Skip to content
2000
Volume 20, Issue 3
  • ISSN: 2772-4328
  • E-ISSN: 2772-4336

Abstract

Background

Bigles are novel formulation merging two phase of hydrogel and organogel revealing dual properties to release active agents based on their lipophilic or hydrophilic nature.

Methods

A systematic search was conducted in PubMed, Scopus, and ISI Web of Science to find eligible studies evaluating the efficiency of bigels in drug release. 20 articles were included in the analysis based on the defined criteria.

Results

The results indicated that several different natural materials were used for bigel making. Span (52.38%) and Sunflower oil (23.80%) were the most solvents used for organogel formation. Also, gelatin, agar, gums, and other types of biopolymer were used as hydroglators. Most research (33.33%) focused on the release of metronidazole from bigel structure. Also, the range of drug release rates was 1.59 - 100% and in 42.85% of studies was >90%. The nature, content, and properties of both organogel and hydrogel and some process variables such as temperature, mixing speed and storage conditions were highlighted as the main influential factors on bigel formation and its bioactivity.

Conclusion

Bigels are an innovative structure that provides desired physicochemical and rheological properties for industrial applications. Excellent biocompatibility and / results have been documented for developed bigels. In this regard, an optimal preparation method is very important to show superior therapeutic effects.

Loading

Article metrics loading...

/content/journals/crcep/10.2174/0127724328288796240906040927
2024-10-30
2025-06-01
Loading full text...

Full text loading...

