Skip to content
2000
image of Potential of Andrographolide and Andrographis paniculata Extracts for the Management of Diabetes-associated Psychopathologies: Current Status

Abstract

Despite the availability of numerous anti-hyperglycemic and psychoactive drugs, and diverse therapeutic modalities, prevention and cure of diabetes-associated mental health problems continue to be a major challenge for medical practitioners. Considerable efforts have been made in many research laboratories, including ours, to identify the bioactive of traditionally known medicinal or food plants to identify their bioactive that could be used for the treatment of diabetes and comorbidities in metabolic disorders. (Burm. F.) Wall. Ex. Nees. has been used in Ayurvedic and other traditionally known healthcare systems of India and many other Asian countries. Due to its extremely bitter taste, it is often referred to as the “king of bitters” and commonly known as “Kalmegh”. Andrographolide is one such metabolite of used in many Asiatic countries for the treatment of diverse age and lifestyle-associated chronic diseases now used for discovering and developing anti-diabetic and other drugs. Available data on andrographolide and strongly recommend that they could be better therapeutic choices for the prevention of diabetes and associated mental health problems than metformin and other pharmacotherapeutics currently commercialized for such purposes. However, the question of whether andrographolide or extracts of the plant enriched in it could be better suited for such purposes remains open. Currently, available quantitative data on their anti-hyperglycemic effects and brain function-modulating effects useful for answering this question are discussed in this report in light of our current knowledge of the role of gut microbiota in regulating glucose homeostasis and mental health. Their potential uses for discovering and developing drugs or phytotherapeutics from them are also pointed out.

Loading

Article metrics loading...

/content/journals/cpsp/10.2174/0122115560321901241210082616
2024-12-27
2025-01-19
Loading full text...

Full text loading...

References

  1. Wild S. Roglic G. Green A. Sicree R. King H. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care 2004 27 5 1047 1053 10.2337/diacare.27.5.1047 15111519
    [Google Scholar]
  2. Shaw J.E. Sicree R.A. Zimmet P.Z. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 2010 87 1 4 14 10.1016/j.diabres.2009.10.007 19896746
    [Google Scholar]
  3. Standl E. Khunti K. Hansen T.B. Schnell O. The global epidemics of diabetes in the 21st century: Current situation and perspectives. Eur. J. Prev. Cardiol. 2019 26 Suppl 2 7 14 10.1177/2047487319881021 31766915
    [Google Scholar]
  4. Chan J.C.N. Malik V. Jia W. Kadowaki T. Yajnik C.S. Yoon K.H. Hu F.B. Diabetes in Asia: Epidemiology, risk factors, and pathophysiology. JAMA 2009 301 20 2129 2140 10.1001/jama.2009.726 19470990
    [Google Scholar]
  5. Ramachandran A. Wan Ma R.C. Snehalatha C. Diabetes in Asia. Lancet 2010 375 9712 408 418 10.1016/S0140‑6736(09)60937‑5 19875164
    [Google Scholar]
  6. Marles R.J. Farnsworth N.R. Antidiabetic plants and their active constituents. Phytomedicine 1995 2 2 137 189 10.1016/S0944‑7113(11)80059‑0 23196156
    [Google Scholar]
  7. Oubré A.Y. Carlson T.J. King S.R. Reaven G.M. From plant to patient: An ethnomedical approach to the identification of new drugs for the treatment of NIDDM. Diabetologia 1997 40 5 614 617 10.1007/s001250050724 9165233
    [Google Scholar]
  8. LaMoia T.E. Shulman G.I. Cellular and molecular mechanisms of metformin action. Endocr. Rev. 2021 42 1 77 96 10.1210/endrev/bnaa023 32897388
    [Google Scholar]
  9. Mukherjee P.K. Maiti K. Mukherjee K. Houghton P.J. Leads from Indian medicinal plants with hypoglycemic potentials. J. Ethnopharmacol. 2006 106 1 1 28 10.1016/j.jep.2006.03.021 16678368
    [Google Scholar]
  10. Nyakudya T.T. Tshabalala T. Dangarembizi R. Erlwanger K.H. Ndhlala A.R. The potential therapeutic value of medicinal plants in the management of metabolic disorders. Molecules 2020 25 11 2669 10.3390/molecules25112669 32526850
    [Google Scholar]
  11. Ríos J. Francini F. Schinella G. Natural products for the treatment of type 2 diabetes mellitus. Planta Med. 2015 81 12/13 975 994 10.1055/s‑0035‑1546131 26132858
    [Google Scholar]
  12. Sun N.N. Wu T.Y. Chau C.F. Natural dietary and herbal products in anti-obesity treatment. Molecules 2016 21 10 1351 10.3390/molecules21101351 27727194
    [Google Scholar]
  13. Gaikwad S.B. Mohan G.K. Rani M.S. Phytochemicals for diabetes management. Pharm. Crop. 2014 5 11 28 10.2174/2210290601405010011
    [Google Scholar]
  14. Hostalek U. Gwilt M. Hildemann S. Therapeutic use of metformin in prediabetes and diabetes prevention. Drugs 2015 75 10 1071 1094 10.1007/s40265‑015‑0416‑8 26059289
    [Google Scholar]
  15. Top W.M.C. Kooy A. Stehouwer C.D.A. Metformin: A narrative review of its potential benefits for cardiovascular disease, cancer and dementia. Pharmaceuticals (Basel) 2022 15 3 312 10.3390/ph15030312 35337110
    [Google Scholar]
  16. Vieira I.H. Barros L.M. Baptista C.F. Rodrigues D.M. Paiva I.M. Recommendations for practical use of metformin, a central pharmacological therapy in type 2 diabetes. Clin. Diabetes 2022 40 1 97 107 10.2337/cd21‑0043 35221479
    [Google Scholar]
  17. Bouchoucha M. Uzzan B. Cohen R. Metformin and digestive disorders. Diabetes Metab. 2011 37 2 90 96 10.1016/j.diabet.2010.11.002 21236717
