilance: A regulatory perspective on explainability.Pharmacoepidemiol. Drug Saf.202231121308131010.1002/pds.552435959980
    [Google Scholar]
  52. LeeJ.Y. LeeY.S. KimD.H. LeeH.S. YangB.R. KimM.G. The use of social media in detecting drug safety–related new black box warnings, labeling changes, or withdrawals: Scoping review.JMIR Public Health Surveill.202176e3013710.2196/3013734185021
    [Google Scholar]
  53. Arbelaez OssaL. MilfordS.R. RostM. LeistA.K. ShawD.M. ElgerB.S. AI through ethical lenses: A discourse analysis of guidelines for AI in healthcare.Sci. Eng. Ethics20243032410.1007/s11948‑024‑00486‑038833207
    [Google Scholar]
  54. OngJ.C.L. ChangS.Y.H. WilliamW. ButteA.J. ShahN.H. ChewL.S.T. LiuN. Doshi-VelezF. LuW. SavulescuJ. TingD.S.W. Ethical and regulatory challenges of large language models in medicine.Lancet Digit. Health202466e428e43210.1016/S2589‑7500(24)00061‑X38658283
    [Google Scholar]
  55. BattineniG. ChintalapudiN. HossainM.A. LoscoG. RuoccoC. SagaroG.G. TrainiE. NittariG. AmentaF. Artificial Intelligence Models in the Diagnosis of Adult-Onset Dementia Disorders Artificial intelligence models in the diagnosis of adult-onset dementia disorders: A review.Bioengineering20229837010.3390/bioengineering908037036004895
    [Google Scholar]
  56. MitsalaA. TsalikidisC. PitiakoudisM. SimopoulosC. TsarouchaA.K. Artificial Intelligence in Colorectal Cancer Screening, Diagnosis and Treatment Artificial intelligence in colorectal cancer screening, diagnosis and treatment. A new era.Curr. Oncol.20212831581160710.3390/curroncol2803014933922402
    [Google Scholar]
  57. DackE. ChristeA. FontanellazM. BrigatoL. HeverhagenJ.T. PetersA.A. HuberA.T. HoppeH. MougiakakouS. EbnerL. Artificial Intelligence and Interstitial Lung Disease Diagnosis and prognosis.Invest. Radiol.202358860260910.1097/RLI.000000000000097437058321
    [Google Scholar]
  58. LexJ.R. Di MicheleJ. KouchekiR. PincusD. WhyneC. RaviB. Artificial Intelligence for Hip Fracture Detection and Outcome Prediction Artificial intelligence for hip fracture detection and outcome prediction.JAMA Netw. Open202363e23339110.1001/jamanetworkopen.2023.339136930153
    [Google Scholar]
  59. BohrA. MemarzadehK. The rise of artificial intelligence in healthcare applications.AI Healthcare.2020256010.1016/B978‑0‑12‑818438‑7.00002‑2
    [Google Scholar]
/content/journals/crcep/10.2174/0127724328311400240823062829
Loading
/content/journals/crcep/10.2174/0127724328311400240823062829
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test