Skip to content
2000
image of Metaforest Algorithm Insights: Predictors of Nocebo Response in ADHD

Abstract

Background

Predicting the nocebo response in randomized controlled trials (RCTs) is crucial as it can help minimize its influence and improve the evaluation of the side effects of interventions for ADHD. The aim of this study is to determine the effect of covariates related to study design, intervention, and patients’ characteristics on the nocebo response in patients with Attention Deficit Hyperactivity Disorder (ADHD) using Metaforest, and, ultimately, to investigate Metaforest’s performance in predicting nocebo response in ADHD RCTs.

Methods

This study is a secondary analysis of a previously published systematic review [1]. Nocebo response was defined as the proportion of patients experiencing at least one AE while receiving a placebo. We used Metaforest for investigating patient-, intervention, and study design-related nocebo response moderators in ADHD RCTs.

Results

One hundred and five studies were included. Overall, 55.4% of patients experienced at least one AE while receiving placebo. However, between-study variability on nocebo response was very high, with nocebo response ranging from 4.2% to 90.2%, leading to high statistical heterogeneity (I2 = 88.3%). Older patients showed a higher nocebo response. The moderating effects of the year of publication, treatment length and gender were also significant. The predictive performance of the model was low-moderate (𝑅2 𝑡𝑒𝑠𝑡 = 0, 1922; 𝑀𝑆𝐸 = 0, 0408).

Conclusion

Age was the most important nocebo response modifier, followed by year of publication, treatment length and gender. Metaforest lacked the capability to predict nocebo responses in future studies.

Loading

Article metrics loading...

/content/journals/cpsp/10.2174/0122115560338571241220113154
2024-12-26
2025-01-31
Loading full text...

Full text loading...