    [Google Scholar]
  18. Baker C. Retzik-Stahr C. Singh V. Plomondon R. Anderson V. Rasouli N. Should metformin remain the first-line therapy for treatment of type 2 diabetes? Ther. Adv. Endocrinol. Metab. 2021 12 2042018820980225 10.1177/2042018820980225 33489086
    [Google Scholar]
  19. Irons B. Minze M. Drug treatment of type 2 diabetes mellitus in patients for whom metformin is contraindicated. Diabetes Metab. Syndr. Obes. 2014 7 15 24 10.2147/DMSO.S38753 24465132
    [Google Scholar]
  20. McCreight L.J. Bailey C.J. Pearson E.R. Metformin and the gastrointestinal tract. Diabetologia 2016 59 3 426 435 10.1007/s00125‑015‑3844‑9 26780750
    [Google Scholar]
  21. Sivadasan S. Subramanian M. Aiyalu R. Metformin: Pros and cons. Metformin - Pharmacology and Drug Interactions Akhtar J. Ahmad U. Badruddeen B. Khan M. London IntechOpen 2021 10.5772/intechopen.99815
    [Google Scholar]
  22. O’Morain N. O’Morain C. The burden of digestive disease across Europe: Facts and policies. Dig. Liver Dis. 2019 51 1 1 3 10.1016/j.dld.2018.10.001 30442520
    [Google Scholar]
  23. Sperber A.D. Bangdiwala S.I. Drossman D.A. Ghoshal U.C. Simren M. Tack J. Whitehead W.E. Dumitrascu D.L. Fang X. Fukudo S. Kellow J. Okeke E. Quigley E.M.M. Schmulson M. Whorwell P. Archampong T. Adibi P. Andresen V. Benninga M.A. Bonaz B. Bor S. Fernandez L.B. Choi S.C. Corazziari E.S. Francisconi C. Hani A. Lazebnik L. Lee Y.Y. Mulak A. Rahman M.M. Santos J. Setshedi M. Syam A.F. Vanner S. Wong R.K. Lopez-Colombo A. Costa V. Dickman R. Kanazawa M. Keshteli A.H. Khatun R. Maleki I. Poitras P. Pratap N. Stefanyuk O. Thomson S. Zeevenhooven J. Palsson O.S. Worldwide prevalence and burden of functional gastrointestinal disorders, results of rome foundation global study. Gastroenterology 2021 160 1 99 114.e3 10.1053/j.gastro.2020.04.014 32294476
    [Google Scholar]
  24. Marathe C.S. Rayner C.K. Wu T. Jones K.L. Horowitz M. Gastrointestinal disorders in diabetes. Endotext South Dartmouth, MA MDText.com, Inc. Feingold K.R. Anawalt B. Boyce A. Chrousos G. de Herder W.W. Dhatariya K. 2000 31986000
    [Google Scholar]
  25. Bjelakovic G. Aleksandar N. Ivanka S. Benedeto-Stojanov D. Marija B. Bratislav P. Slobodan A. Diabetes mellitus and digestive disorders. Acta Facultatis Medicae Naissensis 2005 22 1 43 50
    [Google Scholar]
  26. Díaz-Perdigones C.M. Muñoz-Garach A. Álvarez-Bermúdez M.D. Moreno-Indias I. Tinahones F.J. Gut microbiota of patients with type 2 diabetes and gastrointestinal intolerance to metformin differs in composition and functionality from tolerant patients. Biomed. Pharmacother. 2022 145 112448 10.1016/j.biopha.2021.112448 34844104
    [Google Scholar]
  27. Lee C.B. Chae S.U. Jo S.J. Jerng U.M. Bae S.K. The relationship between the gut microbiome and metformin as a key for treating type 2 diabetes mellitus. Int. J. Mol. Sci. 2021 22 7 3566 10.3390/ijms22073566 33808194
    [Google Scholar]
  28. Vallianou N.G. Stratigou T. Tsagarakis S. Metformin and gut microbiota: Their interactions and their impact on diabetes. Hormones (Athens) 2019 18 2 141 144 10.1007/s42000‑019‑00093‑w 30719628
    [Google Scholar]
  29. Gurung M. Li Z. You H. Rodrigues R. Jump D.B. Morgun A. Shulzhenko N. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 2020 51 102590 10.1016/j.ebiom.2019.11.051 31901868
    [Google Scholar]
  30. Li W.Z. Stirling K. Yang J.J. Zhang L. Gut microbiota and diabetes: From correlation to causality and mechanism. World J. Diabetes 2020 11 7 293 308 10.4239/wjd.v11.i7.293 32843932
    [Google Scholar]
  31. Adeshirlarijaney A. Gewirtz A.T. Considering gut microbiota in treatment of type 2 diabetes mellitus. Gut Microbes 2020 11 3 253 264 10.1080/19490976.2020.1717719 32005089
    [Google Scholar]
  32. he Yang F.Q. Tang P. Gao T.H. Yang C.X. Tan L. Yue P. Hua Y.N. Liu S.J. Guo J.L. Regulation of the intestinal flora: A potential mechanism of natural medicines in the treatment of type 2 diabetes mellitus. Biomed. Pharmacother. 2022 151 113091 10.1016/j.biopha.2022.113091 35576662
    [Google Scholar]
  33. Zhang B. Yue R. Chen Y. Yang M. Huang X. Shui J. Peng Y. Chin J. Gut microbiota, a potential new target for chinese herbal medicines in treating diabetes mellitus. Evid. Based Complement. Alternat. Med. 2019 2019 1 11 10.1155/2019/2634898 30906411
    [Google Scholar]
  34. Zheng Y. Gou X. Zhang L. Gao H. Wei Y. Yu X. Pang B. Tian J. Tong X. Li M. Interactions between gut microbiota, host, and herbal medicines: A review of new insights into the pathogenesis and treatment of type 2 diabetes. Front. Cell. Infect. Microbiol. 2020 10 360 10.3389/fcimb.2020.00360 32766169
    [Google Scholar]
  35. Hossain M.S. Urbi Z. Sule A. Rahman K.M.H. Andrographis paniculata (Burm. f.) Wall. ex Nees: A review of ethnobotany, phytochemistry, and pharmacology. ScientificWorldJournal 2014 2014 1 28 10.1155/2014/274905 25950015
    [Google Scholar]
  36. Subramanian R. Asmawi M.Z. Sadikun A. Effect of Andrographolide and Ethanol Extract of Andrographis paniculata on Liver Glycolytic, Gluconeogenic, and Lipogenic Enzymes in a Type 2 Diabetic Rat Model. Pharm. Biol. 2008 46 10-11 772 780 10.1080/13880200802316079
    [Google Scholar]
  37. Komalasari T. Harimurti S. A review of the anti-diabetic activity of Andrographis paniculata (Burm. f.) nees based in-vivo study. Int. J. Public Health Sci. 2015 4 4 256 [IJPHS].
