Skip to content
2000
image of Aberrant Expressions of EDNRB and EDN3 in a Multifactorial Hirschsprung Disease

Abstract

Background

Hirschsprung disease (HSCR) is a multifactorial disorder due to the enteric nervous system (ENS) development failure. At least 35 genes have been responsible for HSCR, including and . Here, we aimed to determine the and expressions effects in HSCR subjects.

Methods

Our study analyzed and expressions in the colon of HSCR subjects and controls by a quantitative PCR. The and expressions were analyzed by the Livak method (2-ΔΔC).

Results

Twenty-seven HSCR patients and 20 controls were ascertained. and expressions downregulated was found in ganglionic and aganglionic HSCR than control colons (: ΔC 6.78 ± 1.38 . 1.71 ± 2.79; = 0.0001 (ganglionic); ΔC 4.41 ± 1.63 . 1.71 ± 2.79; = 0.0005 (aganglionic); and : ΔC 7.60 ± 1.93 . 1.81 ± 2.89; = 0.0001 (ganglionic); ΔC 9.72 ± 4.32 . 1.81 ± 2.89; = 0.0001 (aganglionic)). A significant difference in and expressions was also noted between the HSCR colon: ganglionic aganglionic segment ( = 0.00002 and 0.017).

Conclusion

We report the downregulated and expressions in HSCR subjects, indicating expressions have a significant responsibility in HSCR pathogenesis. Nevertheless, we further clarify the complexity of the development of ENS.

Loading

Article metrics loading...

/content/journals/cpr/10.2174/0115733963343518241223193627
2025-01-22
2025-04-11
Loading full text...

Full text loading...

