Skip to content
2000
Volume 13, Issue 1
  • ISSN: 2211-5560
  • E-ISSN: 2211-5579

Abstract

Introduction

Predicting the nocebo response in randomized controlled trials (RCTs) is crucial as it can help minimize its influence and improve the evaluation of the side effects of interventions for ADHD. The aim of this study is to determine the effect of covariates related to study design, intervention, and patients’ characteristics on the nocebo response in patients with Attention Deficit Hyperactivity Disorder (ADHD) using Metaforest, and, ultimately, to investigate Metaforest’s performance in predicting nocebo response in ADHD RCTs.

Methods

This study is a secondary analysis of a previously published systematic review. Nocebo response was defined as the proportion of patients experiencing at least one AE while receiving a placebo. We used Metaforest for investigating patient, intervention, and study design-related nocebo response moderators in ADHD RCTs.

Results

One hundred and five studies were included. Overall, 55.4% of patients experienced at least one AE while receiving placebo. However, between-study variability on nocebo response was very high, with nocebo response ranging from 4.2% to 90.2%, leading to high statistical heterogeneity (I2 = 88.3%). Older patients showed a higher nocebo response. The moderating effects of the year of publication, treatment length and gender were also significant. The predictive performance of the model was low-moderate (𝑅2 test = 0. 1922; MSE = 0. 0408).

Conclusion

Age was the most important nocebo response modifier, followed by year of publication, treatment length and gender. Metaforest lacked the capability to predict nocebo responses in future studies.

Loading

Article metrics loading...

/content/journals/cpsp/10.2174/0122115560338571241220113154
2025-01-01
2025-06-24
Loading full text...

Full text loading...

