Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-3963
  • E-ISSN: 1875-6336

Abstract

Background

Childhood obesity is significantly influenced by maternal exposure to Per and Poly-Fluoroalkyl Substances (PFAS) during pregnancy. PFAS exposure occurs through the Peroxisome Proliferator-Activated Receptor (PPAR-γ) receptor, leading to increased fat deposition and profound health effects in child growth and development. Despite ongoing investigations, the relationship between maternal serum PFAS concentration and child obesity requires further exploration.

Objective

This study aimed to review the possible effects of Per and poly-fluoroalkyl substances exposure and their mechanism in overweight/obese children from pregnant ladies.

Methods

A detailed literature survey was conducted using online databases, including Science Direct, Google Scholar, Scopus, Cochrane, and PubMed. The study focused on the diverse effects of PFAS on maternal and child health, with particular emphasis on neurological complications.

Results

Child growth development depends upon breastfeeding and placenta health, which is disrupted by PFAS exposure, ultimately destroying the body mass index of the child. Neurotoxicity testing utilized the SH-SY5Y human-derived cell line as an model, revealing PFAS-induced increases in adipocyte number, reduced cell size, altered lipid conglomeration, increased adiposity, and changes in liver function. studies in mice and human cell lines indicated PPAR-γ and ER-α activation, leading to adiposity and weight gain through Estrogen signaling and Lipid metabolism. PFAS concentrations positively correlated in maternal sera, analyzed by liquid chromatography/quadrupole mass spectrometry.

Conclusion

PFAS, with a long half-life of 3.5-8.5 years, is commonly found in the serum of pregnant women, crossing the placenta barrier. This exposure disrupts placental homeostasis, negatively impacting mechanisms of action and potentially leading to deterioration in pregnancy and child health. Further research is needed to comprehensively understand the complex interplay between PFAS exposure and its implications for maternal and child well-being.

Loading

Article metrics loading...

/content/journals/cpr/10.2174/0115733963267526231120110100
2024-01-11
2024-12-24
Loading full text...

Full text loading...