    [Google Scholar]
  38. Thakur A.K. Chatterjee S.S. Kumar V. Adaptogenic potential of andrographolide: An active principle of the king of bitters (Andrographis paniculata). J. Tradit. Complement. Med. 2015 5 1 42 50 10.1016/j.jtcme.2014.10.002 26151008
    [Google Scholar]
  39. Kumar S. Singh B. Bajpai V. Andrographis paniculata (Burm.f.) Nees: Traditional uses, phytochemistry, pharmacological properties and quality control/quality assurance. J. Ethnopharmacol. 2021 275 114054 10.1016/j.jep.2021.114054 33831465
    [Google Scholar]
  40. Subramanian R. Zaini Asmawi M. Sadikun A. A bitter plant with a sweet future? A comprehensive review of an oriental medicinal plant: Andrographis paniculata. Phytochem. Rev. 2012 11 1 39 75 10.1007/s11101‑011‑9219‑z
    [Google Scholar]
  41. Kishore V. Yarla N. Bishayee A. Putta S. Malla R. Neelapu N. Challa S. Das S. Shiralgi Y. Hegde G. Dhananjaya B. Multi-targeting andrographolide and its natural analogs as potential therapeutic agents. Curr. Top. Med. Chem. 2017 17 8 845 857 10.2174/1568026616666160927150452 27697058
    [Google Scholar]
  42. Zeng B. Wei A. Zhou Q. Yuan M. Lei K. Liu Y. Song J. Guo L. Ye Q. Andrographolide: A review of its pharmacology, pharmacokinetics, toxicity and clinical trials and pharmaceutical researches. Phytother. Res. 2022 36 1 336 364 10.1002/ptr.7324 34818697
    [Google Scholar]
  43. Islam M.T. Andrographolide, a new hope in the prevention and treatment of metabolic syndrome. Front. Pharmacol. 2017 8 571 10.3389/fphar.2017.00571 28878680
    [Google Scholar]
  44. Zhang H. Li S. Si Y. Xu H. Andrographolide and its derivatives: Current achievements and future perspectives. Eur. J. Med. Chem. 2021 224 113710 10.1016/j.ejmech.2021.113710 34315039
    [Google Scholar]
  45. Mandal S.C. Dhara A.K. Maiti B.C. Studies on psychopharmacological activity of Andrographis paniculata extract. Phytother. Res. 2001 15 3 253 256 10.1002/ptr.704 11351363
    [Google Scholar]
  46. Chan S.J. Wong W.S.F. Wong P.T.H. Bian J.S. Neuroprotective effects of andrographolide in a rat model of permanent cerebral ischaemia. Br. J. Pharmacol. 2010 161 3 668 679 10.1111/j.1476‑5381.2010.00906.x 20880404
    [Google Scholar]
  47. Radhika P. Annapurna A. Rao S.N. Immunostimulant, cerebroprotective & nootropic activities of Andrographis paniculata leaves extract in normal & type 2 diabetic rats. Indian J. Med. Res. 2012 135 5 636 641 22771592
    [Google Scholar]
  48. Serrano F.G. Tapia-Rojas C. Carvajal F.J. Hancke J. Cerpa W. Inestrosa N.C. Andrographolide reduces cognitive impairment in young and mature AβPPswe/PS-1 mice. Mol. Neurodegener. 2014 9 1 61 10.1186/1750‑1326‑9‑61 25524173
    [Google Scholar]
  49. Jayakumar T. Hsieh C.Y. Lee J.J. Sheu J.R. Experimental and clinical pharmacology of andrographis paniculata and its major bioactive phytoconstituent andrographolide. Evid. Based Complement. Alternat. Med. 2013 2013 1 16 10.1155/2013/846740 23634174
    [Google Scholar]
  50. Kumar V. Thakur A.K. Chatterjee S.S. Perspective of Andrographis paniculata in neurological disorders. Clin. Pharmacol. Biopharm. 2014 S2 e001 1 4 10.4172/2167‑065X.S2‑005
    [Google Scholar]
  51. Hossain R. Quispe C. Herrera-Bravo J. Beltrán J.F. Islam M.T. Shaheen S. Cruz-Martins N. Martorell M. Kumar M. Sharifi-Rad J. Ozdemir F.A. Setzer W.N. Alshehri M.M. Calina D. Cho W.C. Neurobiological promises of the bitter diterpene lactone andrographolide. Oxid. Med. Cell. Longev. 2022 2022 1 9 10.1155/2022/3079577 35154564
    [Google Scholar]
  52. Arifah F.H. Nugroho A.E. Rohman A. Sujarwo W. A bibliometric analysis of preclinical trials of Andrographis paniculata (Burm.f.) Nees in diabetes mellitus. S. Afr. J. Bot. 2021 151 Part B 128 143 10.1016/j.sajb.2021.12.011
    [Google Scholar]
  53. Sridharan B. Lee M-J. Andrographolide, a diterpene from andrographis paniculata, and its influence on the progression of neurodegenerative disorders. Medicinal Herbs and Fungi: Neurotoxicity vs Neuroprotection Singapore Springer Agrawal D.C. Dhanasekaran M. 2021 79 112 10.1007/978‑981‑33‑4141‑8_3
    [Google Scholar]
  54. Panossian A. Brendler T. The role of adaptogens in prophylaxis and treatment of viral respiratory infections. Pharmaceuticals (Basel) 2020 13 9 236 10.3390/ph13090236 32911682