References

  1. MaoL. LuY. CuiM. MiaoS. GaoY. Design of gel structures in water and oil phases for improved delivery of bioactive food ingredients.Crit. Rev. Food Sci. Nutr.202060101651166610.1080/10408398.2019.158773730892058
    [Google Scholar]
  2. ZhuQ. GaoJ. HanL. HanK. WeiW. WuT. LiJ. ZhangM. Development and characterization of novel bigels based on monoglyceride-beeswax oleogel and high acyl gellan gum hydrogel for lycopene delivery.Food Chem.202136513041910.1016/j.foodchem.2021.13041934247047
    [Google Scholar]
  3. SinghV.K. AnisA. BanerjeeI. PramanikK. BhattacharyaM.K. PalK. Preparation and characterization of novel carbopol based bigels for topical delivery of metronidazole for the treatment of bacterial vaginosis.Mater. Sci. Eng. C20144415115810.1016/j.msec.2014.08.02625280691
    [Google Scholar]
  4. HashemiB. VaridiM. JafariS.M. Fabrication and characterization of novel whey protein-based bigels as structured materials with high-mechanical properties.Food Hydrocoll.202314510908210.1016/j.foodhyd.2023.109082
    [Google Scholar]
  5. FrancavillaA. CorradiniM.G. JoyeI.J. Bigels as delivery systems: Potential uses and applicability in food.Gels20239864810.3390/gels908064837623103
    [Google Scholar]
  6. ChenZ. BianF. CaoX. ShiZ. MengZ. Novel bigels constructed from oleogels and hydrogels with contrary thermal characteristics: Phase inversion and 3D printing applications.Food Hydrocoll.202313410806310.1016/j.foodhyd.2022.108063
    [Google Scholar]
  7. YangJ. FuY. ZhengH. JiaY. GaoY. YinS. MaoL. Structural design of oleogel-hydrogel bigels for co-delivery of curcumin and epigallocatechin gallate with synergistic stability and bioactivity.Adv. Mater. Technol.2023814220218510.1002/admt.202202185
    [Google Scholar]
  8. BeheraB. SagiriS.S. PalK. PramanikK. RanaU.A. ShakirI. AnisA. Sunflower oil and protein-based novel bigels as matrices for drug delivery applications-characterization and in vitro antimicrobial efficiency.Polym. Plast. Technol. Eng.201554883785010.1080/03602559.2014.974268
    [Google Scholar]
  9. ShakeelA. LupiF.R. GabrieleD. BaldinoN. De CindioB. Bigels: A unique class of materials for drug delivery applications.Soft Mater.2018162779310.1080/1539445X.2018.1424638
    [Google Scholar]
  10. MajiR. OmoloC.A. JaglalY. SinghS. DevnarainN. MocktarC. GovenderT. A transferosome-loaded bigel for enhanced transdermal delivery and antibacterial activity of vancomycin hydrochloride.Int. J. Pharm.202160712099010.1016/j.ijpharm.2021.12099034389419
    [Google Scholar]
  11. SagiriS.S. SinghV.K. KulanthaivelS. BanerjeeI. BasakP. BattachryaM.K. PalK. Stearate organogel-gelatin hydrogel based bigels: Physicochemical, thermal, mechanical characterizations and in vitro drug delivery applications.J. Mech. Behav. Biomed. Mater.20154311710.1016/j.jmbbm.2014.11.02625549573
    [Google Scholar]
  12. SatapathyS. SinghV.K. SagiriS.S. AgarwalT. BanerjeeI. BhattacharyaM.K. KumarN. PalK. Development and characterization of gelatin-based hydrogels, emulsion hydrogels, and bigels: A comparative study.J. Appl. Polym. Sci.20151328app.4150210.1002/app.41502
    [Google Scholar]
  13. LupiF.R. ShakeelA. GrecoV. OlivieroC. BaldinoN. GabrieleD. A rheological and microstructural characterisation of bigels for cosmetic and pharmaceutical uses.Mater. Sci. Eng. C20166935836510.1016/j.msec.2016.06.09827612723
    [Google Scholar]
  14. FasolinL.H. MartinsA.J. CerqueiraM.A. VicenteA.A. Modulating process parameters to change physical properties of bigels for food applications.Food Structure20212810017310.1016/j.foostr.2020.100173
    [Google Scholar]
  15. GolodnizkyD. Davidovich-PinhasM. The effect of the HLB value of sucrose ester on physiochemical properties of bigel systems.Foods2020912185710.3390/foods912185733322787
    [Google Scholar]
  16. KodelaS.P. PandeyP.M. NayakS.K. UvaneshK. AnisA. PalK. Novel agar–stearyl alcohol oleogel-based bigels as structured delivery vehicles.Int. J. Polym. Mater.2017661366967810.1080/00914037.2016.1252362