References

  1. Koyuncuoğlu GüngörN. Overweight and obesity in children and adolescents.J. Clin. Res. Pediatr. Endocrinol.20146312914310.4274/jcrpe.147125241606
    [Google Scholar]
  2. ManninoA. SarapisK. MoschonisG. The effect of maternal overweight and obesity pre-pregnancy and during childhood in the development of obesity in children and adolescents: A systematic literature review.Nutrients20221423512510.3390/nu1423512536501155
    [Google Scholar]
  3. HanJ.C. LawlorD.A. KimmS.Y.S. Childhood obesity.Lancet201037597271737174810.1016/S0140‑6736(10)60171‑720451244
    [Google Scholar]
  4. BraunJ.M. ChenA. RomanoM.E. CalafatA.M. WebsterG.M. YoltonK. LanphearB.P. Prenatal perfluoroalkyl substance exposure and child adiposity at 8 years of age: The HOME study.Obesity (Silver Spring)201624123123710.1002/oby.2125826554535
    [Google Scholar]
  5. KeyB.D. HowellR.D. CriddleC.S. Fluorinated organics in the biosphere.Environ. Sci. Technol.19973192445245410.1021/es961007c
    [Google Scholar]
  6. BuckC.O. EliotM.N. KelseyK.T. CalafatA.M. ChenA. EhrlichS. LanphearB.P. BraunJ.M. Prenatal exposure to perfluoroalkyl substances and adipocytokines: The HOME Study.Pediatr. Res.201884685486010.1038/s41390‑018‑0170‑130250302
    [Google Scholar]
  7. WikströmS. LinP.I. LindhC.H. ShuH. BornehagC.G. Maternal serum levels of perfluoroalkyl substances in early pregnancy and offspring birth weight.Pediatr. Res.20208761093109910.1038/s41390‑019‑0720‑131835271
    [Google Scholar]
  8. De ToniL. RaduC.M. SabovicI. Di NisioA. Dall’AcquaS. GuidolinD. SpampinatoS. CampelloE. SimioniP. ForestaC. Increased cardiovascular risk associated with chemical sensitivity to perfluoro–octanoic acid: Role of impaired platelet aggregation.Int. J. Mol. Sci.202021239910.3390/ijms2102039931936344
    [Google Scholar]
  9. MeneguzziA. FavaC. CastelliM. MinuzP. Exposure to perfluoroalkyl chemicals and cardiovascular disease: Experimental and epidemiological evidence.Front. Endocrinol.20211270635210.3389/fendo.2021.70635234305819
    [Google Scholar]
  10. UlfbergJ. CarterN. TalbäckM. EdlingC. Occupational exposure to organic solvents and sleep-disordered breathing.Neuroepidemiology199716631732610.1159/0001097049430132
    [Google Scholar]
  11. BoydR.I. AhmadS. SinghR. FazalZ. PrinsG.S. Madak ErdoganZ. IrudayarajJ. SpinellaM.J. Toward a mechanistic understanding of poly- and perfluoroalkylated substances and cancer.Cancers20221412291910.3390/cancers1412291935740585
    [Google Scholar]
  12. DragonJ. HoaglundM. BadireddyA.R. NielsenG. SchlezingerJ. ShuklaA. Perfluoroalkyl substances (PFAS) affect inflammation in lung cells and tissues.Int. J. Mol. Sci.20232410853910.3390/ijms2410853937239886
    [Google Scholar]
  13. KelseyM.M. ZaepfelA. BjornstadP. NadeauK.J. Age-related consequences of childhood obesity.Gerontology201460322222810.1159/00035602324434909
    [Google Scholar]
  14. Ben MordechayE. SinaiT. BermanT. DichtiarR. Keinan-BokerL. TarchitzkyJ. MaorY. MordehayV. ManorO. ChefetzB. Wastewater-derived organic contaminants in fresh produce: Dietary exposure and human health concerns.Water Res.202222311898610.1016/j.watres.2022.11898635988339
    [Google Scholar]
  15. EhrlichV. BilW. VandebrielR. GranumB. LuijtenM. LindemanB. GrandjeanP. KaiserA.M. HauzenbergerI. HartmannC. GundackerC. UhlM. Consideration of pathways for immunotoxicity of per- and polyfluoroalkyl substances (PFAS).Environ. Health20232211910.1186/s12940‑022‑00958‑536814257
    [Google Scholar]
  16. HartmanT.J. CalafatA.M. HolmesA.K. MarcusM. NorthstoneK. FlandersW.D. KatoK. TaylorE.V. Prenatal exposure to perfluoroalkyl substances and body fatness in girls.Child. Obes.201713322223010.1089/chi.2016.012628128969