    [Google Scholar]
  55. Panossian A.G. Efferth T. Shikov A.N. Pozharitskaya O.N. Kuchta K. Mukherjee P.K. Banerjee S. Heinrich M. Wu W. Guo D. Wagner H. Evolution of the adaptogenic concept from traditional use to medical systems: Pharmacology of stress‐ and aging‐related diseases. Med. Res. Rev. 2021 41 1 630 703 10.1002/med.21743 33103257
    [Google Scholar]
  56. Thakur A.K. Chatterjee S.S. Kumar V. Andrographolides and traditionally used Andrographis paniculata as potential adaptogens: Implications for therapeutic innovation. CellMed. 2014 4 3 e15 10.5667/tang.2014.0002
    [Google Scholar]
  57. Collins M.M. Corcoran P. Perry I.J. Anxiety and depression symptoms in patients with diabetes. Diabet. Med. 2009 26 2 153 161 10.1111/j.1464‑5491.2008.02648.x 19236618
    [Google Scholar]
  58. Woon L.S.C. Sidi H.B. Ravindran A. Gosse P.J. Mainland R.L. Kaunismaa E.S. Hatta N.H. Arnawati P. Zulkifli A.Y. Mustafa N. Leong Bin Abdullah M.F.I. Depression, anxiety, and associated factors in patients with diabetes: Evidence from the anxiety, depression, and personality traits in diabetes mellitus (ADAPT-DM) study. BMC Psychiatry 2020 20 1 227 10.1186/s12888‑020‑02615‑y 32397976
    [Google Scholar]
  59. Bener A. Al-Hamaq A.O. Dafeeah E.E. High prevalence of depression, anxiety and stress symptoms among diabetes mellitus patients. Open Psychiatry J. 2011 5 1 5 12 10.2174/1874354401105010005
    [Google Scholar]
  60. Alzoubi A. Abunaser R. Khassawneh A. Alfaqih M. Khasawneh A. Abdo N. The Bidirectional relationship between diabetes and depression: A literature review. Korean J. Fam. Med. 2018 39 3 137 146 10.4082/kjfm.2018.39.3.137 29788701
    [Google Scholar]
  61. Renn B.N. Feliciano L. Segal D.L. The bidirectional relationship of depression and diabetes: A systematic review. Clin. Psychol. Rev. 2011 31 8 1239 1246 10.1016/j.cpr.2011.08.001 21963669
    [Google Scholar]
  62. Kligler B. Ulbricht C. Basch E. Kirkwood C.D. Abrams T.R. Miranda M. Singh Khalsa K.P. Giles M. Boon H. Woods J. Andrographis paniculata for the treatment of upper respiratory infection: A systematic review by the natural standard research collaboration. Explore (NY) 2006 2 1 25 29 10.1016/j.explore.2005.08.008 16781605
    [Google Scholar]
  63. Saxena R.C. Singh R. Kumar P. Yadav S.C. Negi M.P.S. Saxena V.S. Joshua A.J. Vijayabalaji V. Goudar K.S. Venkateshwarlu K. Amit A. A randomized double blind placebo controlled clinical evaluation of extract of Andrographis paniculata (KalmCold™) in patients with uncomplicated upper respiratory tract infection. Phytomedicine 2010 17 3-4 178 185 10.1016/j.phymed.2009.12.001 20092985
    [Google Scholar]
  64. Thakur A.K. Chatterjee S.S. Kumar V. Neuropsychopharmacology of a therapeutically used Andrographis paniculata extract: A preclinical study. Orient. Pharm. Exp. Med. 2014 14 2 181 191 10.1007/s13596‑013‑0140‑4
    [Google Scholar]
  65. Thakur A.K. Chatterjee S.S. Kumar V. Antidepressant-like activity of Andrographis paniculata in type-2 diabetic rats. Clin. Pharmacol. Biopharm. 2014 S2 e001 1 9 10.4172/2167‑065X.S2‑003
    [Google Scholar]
  66. Thakur A.K. Soni U.K. Rai G. Chatterjee S.S. Kumar V. Protective effects of Andrographis paniculata extract and pure andrographolide against chronic stress-triggered pathologies in rats. Cell. Mol. Neurobiol. 2014 34 8 1111 1121 10.1007/s10571‑014‑0086‑1 25035059
    [Google Scholar]
  67. Thakur A.K. Rai G. Chatterjee S.S. Kumar V. Beneficial effects of an Andrographis paniculata extract and andrographolide on cognitive functions in streptozotocin-induced diabetic rats. Pharm. Biol. 2016 54 9 1528 1538 10.3109/13880209.2015.1107107 26810454
    [Google Scholar]
  68. Thakur A.K. Kumar V. Neurotransmitters modulating effect of Andrographis paniculata extract and isolated pure andrographolide in diabetic rodents. Pharmacologia 2018 9 2 46 54
    [Google Scholar]
  69. Thakur A.K. Rai G. Chatterjee S.S. Kumar V. Analgesic and anti-inflammatory activity of Andrographis paniculata and andrographolide in diabetic rodents. EC Pharmaceutical Science 2015 1 1 19 28
    [Google Scholar]
  70. Borhanuddin M. Shamsuzzoha M. Hussain A.H. Hypoglycaemic effects of Andrographis paniculata Nees on non-diabetic rabbits. Bangladesh Med. Res. Counc. Bull. 1994 20 1 24 26 7880153