    [Google Scholar]
  17. BollomM.A. ClarkS. AcevedoN.C. Edible lecithin, stearic acid, and whey protein bigels enhance survival of probiotics during in vitro digestion.Food Biosci.20213910081310.1016/j.fbio.2020.100813
    [Google Scholar]
  18. GuoZ. ChenZ. MengZ. Bigels constructed from hybrid gelator systems: Bulk phase-interface stability and 3D printing.Food Funct.202314115078508910.1039/D3FO00948C37161523
    [Google Scholar]
  19. WangX. LiH. LiuY. DingS. JiangL. WangR. A novel edible solid fat substitute: Preparation of biphasic stabilized bigels based on glyceryl monolaurate and gellan gum.Int. J. Biol. Macromol.2024263Pt 213008110.1016/j.ijbiomac.2024.13008138423907
    [Google Scholar]
  20. ZhengH. MaoL. CuiM. LiuJ. GaoY. Development of food-grade bigels based on κ-carrageenan hydrogel and monoglyceride oleogels as carriers for β-carotene: Roles of oleogel fraction.Food Hydrocoll.202010510585510.1016/j.foodhyd.2020.105855
    [Google Scholar]
  21. ShakeelA. FarooqU. GabrieleD. MarangoniA.G. LupiF.R. Bigels and multi-component organogels: An overview from rheological perspective.Food Hydrocoll.202111110619010.1016/j.foodhyd.2020.106190
    [Google Scholar]
  22. SoniK. GourV. AgrawalP. HaiderT. KanwarI.L. BakshiA. SoniV. Carbopol-olive oil-based bigel drug delivery system of doxycycline hyclate for the treatment of acne.Drug Dev. Ind. Pharm.202147695496234280061
    [Google Scholar]
  23. PaulS.R. QureshiD. YogalakshmiY. NayakS.K. SinghV.K. SyedI. SarkarP. PalK. Development of bigels based on stearic acid–rice bran oil oleogels and tamarind gum hydrogels for controlled delivery applications.J. Surfactants Deterg.2018211172910.1002/jsde.12022
    [Google Scholar]
  24. RehmanK. ZulfakarM.H. Novel fish oil-based bigel system for controlled drug delivery and its influence on immunomodulatory activity of imiquimod against skin cancer.Pharm. Res.2017341364810.1007/s11095‑016‑2036‑827620176
    [Google Scholar]
  25. ValoppiF. CalligarisS. BarbaL. ŠegatinN. PoklarN. NicoliM.C. Influence of oil type on formation, structure, thermal, and physical properties of monoglyceride-based organogel.Eur. J. Lipid Sci. Technol.20171192150054910.1002/ejlt.201500549
    [Google Scholar]
  26. SinghV.K. BanerjeeI. AgarwalT. PramanikK. BhattacharyaM.K. PalK. Guar gum and sesame oil based novel bigels for controlled drug delivery.Colloids Surf. B Biointerfaces201412358259210.1016/j.colsurfb.2014.09.05625444661
    [Google Scholar]
  27. ShakeelA. FarooqU. IqbalT. YasinS. LupiF.R. GabrieleD. Key characteristics and modelling of bigels systems: A review.Mater. Sci. Eng. C20199793295310.1016/j.msec.2018.12.07530678982
    [Google Scholar]
  28. RehmanK. ZulfakarM.H. Recent advances in gel technologies for topical and transdermal drug delivery.Drug Dev. Ind. Pharm.201440443344010.3109/03639045.2013.82821923937582
    [Google Scholar]
  29. RoyH. MaddelaS. MunagalaA. RahamanS.A. NandiS. A quality by design approach of metronidazole bigel and assessment of antimicrobial study utilizing box-behnken design.Comb. Chem. High Throughput Screen.202124101628164333380293
    [Google Scholar]
  30. KouiderM. RahalS. LaidiM. KouarI. BourahlaR.F.E.K. AkoucheY. BouarabaR. Balancing competing objectives in bigel formulations using many-objective optimization algorithms and different decision-making methods.Eur. J. Pharm. Biopharm.202419511416710.1016/j.ejpb.2023.12.00738122946
    [Google Scholar]
  31. SinghB. KumarR. Designing biocompatible sterile organogel–bigel formulations for drug delivery applications using green protocol.New J. Chem.20194373059307010.1039/C8NJ05480K
    [Google Scholar]
  32. HamedR. AbuRezeqA. TarawnehO. Development of hydrogels, oleogels, and bigels as local drug delivery systems for periodontitis.Drug Dev. Ind. Pharm.20184491488149710.1080/03639045.2018.146402129669437
    [Google Scholar]