References

  1. Tang C.S. Karim A. Zhong Y. Chung P.H. Tam P.K. Genetics of Hirschsprung’s disease. Pediatr. Surg. Int. 2023 39 1 104 10.1007/s00383‑022‑05358‑x 36749416
    [Google Scholar]
  2. Tam P.K.H. Hirschsprung’s disease: A bridge for science and surgery. J. Pediatr. Surg. 2016 51 1 18 22 10.1016/j.jpedsurg.2015.10.021 26611330
    [Google Scholar]
  3. Gunadi.   Kalim A.S. Iskandar K. Marcellus.   Puspitarani D.A. Diposarosa R. Makhmudi A. Astuti G.D.N. Exome sequencing identifies novel genes and variants in patients with Hirschsprung disease. J Pediatr Surg. 2023 58 4 723 728 10.1016/j.jpedsurg.2022.11.011 36586783
    [Google Scholar]
  4. Gunadi K.A. Kapoor A. Ling A.Y. Rochadi Makhmudi A. Herini E.S. Sosa M.X. Chatterjee S. Chakravarti A. Effects of RET and NRG1 polymorphisms in Indonesian patients with Hirschsprung disease. J. Pediatr. Surg. 2014 49 11 1614 1618 10.1016/j.jpedsurg.2014.04.011 25475805
    [Google Scholar]
  5. Karim A. Tang C.S.M. Tam P.K.H. The emerging genetic landscape of Hirschsprung disease and its potential clinical applications. Front Pediatr. 2021 9 638093 10.3389/fped.2021.638093 34422713
    [Google Scholar]
  6. Tilghman J.M. Ling A.Y. Turner T.N. Sosa M.X. Krumm N. Chatterjee S. Kapoor A. Coe B.P. Nguyen K.D.H. Gupta N. Gabriel S. Eichler E.E. Berrios C. Chakravarti A. Molecular genetic anatomy and risk profile of Hirschsprung’s disease. N. Engl. J. Med. 2019 380 15 1421 1432 10.1056/NEJMoa1706594 30970187
    [Google Scholar]
  7. Alves M.M. Sribudiani Y. Brouwer R.W.W. Amiel J. Antiñolo G. Borrego S. Ceccherini I. Chakravarti A. Fernández R.M. Garcia-Barcelo M.M. Griseri P. Lyonnet S. Tam P.K. van IJcken W.F.J. Eggen B.J.L. te Meerman G.J. Hofstra R.M.W. Contribution of rare and common variants determine complex diseases—Hirschsprung disease as a model. Dev. Biol. 2013 382 1 320 329 10.1016/j.ydbio.2013.05.019 23707863
    [Google Scholar]
  8. Sánchez-mejías A. Fernández R.M. López-alonso M. Antiñolo G. Borrego S. New roles of EDNRB and EDN3 in the pathogenesis of Hirschsprung disease. Genet. Med. 2010 12 1 39 43 10.1097/GIM.0b013e3181c371b0 20009762
    [Google Scholar]
  9. Chen W.C. Tsai M-C. Chang S-S. Sy E.D. A De Novo novel mutation of the EDNRB gene in a Taiwanese boy with Hirschsprung disease. J. Formos. Med. Assoc. 2006 105 4 349 354 10.1016/S0929‑6646(09)60128‑5 16618617
    [Google Scholar]
  10. Bidaud C. Salomon R. Van Camp G. Pelet A. Attié T. Eng C. Bonduelle M. Amiel J. Nihoul-Fékété C. Willems P.J. Munnich A. Lyonnet S. Endothelin-3 gene mutations in isolated and syndromic Hirschsprung disease. Eur. J. Hum. Genet. 1997 5 4 247 251 10.1159/000484771 9359047
    [Google Scholar]
  11. Chatterjee S. Chakravarti A. A gene regulatory network explains RET-EDNRB epistasis in Hirschsprung disease. Hum. Mol. Genet. 2019 28 18 3137 3147 10.1093/hmg/ddz149 31313802
    [Google Scholar]
  12. Kenny S.E. Hofstra R.M.W. Buys C.H.C.M. Vaillant C.R. Lloyd D.A. Edgar D.H. Reduced endothelin-3 expression in sporadic Hirschsprung disease. Br. J. Surg. 2000 87 5 580 585 10.1046/j.1365‑2168.2000.01401.x 10792313
    [Google Scholar]
  13. Oue T. Puri P. Altered endothelin-3 and endothelin-B receptor mRNA expression in hirschsprung’s disease. J. Pediatr. Surg. 1999 34 8 1257 1260 10.1016/S0022‑3468(99)90163‑X 10466607
    [Google Scholar]
  14. Tang W. Li B. Tang J. Liu K. Qin J. Wu W. Geng Q. Zhang J. Chen H. Xu X. Xia Y. Methylation analysis of EDNRB in human colon tissues of Hirschsprung’s disease. Pediatr. Surg. Int. 2013 29 7 683 688 10.1007/s00383‑013‑3308‑6 23579558
    [Google Scholar]
  15. Zheng Y. Lan C. Wang N. Xu X. Hu T. Wu Q. Xie X. Wang Z. Zhang Y. Li C. Significant association of rs2147555 genetic polymorphism in the EDNRB gene with Hirschsprung disease in southern Chinese children. BioMed Res. Int. 2020 2020 1 6 10.1155/2020/5956412 33178831
    [Google Scholar]
  16. Bondurand N. Dufour S. Pingault V. News from the endothelin-3/EDNRB signaling pathway: Role during enteric nervous system development and involvement in neural crest-associated disorders. Dev. Biol. 2018 444 Suppl. 1 S156 S169 10.1016/j.ydbio.2018.08.014 30171849
    [Google Scholar]
  17. Clouthier D.E. Garcia E. Schilling T.F. Regulation of facial morphogenesis by endothelin signaling: Insights from mice and fish. Am. J. Med. Genet. A. 2010 152A 12 2962 2973 10.1002/ajmg.a.33568 20684004
    [Google Scholar]
  18. Bondurand N. Southard-Smith E.M. Mouse models of Hirschsprung disease and other developmental disorders of the enteric nervous system: Old and new players. Dev. Biol. 2016 417 2 139 157 10.1016/j.ydbio.2016.06.042 27370713
    [Google Scholar]
  19. Ji Y. Tam P.K.H. Tang C.S.M. Roles of enteric neural stem cell niche and enteric nervous system development in Hirschsprung disease. Int. J. Mol. Sci. 2021 22 18 9659 10.3390/ijms22189659 34575824
    [Google Scholar]
  20. Eberle J. Weitmann S. Thieck O. Pech H. Orfanos C.E. Paul M. Downregulation of endothelin B receptor in human melanoma cell lines parallel to differentiation genes. J. Invest. Dermatol. 1999 112 6 925 932 10.1046/j.1523‑1747.1999.00598.x 10383740
    [Google Scholar]
  21. Jones P.A. Laird P.W. Cancer-epigenetics comes of age. Nat. Genet. 1999 21 2 163 167 10.1038/5947 9988266
    [Google Scholar]
  22. Edwards B.S. Stiglitz E.S. Davis B.M. Smith-Edwards K.M. Abnormal enteric nervous system and motor activity in the ganglionic proximal bowel of Hirschsprung’s disease. bioRxiv 2023 2023.03.08.531750 10.1101/2023.03.08.531750
    [Google Scholar]
  23. Gazquez E. Watanabe Y. Broders-Bondon F. Paul-Gilloteaux P. Heysch J. Baral V. Bondurand N. Dufour S. Endothelin-3 stimulates cell adhesion and cooperates with β1-integrins during enteric nervous system ontogenesis. Sci. Rep. 2016 6 1 37877 10.1038/srep37877 27905407
    [Google Scholar]
  24. Woodward M.N. Kenny S.E. Vaillant C. Lloyd D.A. Edgar D.H. Time-dependent effects of endothelin-3 on enteric nervous system development in an organ culture model of Hirschsprung’s disease. J. Pediatr. Surg. 2000 35 1 25 29 10.1016/S0022‑3468(00)80007‑X 10646768
    [Google Scholar]
  25. Bondurand N. Natarajan D. Barlow A. Thapar N. Pachnis V. Maintenance of mammalian enteric nervous system progenitors by SOX10 and endothelin 3 signalling. Development 2006 133 10 2075 2086 10.1242/dev.02375 16624853
    [Google Scholar]
  26. Chevalier N.R. Gazquez E. Bidault L. Guilbert T. Vias C. Vian E. Watanabe Y. Muller L. Germain S. Bondurand N. Dufour S. Fleury V. How tissue mechanical properties affect enteric neural crest cell migration. Sci. Rep. 2016 6 1 20927 10.1038/srep20927 26887292
    [Google Scholar]
  27. Watanabe Y. Stanchina L. Lecerf L. Gacem N. Conidi A. Baral V. Pingault V. Huylebroeck D. Bondurand N. Differentiation of mouse enteric nervous system progenitor cells is controlled by endothelin 3 and requires regulation of Ednrb by sox10 and ZEB2. Gastroenterology 2017 152 5 1139 1150.e4 10.1053/j.gastro.2016.12.034 28063956
    [Google Scholar]
  28. Levitt M.A. Peña A. Anorectal malformations. Orphanet J. Rare Dis. 2007 2 1 33 10.1186/1750‑1172‑2‑33 17651510
    [Google Scholar]
/content/journals/cpr/10.2174/0115733963343518241223193627
Loading
/content/journals/cpr/10.2174/0115733963343518241223193627
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test