    [Google Scholar]
  17. DingN. Karvonen-GutierrezC.A. HermanW.H. CalafatA.M. MukherjeeB. ParkS.K. Associations of perfluoroalkyl and polyfluoroalkyl substances (PFAS) and PFAS mixtures with adipokines in midlife women.Int. J. Hyg. Environ. Health202123511377710.1016/j.ijheh.2021.11377734090141
    [Google Scholar]
  18. BlakeB.E. FentonS.E. Early life exposure to per- and polyfluoroalkyl substances (PFAS) and latent health outcomes: A review including the placenta as a target tissue and possible driver of peri- and postnatal effects.Toxicology202044315256510.1016/j.tox.2020.15256532861749
    [Google Scholar]
  19. SunderlandE.M. HuX.C. DassuncaoC. TokranovA.K. WagnerC.C. AllenJ.G. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects.J. Expo. Sci. Environ. Epidemiol.201929213114710.1038/s41370‑018‑0094‑130470793
    [Google Scholar]
  20. DingN. HarlowS.D. RandolphJ.F.Jr Loch-CarusoR. ParkS.K. Perfluoroalkyl and polyfluoroalkyl substances (PFAS) and their effects on the ovary.Hum. Reprod. Update202026572475210.1093/humupd/dmaa01832476019
    [Google Scholar]
  21. KirkA.B. Michelsen-CorreaS. RosenC. MartinC.F. BlumbergB. PFAS and potential adverse effects on bone and adipose tissue through interactions with PPARγ.Endocrinology202116212bqab19410.1210/endocr/bqab19434480479
    [Google Scholar]
  22. BraunJ.M. Early-life exposure to EDCs: Role in childhood obesity and neurodevelopment.Nat. Rev. Endocrinol.2017133161173Available from: https://pubmed.ncbi.nlm.nih.gov/27857130/ 10.1038/nrendo.2016.18627857130
    [Google Scholar]
  23. SevelstedA. GürdenizG. RagoD. PedersenC.E.T. Lasky-SuJ.A. ChecaA. ZhangP. WheelockC.E. NormannS.S. KristensenD.M. RasmussenM.A. SchullehnerJ. SdougkouK. MartinJ.W. StokholmJ. BønnelykkeK. BisgaardH. ChawesB. Effect of perfluoroalkyl exposure in pregnancy and infancy on intrauterine and childhood growth and anthropometry. Sub study from COPSAC2010 birth cohort.EBioMedicine20228310423610.1016/j.ebiom.2022.10423636030647
    [Google Scholar]
  24. FentonS.E. DucatmanA. BoobisA. DeWittJ.C. LauC. NgC. SmithJ.S. RobertsS.M. Per- and polyfluoroalkyl substance toxicity and human health review: Current state of knowledge and strategies for informing future research.Environ. Toxicol. Chem.202140360663010.1002/etc.489033017053
    [Google Scholar]
  25. GundackerC. AudouzeK. WidhalmR. GranitzerS. ForsthuberM. JornodF. WielsøeM. LongM. HalldórssonT.I. UhlM. Bonefeld-JørgensenE.C. Reduced birth weight and exposure to per- and polyfluoroalkyl substances: A review of possible underlying mechanisms using the AOP-helpfinder.Toxics2022101168410.3390/toxics1011068436422892
    [Google Scholar]
  26. NielsenC. LiY. LewandowskiM. FletcherT. JakobssonK. Breastfeeding initiation and duration after high exposure to perfluoroalkyl substances through contaminated drinking water: A cohort study from Ronneby, Sweden.Environ. Res.202220711220610.1016/j.envres.2021.11220634653413
    [Google Scholar]
  27. FrommeH. MoschC. MorovitzM. Alba-AlejandreI. BoehmerS. KiranogluM. FaberF. HannibalI. Genzel-BoroviczényO. KoletzkoB. VölkelW. Pre- and postnatal exposure to perfluorinated compounds (PFCs).Environ. Sci. Technol.201044187123712910.1021/es101184f20722423
    [Google Scholar]
  28. GeigerS.D. XiaoJ. ShankarA. Positive association between perfluoroalkyl chemicals and hyperuricemia in children.Am. J. Epidemiol.2013177111255126210.1093/aje/kws39223552989
    [Google Scholar]
  29. BrusseauM.L. AndersonR.H. GuoB. PFAS concentrations in soils: Background levels versus contaminated sites.Sci. Total Environ.202074014001710.1016/j.scitotenv.2020.14001732927568