  33. WróblewskaM. SzymańskaE. SzekalskaM. WinnickaK. Different types of gel carriers as metronidazole delivery systems to the oral mucosa.Polymers202012368032204334
    [Google Scholar]
  34. SamuiT. GoldeniskyD. Rosen-KligvasserJ. Davidovich-PinhasM. The development and characterization of novel in-situ bigel formulation.Food Hydrocoll.202111310641610.1016/j.foodhyd.2020.106416
    [Google Scholar]
  35. CharyuluR.N. MuaralidharanA. SandeepD.S. Design and evaluation of bigels containing flurbiprofen.Res J Pharm Technol201811114315210.5958/0974‑360X.2018.00028.8
    [Google Scholar]
  36. KasparavicieneG. MasliiY. HerbinaN. KazlauskieneD. MarksaM. BernatonieneJ. Development and evaluation of two-phase gel formulations for enhanced delivery of active ingredients: Sodium diclofenac and camphor.Pharmaceutics202416336610.3390/pharmaceutics1603036638543261
    [Google Scholar]
  37. AndonovaV.Y. PenevaP.T. ApostolovaE.G. DimchevaT.D. PeychevZ.L. KassarovaM.I. Carbopol hydrogel/sorbitan monostearate-almond oil based organogel biphasic formulations: Preparation and characterization of the bigels.Trop. J. Pharm. Res.201716714551463
    [Google Scholar]
  38. RehmanK. MohdM.C.I. ZulfakarM.H. Development and physical characterization of polymer-fish oil bigel (hydrogel/oleogel) system as a transdermal drug delivery vehicle.J. Oleo Sci.2014631096197010.5650/jos.ess1410125252741
    [Google Scholar]
  39. HashemiB. AssadpourE. JafariS.M. Bigels as novel carriers of bioactive compounds: Applications and research trends.Food Hydrocoll.202414710942710.1016/j.foodhyd.2023.109427
    [Google Scholar]
  40. LupiF.R. De SantoM.P. CiuchiF. BaldinoN. GabrieleD. A rheological modelling and microscopic analysis of bigels.Rheol. Acta201756975376310.1007/s00397‑017‑1030‑3
    [Google Scholar]
  41. MukherjeeS MajeeSB BiswasGR Formulation and in vitro characterisation of soybean oil-HPMCK4M based bigel matrix for topical drug delivery.Int. J. Appl. Pharm.20193338
    [Google Scholar]
  42. BeheraB. SagiriS.S. SinghV.K. PalK. AnisA. Mechanical properties and delivery of drug/probiotics from starch and non-starch based novel bigels: A comparative study.Stärke2014669-1086587910.1002/star.201400045
    [Google Scholar]
  43. AlmeidaI.F. FernandesA.R. FernandesL. PenaM.R. CostaP.C. BahiaM.F. Moisturizing effect of oleogel/hydrogel mixtures.Pharm. Dev. Technol.200813648749410.1080/1083745080228244718720247
    [Google Scholar]
  44. MartinsA.J. SilvaP. MacielF. PastranaL.M. CunhaR.L. CerqueiraM.A. VicenteA.A. Hybrid gels: Influence of oleogel/hydrogel ratio on rheological and textural properties.Food Res. Int.20191161298130510.1016/j.foodres.2018.10.01930716919
    [Google Scholar]
  45. IbrahimMM HafezSA MahdyMM Organogels, hydrogels and bigels as transdermal delivery systems for diltiazem hydrochloride.Asian J. Pharm. Sci.2013814857
    [Google Scholar]
  46. LupiF.R. GentileL. GabrieleD. MazzullaS. BaldinoN. de CindioB. Olive oil and hyperthermal water bigels for cosmetic uses.J. Colloid Interface Sci.2015459707810.1016/j.jcis.2015.08.01326263497
    [Google Scholar]
  47. RehmanK. AluwiM.F.F.M. RullahK. WaiL.K. Mohd AminM.C.I. ZulfakarM.H. Probing the effects of fish oil on the delivery and inflammation-inducing potential of imiquimod.Int. J. Pharm.20154901-213114110.1016/j.ijpharm.2015.05.04526003416
    [Google Scholar]
  48. ChaoE. LiJ. DuanZ. FanL. Bigels as emerging biphasic systems: Properties, applications, and prospects in the food industry.Food Hydrocoll.202415411008910.1016/j.foodhyd.2024.110089
    [Google Scholar]
  49. PehlivanoğluH. DemirciM. TokerO.S. KonarN. KarasuS. SagdicO. Oleogels, a promising structured oil for decreasing saturated fatty acid concentrations: Production and food-based applications.Crit. Rev. Food Sci. Nutr.20185881330134110.1080/10408398.2016.125686627830932
    [Google Scholar]
  50. BascuasS. MorellP. HernandoI. QuilesA. Recent trends in oil structuring using hydrocolloids.Food Hydrocoll.202111810661210.1016/j.foodhyd.2021.106612