    [Google Scholar]
  71. Yusof A.P. Ahmad M. Hypoglycaemic effects of Andrographis paniculata Nees. Aust. J. Med. Herb. 1997 9 3 73 76
    [Google Scholar]
  72. Zhang X.F. Tan B.K. Anti-diabetic property of ethanolic extract of Andrographis paniculata in streptozotocin-diabetic rats. Acta Pharmacol. Sin. 2000 21 12 1157 1164 11603293
    [Google Scholar]
  73. Zhang X.F. Tan B.K.H. Antihyperglycaemic and anti-oxidant properties of Andrographis paniculata in normal and diabetic rats. Clin. Exp. Pharmacol. Physiol. 2000 27 5-6 358 363 10.1046/j.1440‑1681.2000.03253.x 10831236
    [Google Scholar]
  74. Jaiyesimi K.F. Agunbiade O.S. Ajiboye B.O. Afolabi O.B. Polyphenolic-rich extracts of Andrographis paniculata mitigate hyperglycemia via attenuating β-cell dysfunction, pro-inflammatory cytokines and oxidative stress in alloxan-induced diabetic Wistar albino rat. J. Diabetes Metab. Disord. 2020 19 2 1543 1556 10.1007/s40200‑020‑00690‑2 33553038
    [Google Scholar]
  75. Dwivedi M.K. Sonter S. Mishra S. Singh P. Singh P.K. Secondary metabolite profiling and characterization of diterpenes and flavones from the methanolic extract of Andrographis paniculata using HPLC-LC-MS/MS. Futur. J. Pharm. Sci. 2021 7 10.1186/s43094‑021‑00292‑6
    [Google Scholar]
  76. Xu J. Li Z. Cao M. Zhang H. Sun J. Zhao J. Zhou Q. Wu Z. Yang L. Synergetic effect of Andrographis paniculata polysaccharide on diabetic nephropathy with andrographolide. Int. J. Biol. Macromol. 2012 51 5 738 742 10.1016/j.ijbiomac.2012.06.035 22766034
    [Google Scholar]
  77. Nalamolu K.R. Anti-hyperglycemic and renal protective activities of andrographis paniculata roots chloroform extract. Iranian J. Pharmacol. Therap. 2006 5 1 47 50
    [Google Scholar]
  78. Brahmachari G. Andrographolide: A molecule of antidiabetic promise. Discovery and Development of Anti-diabetic Agents from Natural products Elsevier Brahmachari G. 2017 1 27 10.1016/B978‑0‑12‑809450‑1.00001‑6
    [Google Scholar]
  79. Chandak K. Dabhekar S. Bhuya A. Umekar D.M. Assessment of antidiabetic activity of dried juice of Andrographis paniculata leaves in alloxan induced diabetic rats. Int. J. Pharm. Sci. Nanotechnol. 2022 15 2 5862 5866 10.37285/ijpsn.2022.15.2.5
    [Google Scholar]
  80. Yu B.C. Hung C.R. Chen W.C. Cheng J.T. Antihyperglycemic effect of andrographolide in streptozotocin-induced diabetic rats. Planta Med. 2003 69 12 1075 1079 10.1055/s‑2003‑45185 14750020
    [Google Scholar]
  81. Yu B.C. Chang C.K. Su C.F. Cheng J.T. Mediation of β-endorphin in andrographolide-induced plasma glucose-lowering action in type I diabetes-like animals. Naunyn Schmiedebergs Arch. Pharmacol. 2008 377 4-6 529 540 10.1007/s00210‑007‑0240‑0 18080810
    [Google Scholar]
  82. Cheng J.T. Huang C.C. Liu I.M. Tzeng T.F. Chang C.J. Novel mechanism for plasma glucose-lowering action of metformin in streptozotocin-induced diabetic rats. Diabetes 2006 55 3 819 825 10.2337/diabetes.55.03.06.db05‑0934 16505249
    [Google Scholar]
  83. Nugroho A. Andrie M. Warditiani N. Siswanto E. Pramono S. Lukitaningsih E. Antidiabetic and antihiperlipidemic effect of Andrographis paniculata (Burm. f.) Nees and andrographolide in high-fructose-fat-fed rats. Indian J. Pharmacol. 2012 44 3 377 381 10.4103/0253‑7613.96343 22701250
    [Google Scholar]
  84. Thakur A.K. Chatterjee S.S. Kumar V. Therapeutic potential of traditionally used medicinal plant Andrographis paniculata (Burm. F.) against diabesity: An experimental study in rats. CellMed. 2014 4 1 71 78 10.5667/tang.2014.0001
    [Google Scholar]
  85. Shang Y. Shen C. Stub T. Zhu S. Qiao S. Li Y. Wang R. Li J. Liu J. Adverse effects of andrographolide derivative medications compared to the safe use of herbal preparations of Andrographis paniculata: Results of a systematic review and meta-analysis of clinical studies. Front. Pharmacol. 2022 13 773282 10.3389/fphar.2022.773282 35153776
    [Google Scholar]
  86. Worakunphanich W. Thavorncharoensap M. Youngkong S. Thadanipon K. Thakkinstian A. Safety of Andrographis paniculata: A systematic review and meta‐analysis. Pharmacoepidemiol. Drug Saf. 2021 30 6 727 739 10.1002/pds.5190 33372366
    [Google Scholar]