    [Google Scholar]
  30. BabutM. LabadieP. Simonnet-LapradeC. MunozG. RogerM.C. FerrariB.J.D. BudzinskiH. SivadeE. Per- and poly-fluoroalkyl compounds in freshwater fish from the Rhône River: Influence of fish size, diet, prey contamination and biotransformation.Sci. Total Environ.2017605-606384710.1016/j.scitotenv.2017.06.11128654807
    [Google Scholar]
  31. SzilagyiJ.T. AvulaV. FryR.C. Perfluoroalkyl substances (PFAS) and their effects on the placenta, pregnancy, and child development: A potential mechanistic role for placental peroxisome proliferator–activated receptors (PPARs).Curr. Environ. Health Rep.20207322223010.1007/s40572‑020‑00279‑032812200
    [Google Scholar]
  32. ToyamaK. KimuraK. MiyashitaM. YanagisawaR. NakataK. [Case of lung edema occurring as a result of inhalation of fumes from a Teflon-coated flying pan overheated for 4 hours].Japanese Respiratory Society Magazine20064410727731[Case of lung edema occurring as a result of inhalation of fumes from a Teflon-coated flying pan overheated for 4 hours].17087340
    [Google Scholar]
  33. WatkinsA.M. WoodC.R. LinM.T. AbbottB.D. The effects of perfluorinated chemicals on adipocyte differentiation in vitro. Mol. Cell. Endocrinol.20154009010110.1016/j.mce.2014.10.02025448844
    [Google Scholar]
  34. van den DungenM.W. MurkA.J. KokD.E. SteegengaW.T. Persistent organic pollutants alter DNA methylation during human adipocyte differentiation.Toxicol. in vitro 201740798710.1016/j.tiv.2016.12.01128011154
    [Google Scholar]
  35. JansenA. MüllerM.H.B. GrønnestadR. KlungsøyrO. PolderA. SkjerveE. AasethJ. LycheJ.L. Decreased plasma levels of perfluoroalkylated substances one year after bariatric surgery.Sci. Total Environ.201965786387010.1016/j.scitotenv.2018.11.45330677951
    [Google Scholar]
  36. ChenN. LiJ. LiD. YangY. HeD. Chronic exposure to perfluorooctane sulfonate induces behavior defects and neurotoxicity through oxidative damages, in vivo and in vitro. PLoS One2014911e11345310.1371/journal.pone.011345325412474
    [Google Scholar]
  37. YangF. WenC. ZhengS. YangS. ChenJ. FengX. Involvement of MAPK/ERK1/2 pathway in microcystin-induced microfilament reorganization in HL7702 hepatocytes.J. Toxicol. Environ. Health A201881211135114110.1080/15287394.2018.153271530422063
    [Google Scholar]
  38. DuG. HuJ. HuangH. QinY. HanX. WuD. SongL. XiaY. WangX. Perfluorooctane sulfonate (PFOS) affects hormone receptor activity, steroidogenesis, and expression of endocrine-related genes in vitro and in vivo.Environ. Toxicol. Chem.201332235336010.1002/etc.203423074026
    [Google Scholar]
  39. BalasubramanianS. GunasekaranK. SasidharanS. Jeyamanickavel MathanV. PerumalE. MicroRNAs and xenobiotic toxicity: An overview.Toxicol. Rep.2020758359510.1016/j.toxrep.2020.04.01032426239
    [Google Scholar]
  40. BuckR.C. FranklinJ. BergerU. ConderJ.M. CousinsI.T. de VoogtP. JensenA.A. KannanK. MaburyS.A. van LeeuwenS.P.J. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins.Integr. Environ. Assess. Manag.20117451354110.1002/ieam.25821793199
    [Google Scholar]
  41. WanH.T. ZhaoY.G. WeiX. HuiK.Y. GiesyJ.P. WongC.K.C. PFOS-induced hepatic steatosis, the mechanistic actions on β-oxidation and lipid transport.Biochim. Biophys. Acta, Gen. Subj.2012182071092110110.1016/j.bbagen.2012.03.01022484034
    [Google Scholar]
  42. WangY. LiuW. ZhangQ. ZhaoH. QuanX. Effects of developmental perfluorooctane sulfonate exposure on spatial learning and memory ability of rats and mechanism associated with synaptic plasticity.Food Chem. Toxicol.201576707610.1016/j.fct.2014.12.00825524167
    [Google Scholar]