    [Google Scholar]
  51. MartinsA.J. VicenteA.A. CunhaR.L. CerqueiraM.A. Edible oleogels: An opportunity for fat replacement in foods.Food Funct.20189275877310.1039/C7FO01641G29417124
    [Google Scholar]
  52. KimJ. KimD.N. LeeS.H. YooS.H. LeeS. Correlation of fatty acid composition of vegetable oils with rheological behaviour and oil uptake.Food Chem.2010118239840210.1016/j.foodchem.2009.05.011
    [Google Scholar]
  53. OrsavovaJ. MisurcovaL. AmbrozovaJ. VichaR. MlcekJ. Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids.Int. J. Mol. Sci.2015166128711289010.3390/ijms16061287126057750
    [Google Scholar]
  54. GonçalvesR.F.S. ZhouH. VicenteA.A. PinheiroA.C. McClementsD.J. Plant-based bigels for delivery of bioactive compounds: Influence of hydrogel:oleogel ratio and protein concentration on their physicochemical properties.Food Hydrocoll.202415010972110.1016/j.foodhyd.2023.109721
    [Google Scholar]
  55. ZampouniK. SiderisN. TsavdarisE. KatsanidisE. On the structural and mechanical properties of mixed coconut and olive oil oleogels and bigels.Int. J. Biol. Macromol.2024268Pt 213194210.1016/j.ijbiomac.2024.13194238685546
    [Google Scholar]
  56. RaeisiA. FarjadianF. Commercial hydrogel product for drug delivery based on route of administration.Front Chem.202412133671710.3389/fchem.2024.133671738476651
    [Google Scholar]
  57. MaoJ. MengZ. Fabrication and characterization of novel high internal phase bigels with high mechanical properties: Phase inversion and personalized edible 3D food printing.Food Hydrocoll.202415311001910.1016/j.foodhyd.2024.110019
    [Google Scholar]
  58. BeheraB. DeyS. SharmaV. PalK. Rheological and viscoelastic properties of novel sunflower oil-span 40-biopolymer–based bigels and their role as a functional material in the delivery of antimicrobial agents.Adv. Polym. Technol.2015342adv.2148810.1002/adv.21488
    [Google Scholar]
  59. SahooS. SinghV.K. UvaneshK. BiswalD. AnisA. RanaU.A. Al-ZahraniS.M. PalK. Development of ionic and non-ionic natural gum-based bigels: Prospects for drug delivery application.J. Appl. Polym. Sci.201513238app.4256110.1002/app.42561
    [Google Scholar]
  60. MazurkeviciuteA. RamanauskieneK. IvaskieneM. GrigonisA. BriedisV. Topical antifungal bigels: Formulation, characterization and evaluation.Acta Pharm.201868222323310.2478/acph‑2018‑001429702483
    [Google Scholar]
  61. AndonovaV. PenevaP. GeorgievG.S. TonchevaV.T. ApostolovaE. PeychevZ. DimitrovaS. KatsarovaM. PetrovaN. KassarovaM. Ketoprofen-loaded polymer carriers in bigel formulation: An approach to enhancing drug photostability in topical application forms.Int. J. Nanomedicine2017126221623810.2147/IJN.S14093428894363
    [Google Scholar]
  62. Martín-IllanaA. Cazorla-LunaR. Notario-PérezF. BedoyaL.M. Ruiz-CaroR. VeigaM.D. Freeze-dried bioadhesive vaginal bigels for controlled release of Tenofovir.Eur. J. Pharm. Sci.2019127385110.1016/j.ejps.2018.10.01330343152
    [Google Scholar]
  63. HamedR. MahmoudN.N. AlnadiS.H. AlkilaniA.Z. HusseinG. Diclofenac diethylamine nanosystems-loaded bigels for topical delivery: Development, rheological characterization, and release studies.Drug Dev. Ind. Pharm.202046101705171510.1080/03639045.2020.182003832892653
    [Google Scholar]
  64. WakhetS. SinghV.K. SahooS. SagiriS.S. KulanthaivelS. BhattacharyaM.K. KumarN. BanerjeeI. PalK. Characterization of gelatin–agar based phase separated hydrogel, emulgel and bigel: A comparative study.J. Mater. Sci. Mater. Med.201526211810.1007/s10856‑015‑5434‑225672596
    [Google Scholar]
/content/journals/crcep/10.2174/0127724328288796240906040927
Loading
/content/journals/crcep/10.2174/0127724328288796240906040927
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.


  • Article Type:
    Review Article
Keyword(s): Bigel; drug delivery; hydrogel; hydroglators; organogel; systematic review
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test