  87. Mathur D. Anand A. Srivastava V. Patil S.S. Singh A. Rajesh S.K. Nagendra H.R. Nagarathna R. Depression in high-risk type 2 diabetes adults. Ann. Neurosci. 2020 27 3-4 204 213 10.1177/0972753121990181 34556961
    [Google Scholar]
  88. Graham E.A. Deschênes S.S. Khalil M.N. Danna S. Filion K.B. Schmitz N. Measures of depression and risk of type 2 diabetes: A systematic review and meta-analysis. J. Affect. Disord. 2020 265 224 232 10.1016/j.jad.2020.01.053 32090745
    [Google Scholar]
  89. Chen X. Eslamfam S. Fang L. Qiao S. Ma X. Maintenance of gastrointestinal glucose homeostasis by the gut-brain axis. Curr. Protein Pept. Sci. 2017 18 6 541 547 10.2174/1389203717666160627083604 27356933
    [Google Scholar]
  90. de Clercq N.C. Frissen M.N. Groen A.K. Nieuwdorp M. Gut microbiota and the gut-brain axis: New insights in the pathophysiology of metabolic syndrome. Psychosom. Med. 2017 79 8 874 879 10.1097/PSY.0000000000000495 28557822
    [Google Scholar]
  91. Migrenne S. Marsollier N. Crucianiguglielmacci C. Magnan C. Importance of the gut–brain axis in the control of glucose homeostasis. Curr. Opin. Pharmacol. 2006 6 6 592 597 10.1016/j.coph.2006.08.004 16990049
    [Google Scholar]
  92. Sam A.H. Troke R.C. Tan T.M. Bewick G.A. The role of the gut/brain axis in modulating food intake. Neuropharmacology 2012 63 1 46 56 10.1016/j.neuropharm.2011.10.008 22037149
    [Google Scholar]
  93. Cryan J.F. Dinan T.G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 2012 13 10 701 712 10.1038/nrn3346 22968153
    [Google Scholar]
  94. De Palma G. Collins S.M. Bercik P. Verdu E.F. The microbiota–gut–brain axis in gastrointestinal disorders: stressed bugs, stressed brain or both? J. Physiol. 2014 592 14 2989 2997 10.1113/jphysiol.2014.273995 24756641
    [Google Scholar]
  95. Lee S.H. Serre C.B. Gut microbiome-brain communications regulate host physiology and behavior. J. Nutrit. Health Food Sci. 2015 3 2 1 12
    [Google Scholar]
  96. Saha P. Skidmore P.T. Holland L.A. Mondal A. Bose D. Seth R.K. Sullivan K. Janulewicz P.A. Horner R. Klimas N. Nagarkatti M. Nagarkatti P. Lim E.S. Chatterjee S. Andrographolide attenuates gut-brain-axis associated pathology in gulf war illness by modulating bacteriome-virome associated inflammation and microglia-neuron proinflammatory crosstalk. Brain Sci. 2021 11 7 905 10.3390/brainsci11070905 34356139
    [Google Scholar]
  97. Su H. Mo J. Ni J. Ke H. Bao T. Xie J. Xu Y. Xie L. Chen W. Andrographolide exerts antihyperglycemic effect through strengthening intestinal barrier function and increasing microbial composition of Akkermansia muciniphila. Oxid. Med. Cell. Longev. 2020 2020 1 20 10.1155/2020/6538930 32774682
    [Google Scholar]
  98. Wu H. Wu X. Huang L. Ruan C. Liu J. Chen X. Liu J. Luo H. Effects of andrographolide on mouse intestinal microflora based on high-throughput sequence analysis. Front. Vet. Sci. 2021 8 702885 10.3389/fvets.2021.702885 34485430
    [Google Scholar]
  99. Chatterjee S.S. Kumar V. Quantitative systems pharmacology: Lessons from fumaric acid and herbal remedies. Drug Des. 2017 6 2 1000152 10.4172/2169‑0138.1000152
    [Google Scholar]
  100. Behrens M. Brockhoff A. Batram C. Kuhn C. Appendino G. Meyerhof W. The human bitter taste receptor hTAS2R50 is activated by the two natural bitter terpenoids andrographolide and amarogentin. J. Agric. Food Chem. 2009 57 21 9860 9866 10.1021/jf9014334 19817411
    [Google Scholar]
  101. Brockhoff A. Behrens M. Massarotti A. Appendino G. Meyerhof W. Broad tuning of the human bitter taste receptor hTAS2R46 to various sesquiterpene lactones, clerodane and labdane diterpenoids, strychnine, and denatonium. J. Agric. Food Chem. 2007 55 15 6236 6243 10.1021/jf070503p 17595105
    [Google Scholar]
  102. Dotson C.D. Zhang L. Xu H. Shin Y.K. Vigues S. Ott S.H. Elson A.E.T. Choi H.J. Shaw H. Egan J.M. Mitchell B.D. Li X. Steinle N.I. Munger S.D. Bitter taste receptors influence glucose homeostasis. PLoS One 2008 3 12 e3974 10.1371/journal.pone.0003974 19092995
    [Google Scholar]
  103. Kok B.P. Galmozzi A. Littlejohn N.K. Albert V. Godio C. Kim W. Kim S.M. Bland J.S. Grayson N. Fang M. Meyerhof W. Siuzdak G. Srinivasan S. Behrens M. Saez E. Intestinal bitter taste receptor activation alters hormone secretion and imparts metabolic benefits. Mol. Metab. 2018 16 76 87 10.1016/j.molmet.2018.07.013 30120064