References

  1. Ramírez-Saco D. Barcheni M. Cunill R. Sáez M. Farré M. Castells X. Nocebo response in attention deficit hyperactivity disorder: Meta-analysis and meta-regression of 105 randomized clinical trials. J. Atten. Disord. 2022 26 11 1412 1421 10.1177/10870547221075845 35102771
    [Google Scholar]
  2. Benedetti F. Lanotte M. Lopiano L. Colloca L. When words are painful: Unraveling the mechanisms of the nocebo effect. Neuroscience 2007 147 2 260 271 10.1016/j.neuroscience.2007.02.020 17379417
    [Google Scholar]
  3. Benedetti F. Frisaldi E. Piedimonte A. The need to investigate nocebo effects in more detail. World Psychiatry. 2019 18 2 227 228 10.1002/wps.20627
    [Google Scholar]
  4. Mitsikostas D.D. Mantonakis L. Chalarakis N. Nocebo in clinical trials for depression: A meta-analysis. Psychiatry Res. 2014 215 1 82 86 10.1016/j.psychres.2013.10.019 24210741
    [Google Scholar]
  5. Mirquez J. C. Jose M. Zuñiga M. Escobar F.J. Perdomo H. Petkov M. Becerra L. Borsook D. Linnman C. Nocebo effect in randomized clinical trials of antidepressants in children and adolescents: Systematic review and meta-analysis. Front. Behav. Neurosci. 2014 8 375 10.3389/fnbeh.2014.00375
    [Google Scholar]
  6. Dodd S. Walker A.J. Brnabic A.J.M. Hong N. Burns A. Berk M. Incidence and characteristics of the nocebo response from meta‐analyses of the placebo arms of clinical trials of olanzapine for bipolar disorder. Bipolar Disord. 2019 21 2 142 150 10.1111/bdi.12662 29926533
    [Google Scholar]
  7. Palermo S. Giovannelli F. Bartoli M. Amanzio M. Are patients with schizophrenia spectrum disorders more prone to manifest nocebo-like-effects? A meta-analysis of adverse events in placebo groups of double-blind antipsychotic trials. Front Pharmacol. 2019 10 502 10.3389/fphar.2019.00502
    [Google Scholar]
  8. Faraone S.v. Newcorn J.H. Cipriani A. Brandeis D. Kaiser A. Hohmann S. Haege A. Cortese S. Placebo and nocebo responses in randomised, controlled trials of medications for ADHD: A systematic review and meta-analysis. Mol. Psychiatry. 2022 27 1 212 219 10.1038/s41380‑021‑01134‑w
    [Google Scholar]
  9. Meister R. Jansen A. Härter M. Nestoriuc Y. Kriston L. Placebo and nocebo reactions in randomized trials of pharmacological treatments for persistent depressive disorder. A meta-regression analysis. J. Affect. Disord. 2017 215 288 298 10.1016/j.jad.2017.03.024 28363152
    [Google Scholar]
  10. Lissa C. Exploring heterogeneity in meta-analysis using random forests. 2017 Available from:https://cran.r-project.org/web/packages/metaforest/metaforest.pdf (accessed on 12-11-2024).
  11. Terrer C. Jackson R.B. Prentice I.C. Keenan T.F. Kaiser C. Vicca S. Fisher J.B. Reich P.B. Stocker B.D. Hungate B.A. Peñuelas J. McCallum I. Soudzilovskaia N.A. Cernusak L.A. Talhelm A.F. Van Sundert K. Piao S. Newton P.C.D. Hovenden M.J. Blumenthal D.M. Liu Y.Y. Müller C. Winter K. Field C.B. Viechtbauer W. Van Lissa C.J. Hoosbeek M.R. Watanabe M. Koike T. Leshyk V.O. Polley H.W. Franklin O. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Chang. 2019 9 9 684 689 10.1038/s41558‑019‑0545‑2
    [Google Scholar]
  12. Bonapersona V. Kentrop J. Van Lissa C.J. van der Veen R. Joëls M. Sarabdjitsingh R.A. The behavioral phenotype of early life adversity: A 3-level meta-analysis of rodent studies. Neurosci. Biobehav. Rev. 2019 102 299 307 10.1016/j.neubiorev.2019.04.021 31047892
    [Google Scholar]
  13. Castells X. Saez M. Barcheni M. Cunill R. Serrano D. López B. van Lissa C.J. Placebo response and its predictors in attention deficit hyperactivity disorder: A meta-analysis and comparison of meta-regression and metaForest. Int. J. Neuropsychopharmacol. 2022 25 1 26 35 10.1093/ijnp/pyab054 34355753
    [Google Scholar]
  14. Minerva Database. Available from:https://www.minervadatabase.org/en/(accessed on 12-11-2024).
  15. Cochrane handbook for systematic reviews of interventions. Available from:https://handbook-5-1.cochrane.org/(accessed on 12-11-2024).
  16. Castells X. Baykova E. Mayoral S. Cunill R. Serrano D. P.054 Gender bias in randomized, controlled trials of pharmacological interventions for attention deficit hyperactivity disorder. Eur. Neuropsychopharmacol. 2020 40 S36 S37 10.1016/j.euroneuro.2020.09.052
    [Google Scholar]
  17. Castells X. Ramon M. Cunill R. Olivé C. Serrano D. Relationship between treatment duration and efficacy of pharmacological treatment for ADHD: A meta-analysis and meta-regression of 87 randomized controlled clinical trials. J. Atten. Disord. 2021 25 10 1352 1361 10.1177/1087054720903372 32075485
    [Google Scholar]
  18. Shah A.D. Bartlett J.W. Carpenter J. Nicholas O. Hemingway H. Comparison of random forest and parametric imputation models for imputing missing data using MICE: A CALIBER study. Am. J. Epidemiol. 2014 179 6 764 774 10.1093/aje/kwt312 24589914
    [Google Scholar]
  19. Fox J. Monette G. Generalized collinearity diagnostics. J. Am. Stat. Assoc. 1992 87 417 178 183 10.1080/01621459.1992.10475190
    [Google Scholar]
  20. Van Lissa C.J. Small sample meta-analyses: Exploring heterogeneity using metaforest. Small Sample Size Solutions: A Guide for Applied Researchers and Practitioners. Van De Schoot R.M. CRC Press 2020 10.4324/9780429273872‑16
    [Google Scholar]
  21. Hastie T. Tibshirani R. The elements of statistical learning: Data mining, inference, and prediction Springer 2009
    [Google Scholar]
  22. Leucht S. Chaimani A. Leucht C. Huhn M. Mavridis D. Helfer B. Samara M. Cipriani A. Geddes J.R. Salanti G. Davis J.M. 60 years of placebo-controlled antipsychotic drug trials in acute schizophrenia: Meta-regression of predictors of placebo response. Schizophr. Res. 2018 201 315 323 10.1016/j.schres.2018.05.009 29804928
    [Google Scholar]
  23. Undurraga J. Baldessarini R.J. Randomized, placebo-controlled trials of antidepressants for acute major depression: Thirty-year meta-analytic review. Neuropsychopharmacology 2012 37 4 851 864 10.1038/npp.2011.306 22169941
    [Google Scholar]
  24. Kotzalidis G.D. Del Casale A. Simmaco M. Pancheri L. Brugnoli R. Paolini M. Gualtieri I. Ferracuti S. Savoja V. Cuomo I. De Chiara L. Mosca A. Sani G. Girardi P. Pompili M. Rapinesi C. Placebo effect in Obsessive-Compulsive Disorder (OCD). Placebo response and placebo responders in OCD: the trend over time. Curr. Neuropharmacol. 2019 17 8 741 774 10.2174/1570159X16666181026163922 30370851
    [Google Scholar]
  25. Sysko R. Walsh B.T. A systematic review of placebo response in studies of bipolar mania. J. Clin. Psychiatry 2007 68 8 1213 1217 10.4088/JCP.v68n0807 17854245
    [Google Scholar]
  26. Enck P. Klosterhalfen S. Does sex/gender play a role in placebo and nocebo effects? Conflicting evidence from clinical trials and experimental studies. Front. Neurosci. 2019 13 160 10.3389/fnins.2019.00160 30886569
    [Google Scholar]
  27. Papadopoulos D. Mitsikostas D.D. A meta-analytic approach to estimating nocebo effects in neuropathic pain trials. J. Neurol. 2012 259 3 436 447 10.1007/s00415‑011‑6197‑4 21811804
    [Google Scholar]
  28. Agid O. Siu C.O. Potkin S.G. Kapur S. Watsky E. Vanderburg D. Zipursky M.B.R. Remington G. Meta-regression analysis of placebo response in antipsychotic trials, 1970-2010. Am. J. Psychiatry. 2013 170 11 1335 1344
    [Google Scholar]
  29. Greenland S. Morgenstern H. Ecological bias, confounding, and effect modification. Int. J. Epidemiol. 1989 18 1 269 274 10.1093/ije/18.1.269 2656561
    [Google Scholar]
/content/journals/cpsp/10.2174/0122115560338571241220113154
Loading
/content/journals/cpsp/10.2174/0122115560338571241220113154
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Review Article
Keywords: heterogeneity ; Metaforest ; placebo ; nocebo response ; ADHD
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test