References

  1. Ramírez-SacoD. BarcheniM. CunillR. SáezM. FarréM. CastellsX. Nocebo response in attention deficit hyperactivity disorder: Meta-analysis and meta-regression of 105 randomized clinical trials.J. Atten. Disord.202226111412142110.1177/1087054722107584535102771
    [Google Scholar]
  2. BenedettiF. LanotteM. LopianoL. CollocaL. When words are painful: Unraveling the mechanisms of the nocebo effect.Neuroscience2007147226027110.1016/j.neuroscience.2007.02.02017379417
    [Google Scholar]
  3. BenedettiF. FrisaldiE. PiedimonteA. The need to investigate nocebo effects in more detail.World Psychiatry.201918222722810.1002/wps.20627
    [Google Scholar]
  4. MitsikostasD.D. MantonakisL. ChalarakisN. Nocebo in clinical trials for depression: A meta-analysis.Psychiatry Res.20142151828610.1016/j.psychres.2013.10.01924210741
    [Google Scholar]
  5. MirquezJ. C. JoseM. ZuñigaM. EscobarF.J. PerdomoH. PetkovM. BecerraL. BorsookD. LinnmanC. Nocebo effect in randomized clinical trials of antidepressants in children and adolescents: Systematic review and meta-analysis.Front. Behav. Neurosci.2014837510.3389/fnbeh.2014.00375
    [Google Scholar]
  6. DoddS. WalkerA.J. BrnabicA.J.M. HongN. BurnsA. BerkM. Incidence and characteristics of the nocebo response from meta‐analyses of the placebo arms of clinical trials of olanzapine for bipolar disorder.Bipolar Disord.201921214215010.1111/bdi.1266229926533
    [Google Scholar]
  7. PalermoS. GiovannelliF. BartoliM. AmanzioM. Are patients with schizophrenia spectrum disorders more prone to manifest nocebo-like-effects? A meta-analysis of adverse events in placebo groups of double-blind antipsychotic trials.Front Pharmacol.20191050210.3389/fphar.2019.00502
    [Google Scholar]
  8. FaraoneS.v. NewcornJ.H. CiprianiA. BrandeisD. KaiserA. HohmannS. HaegeA. CorteseS. Placebo and nocebo responses in randomised, controlled trials of medications for ADHD: A systematic review and meta-analysis.Mol. Psychiatry.202227121221910.1038/s41380‑021‑01134‑w
    [Google Scholar]
  9. MeisterR. JansenA. HärterM. NestoriucY. KristonL. Placebo and nocebo reactions in randomized trials of pharmacological treatments for persistent depressive disorder. A meta-regression analysis.J. Affect. Disord.201721528829810.1016/j.jad.2017.03.02428363152
    [Google Scholar]
  10. LissaC. Exploring heterogeneity in meta-analysis using random forests.2017Available from:https://cran.r-project.org/web/packages/metaforest/metaforest.pdf (accessed on 12-11-2024).
  11. TerrerC. JacksonR.B. PrenticeI.C. KeenanT.F. KaiserC. ViccaS. FisherJ.B. ReichP.B. StockerB.D. HungateB.A. PeñuelasJ. McCallumI. SoudzilovskaiaN.A. CernusakL.A. TalhelmA.F. Van SundertK. PiaoS. NewtonP.C.D. HovendenM.J. BlumenthalD.M. LiuY.Y. MüllerC. WinterK. FieldC.B. ViechtbauerW. Van LissaC.J. HoosbeekM.R. WatanabeM. KoikeT. LeshykV.O. PolleyH.W. FranklinO. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass.Nat. Clim. Chang.20199968468910.1038/s41558‑019‑0545‑2
    [Google Scholar]
  12. BonapersonaV. KentropJ. Van LissaC.J. van der VeenR. JoëlsM. SarabdjitsinghR.A. The behavioral phenotype of early life adversity: A 3-level meta-analysis of rodent studies.Neurosci. Biobehav. Rev.201910229930710.1016/j.neubiorev.2019.04.02131047892
    [Google Scholar]
  13. CastellsX. SaezM. BarcheniM. CunillR. SerranoD. LópezB. van LissaC.J. Placebo response and its predictors in attention deficit hyperactivity disorder: A meta-analysis and comparison of meta-regression and metaForest.Int. J. Neuropsychopharmacol.2022251263510.1093/ijnp/pyab05434355753
    [Google Scholar]
  14. Minerva Database.Available from:https://www.minervadatabase.org/en/(accessed on 12-11-2024).
  15. Cochrane handbook for systematic reviews of interventions.Available from:https://handbook-5-1.cochrane.org/(accessed on 12-11-2024).
  16. CastellsX. BaykovaE. MayoralS. CunillR. SerranoD. P.054 Gender bias in randomized, controlled trials of pharmacological interventions for attention deficit hyperactivity disorder.Eur. Neuropsychopharmacol.202040S36S3710.1016/j.euroneuro.2020.09.052
    [Google Scholar]
  17. CastellsX. RamonM. CunillR. OlivéC. SerranoD. Relationship between treatment duration and efficacy of pharmacological treatment for ADHD: A meta-analysis and meta-regression of 87 randomized controlled clinical trials.J. Atten. Disord.202125101352136110.1177/108705472090337232075485
    [Google Scholar]
  18. ShahA.D. BartlettJ.W. CarpenterJ. NicholasO. HemingwayH. Comparison of random forest and parametric imputation models for imputing missing data using MICE: A CALIBER study.Am. J. Epidemiol.2014179676477410.1093/aje/kwt31224589914
    [Google Scholar]
  19. FoxJ. MonetteG. Generalized collinearity diagnostics.J. Am. Stat. Assoc.19928741717818310.1080/01621459.1992.10475190
    [Google Scholar]
  20. Van LissaC.J. Small sample meta-analyses: Exploring heterogeneity using metaforest.Small Sample Size Solutions: A Guide for Applied Researchers and Practitioners. Van De SchootR.M. CRC Press202010.4324/9780429273872‑16
    [Google Scholar]
  21. HastieT. TibshiraniR. The elements of statistical learning: Data mining, inference, and predictionSpringer2009
    [Google Scholar]
  22. LeuchtS. ChaimaniA. LeuchtC. HuhnM. MavridisD. HelferB. SamaraM. CiprianiA. GeddesJ.R. SalantiG. DavisJ.M. 60 years of placebo-controlled antipsychotic drug trials in acute schizophrenia: Meta-regression of predictors of placebo response.Schizophr. Res.201820131532310.1016/j.schres.2018.05.00929804928
    [Google Scholar]
  23. UndurragaJ. BaldessariniR.J. Randomized, placebo-controlled trials of antidepressants for acute major depression: Thirty-year meta-analytic review.Neuropsychopharmacology201237485186410.1038/npp.2011.30622169941
    [Google Scholar]
  24. KotzalidisG.D. Del CasaleA. SimmacoM. PancheriL. BrugnoliR. PaoliniM. GualtieriI. FerracutiS. SavojaV. CuomoI. De ChiaraL. MoscaA. SaniG. GirardiP. PompiliM. RapinesiC. Placebo effect in Obsessive-Compulsive Disorder (OCD). Placebo response and placebo responders in OCD: the trend over time.Curr. Neuropharmacol.201917874177410.2174/1570159X1666618102616392230370851
    [Google Scholar]
  25. SyskoR. WalshB.T. A systematic review of placebo response in studies of bipolar mania.J. Clin. Psychiatry20076881213121710.4088/JCP.v68n080717854245
    [Google Scholar]
  26. EnckP. KlosterhalfenS. Does sex/gender play a role in placebo and nocebo effects? Conflicting evidence from clinical trials and experimental studies.Front. Neurosci.20191316010.3389/fnins.2019.0016030886569
    [Google Scholar]
  27. PapadopoulosD. MitsikostasD.D. A meta-analytic approach to estimating nocebo effects in neuropathic pain trials.J. Neurol.2012259343644710.1007/s00415‑011‑6197‑421811804
    [Google Scholar]
  28. AgidO. SiuC.O. PotkinS.G. KapurS. WatskyE. VanderburgD. ZipurskyM.B.R. RemingtonG. Meta-regression analysis of placebo response in antipsychotic trials, 1970-2010.Am. J. Psychiatry.20131701113351344
    [Google Scholar]
  29. GreenlandS. MorgensternH. Ecological bias, confounding, and effect modification.Int. J. Epidemiol.198918126927410.1093/ije/18.1.2692656561
    [Google Scholar]
/content/journals/cpsp/10.2174/0122115560338571241220113154
Loading
/content/journals/cpsp/10.2174/0122115560338571241220113154
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test