    [Google Scholar]
  104. Tuzim K. Korolczuk A. Correction to: An update on extra-oral bitter taste receptors. J. Transl. Med. 2021 19 1 478 10.1186/s12967‑021‑03137‑1 34836552
    [Google Scholar]
  105. Tuzim K. Korolczuk A. An update on extra-oral bitter taste receptors. J. Transl. Med. 2021 19 1 440 10.1186/s12967‑021‑03067‑y 34674725
    [Google Scholar]
  106. Behrens M. Meyerhof W. Vertebrate bitter taste receptors: Keys for survival in changing environments. J. Agric. Food Chem. 2018 66 10 2204 2213 10.1021/acs.jafc.6b04835 28013542
    [Google Scholar]
  107. Clark A.A. Liggett S.B. Munger S.D. Extraoral bitter taste receptors as mediators of off‐target drug effects. FASEB J. 2012 26 12 4827 4831 10.1096/fj.12‑215087 22964302
    [Google Scholar]
  108. Levit A. Nowak S. Peters M. Wiener A. Meyerhof W. Behrens M. Niv M.Y. The bitter pill: Clinical drugs that activate the human bitter taste receptor TAS2R14. FASEB J. 2014 28 3 1181 1197 10.1096/fj.13‑242594 24285091
    [Google Scholar]
  109. Viswanathan V.K. Sensing bacteria, without bitterness? Gut Microbes 2013 4 2 91 93 10.4161/gmic.23776 23380647
    [Google Scholar]
  110. Lu P. Zhang C.H. Lifshitz L.M. ZhuGe R. Extraoral bitter taste receptors in health and disease. J. Gen. Physiol. 2017 149 2 181 197 10.1085/jgp.201611637 28053191
    [Google Scholar]
  111. Qu J. Liu Q. You G. Ye L. Jin Y. Kong L. Guo W. Xu Q. Sun Y. Advances in ameliorating inflammatory diseases and cancers by andrographolide: Pharmacokinetics, pharmacodynamics, and perspective. Med. Res. Rev. 2022 42 3 1147 1178 10.1002/med.21873 34877672
    [Google Scholar]
  112. Arumugam G. Panneerselvam S. A biochemical study on the gastroprotective effect of hydroalcoholic extract of Andrographis paniculata in rats. Indian J. Pharmacol. 2011 43 4 402 408 10.4103/0253‑7613.83110 21844994
    [Google Scholar]
  113. Saranya P. Geetha A. Karthikeyan M. Selvamathy N. The antioxidant and H+K+ATPase inhibitory effect of Andrographis paniculata and andrographolide - in vitro and in vivo studies. Pharmacologyonline 2010 1 356 376
    [Google Scholar]
  114. Zhang Y.J. Gan R.Y. Li S. Zhou Y. Li A.N. Xu D.P. Li H.B. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules 2015 20 12 21138 21156 10.3390/molecules201219753 26633317
    [Google Scholar]
  115. Shu L. Fu H. Pi A. Feng Y. Dong H. Si C. Li S. Zhu F. Zheng P. Zhu Q. Protective effect of andrographolide against ulcerative colitis by activating Nrf2/HO-1 mediated antioxidant response. Front. Pharmacol. 2024 15 1424219 10.3389/fphar.2024.1424219 39135804
    [Google Scholar]
  116. Buczyńska A. Sidorkiewicz I. Krętowski A.J. Adamska A. Examining the clinical relevance of metformin as an antioxidant intervention. Front. Pharmacol. 2024 15 1330797 10.3389/fphar.2024.1330797 38362157
    [Google Scholar]
  117. Wong S.Y. Tan M.G.K. Wong P.T.H. Herr D.R. Lai M.K.P. Andrographolide induces Nrf2 and heme oxygenase 1 in astrocytes by activating p38 MAPK and ERK. J. Neuroinflammation 2016 13 1 251 10.1186/s12974‑016‑0723‑3 27663973
    [Google Scholar]
  118. Lu J. Ma Y. Wu J. Huang H. Wang X. Chen Z. Chen J. He H. Huang C. A review for the neuroprotective effects of andrographolide in the central nervous system. Biomed. Pharmacother. 2019 117 109078 10.1016/j.biopha.2019.109078 31181444
    [Google Scholar]
  119. Rudrala L.C. Challa R.R. Subramanyam S. Ayyappa Gouru S. Singh G. Sirisha Mulukuri N.V.L. Pasala P.K. Dintakurthi P.S.N.B.K. Gajula S. Rudrapal M. Cerebroprotective potential of andrographolide nanoparticles: In silico and in vivo investigations. Drug Res. (Stuttg.) 2024 74 7 335 346 10.1055/a‑2345‑5396 38991529
    [Google Scholar]
  120. Mussard E. Cesaro A. Lespessailles E. Legrain B. Berteina-Raboin S. Toumi H. Andrographolide, a natural antioxidant: An update. Antioxidants 2019 8 12 571 10.3390/antiox8120571 31756965
    [Google Scholar]
  121. Todorova V. Ivanov K. Delattre C. Nalbantova V. Karcheva-Bahchevanska D. Ivanova S. Plant adaptogens - History and future perspectives. Nutrients 2021 13 8 2861 10.3390/nu13082861 34445021
    [Google Scholar]
  122. Kumar V. Chatterjee S. Single and repeated dose effects of phytochemicals in rodent behavioural models. EC Pharmaceutical Science 2014 1 16 17
    [Google Scholar]
  123. Liu K. Zhao L. Xu W. Lin Q. Zhou Y. Huang X. Ye X. He J. Bai G. Yan Z. Gao H. Metabolic changes associated with a rat model of diabetic depression detected by ex vivo 1 H nuclear magnetic resonance spectroscopy in the prefrontal cortex, hippocampus, and hypothalamus. Neural Plast. 2018 2018 1 12 10.1155/2018/6473728 29849562
    [Google Scholar]
  124. Shivavedi N. Kumar M. Tej G.N.V.C. Nayak P.K. Metformin and ascorbic acid combination therapy ameliorates type 2 diabetes mellitus and comorbid depression in rats. Brain Res. 2017 1674 1 9 10.1016/j.brainres.2017.08.019 28827076
    [Google Scholar]
  125. Garabadu D. Krishnamurthy S. Metformin attenuates hepatic insulin resistance in type-2 diabetic rats through PI3K/Akt/GLUT-4 signalling independent to bicuculline-sensitive GABA A receptor stimulation. Pharm. Biol. 2017 55 1 722 728 10.1080/13880209.2016.1268635 28142314
    [Google Scholar]
  126. Garabadu D. Krishnamurthy S. Diazepam potentiates the antidiabetic, antistress and anxiolytic activities of metformin in type-2 diabetes mellitus with cooccurring stress in experimental animals. BioMed Res. Int. 2014 2014 1 15 10.1155/2014/693074 24995322
    [Google Scholar]
  127. Pintana H. Apaijai N. Pratchayasakul W. Chattipakorn N. Chattipakorn S.C. Effects of metformin on learning and memory behaviors and brain mitochondrial functions in high fat diet induced insulin resistant rats. Life Sci. 2012 91 11-12 409 414 10.1016/j.lfs.2012.08.017 22925597
    [Google Scholar]
  128. Guo M. Mi J. Jiang Q.M. Xu J.M. Tang Y.Y. Tian G. Wang B. Metformin may produce antidepressant effects through improvement of cognitive function among depressed patients with diabetes mellitus. Clin. Exp. Pharmacol. Physiol. 2014 41 9 650 656 10.1111/1440‑1681.12265 24862430
    [Google Scholar]
  129. Behrens M. Meyerhof W. Bitter taste receptor research comes of age: From characterization to modulation of TAS2Rs. Semin. Cell Dev. Biol. 2013 24 3 215 221 10.1016/j.semcdb.2012.08.006 22947915
    [Google Scholar]
  130. Greene T.A. Alarcon S. Thomas A. Berdougo E. Doranz B.J. Breslin P.A.S. Rucker J.B. Probenecid inhibits the human bitter taste receptor TAS2R16 and suppresses bitter perception of salicin. PLoS One 2011 6 5 e20123 10.1371/journal.pone.0020123 21629661
    [Google Scholar]
  131. Turner A. Veysey M. Keely S. Scarlett C. Lucock M. Beckett E.L. Interactions between bitter taste, diet and dysbiosis: Consequences for appetite and obesity. Nutrients 2018 10 10 1336 10.3390/nu10101336 30241292
    [Google Scholar]
  132. Rezaie P. Bitarafan V. Horowitz M. Feinle-Bisset C. Effects of bitter substances on gi function, energy intake and glycaemia-do preclinical findings translate to outcomes in humans? Nutrients 2021 13 4 1317 10.3390/nu13041317 33923589
    [Google Scholar]
  133. Black H.S. Boehm F. Edge R. Truscott T.G. The benefits and risks of certain dietary carotenoids that exhibit both anti- and pro-oxidative mechanisms - A comprehensive review. Antioxidants 2020 9 3 264 10.3390/antiox9030264 32210038
    [Google Scholar]
  134. Csepanyi E. Czompa A. Haines D. Lekli I. Bakondi E. Balla G. Tosaki A. Bak I. Cardiovascular effects of low versus high-dose beta-carotene in a rat model. Pharmacol. Res. 2015 100 148 156 10.1016/j.phrs.2015.07.021 26225824
    [Google Scholar]
  135. Cullen M.R. Barnett M.J. Balmes J.R. Cartmel B. Redlich C.A. Brodkin C.A. Barnhart S. Rosenstock L. Goodman G.E. Hammar S.P. Thornquist M.D. Omenn G.S. Predictors of lung cancer among asbestos-exposed men in the beta-carotene and retinol efficacy trial. Am. J. Epidemiol. 2005 161 3 260 270 10.1093/aje/kwi034 15671258
    [Google Scholar]
  136. Vrolijk M.F. Opperhuizen A. Jansen E.H.J.M. Godschalk R.W. Van Schooten F.J. Bast A. Haenen G.R.M.M. The shifting perception on antioxidants: The case of vitamin E and β-carotene. Redox Biol. 2015 4 272 278 10.1016/j.redox.2014.12.017 25625581
    [Google Scholar]
/content/journals/cpsp/10.2174/0122115560321901241210082616
Loading
/content/journals/cpsp/10.2174/0122115560321901241210082616
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test