  43. García-HernándezM.H. Rodríguez-VarelaE. García-JacoboR.E. Hernández-De la TorreM. Uresti-RiveraE.E. González-AmaroR. Portales-PérezD.P. Frequency of regulatory B cells in adipose tissue and peripheral blood from individuals with overweight, obesity and normal-weight.Obes. Res. Clin. Pract.201812651351910.1016/j.orcp.2018.07.00130115554
    [Google Scholar]
  44. ZengZ. SongB. XiaoR. ZengG. GongJ. ChenM. XuP. ZhangP. ShenM. YiH. Assessing the human health risks of perfluorooctane sulfonate by in vivo and in vitro studies.Environ. Int.201912659861010.1016/j.envint.2019.03.00230856447
    [Google Scholar]
  45. TakahashiK. TatsumiN. FukamiT. YokoiT. NakajimaM. Integrated analysis of rifampicin-induced microRNA and gene expression changes in human hepatocytes.Drug Metab. Pharmacokinet.201429433334010.2133/dmpk.DMPK‑13‑RG‑11424552687
    [Google Scholar]
  46. OenartoJ. KarababaA. CastoldiM. BidmonH.J. GörgB. HäussingerD. Ammonia-induced miRNA expression changes in cultured rat astrocytes.Sci. Rep.2016611849310.1038/srep1849326755400
    [Google Scholar]
  47. ZhaoY. LiL. MinL.J. ZhuL.Q. SunQ.Y. ZhangH.F. LiuX.Q. ZhangW.D. GeW. WangJ.J. LiuJ.C. HaoZ.H. Regulation of MicroRNAs, and the correlations of MicroRNAs and their targeted genes by zinc oxide nanoparticles in ovarian granulosa cells.PLoS One2016115e015586510.1371/journal.pone.015586527196542
    [Google Scholar]
  48. Bas-OrthC. KochM. LauD. BuchthalB. BadingH. A microRNA signature of toxic extrasynaptic N-methyl-D-aspartate (NMDA) receptor signaling.Mol. Brain2020131310.1186/s13041‑020‑0546‑031924235
    [Google Scholar]
  49. GroggM.W. Braydich-StolleL.K. Maurer-GardnerE.I. HillN.T. SakaramS. KadakiaM.P. HussainS.M. Modulation of miRNA-155 alters manganese nanoparticle-induced inflammatory response.Toxicol. Res. (Camb.)2016561733174310.1039/C6TX00208K30090472
    [Google Scholar]
  50. ChaturvediA.P. DehmS.M. Androgen Receptor Dependence.Adv Exp Med Biol2019121033335010.1007/978‑3‑030‑32656‑2_15
    [Google Scholar]
  51. KimS.J. YuS.Y. YoonH.J. LeeS.Y. YounJ.P. HwangS.Y. Epigenetic regulation of miR-22 in a BPA-exposed human hepatoma cell.Biochip J.201591768410.1007/s13206‑014‑9110‑2
    [Google Scholar]
  52. LemaireJ. Van der HauwaertC. SavaryG. DewaelesE. PerraisM. Lo GuidiceJ.M. PottierN. GlowackiF. CauffiezC. Cadmium-induced renal cell toxicity is associated with MicroRNA deregulation.Int. J. Toxicol.202039210311410.1177/109158181989903931934807
    [Google Scholar]
  53. BolleynJ. FraczekJ. VinkenM. LizarragaD. GajS. van DelftJ.H.M. RogiersV. VanhaeckeT. Effect of trichostatin a on miRNA expression in cultures of primary rat hepatocytes.Toxicol. in vitro 20112561173118210.1016/j.tiv.2011.04.01321513791
    [Google Scholar]
  54. LieschkeG.J. CurrieP.D. Animal models of human disease: Zebrafish swim into view.Nat. Rev. Genet.20078535336710.1038/nrg209117440532
    [Google Scholar]
  55. LiberatiA. AltmanD.G. TetzlaffJ. MulrowC. GøtzscheP.C. IoannidisJ.P.A. ClarkeM. DevereauxP.J. KleijnenJ. MoherD. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration.PLoS Med.200967e100010010.1371/journal.pmed.100010019621070
    [Google Scholar]
  56. HuH. ShiY. ZhangY. WuJ. AswetoC.O. FengL. YangX. DuanJ. SunZ. Comprehensive gene and microRNA expression profiling on cardiovascular system in zebrafish co-exposured of SiNPs and MeHg.Sci. Total Environ.2017607-60879580510.1016/j.scitotenv.2017.07.03628711009
    [Google Scholar]
  57. MaccaniM.A. Avissar-WhitingM. BanisterC.E. McGonnigalB. PadburyJ.F. MarsitC.J. Maternal cigarette smoking during pregnancy is associated with downregulation of miR-16, miR-21, and miR-146a in the placenta.Epigenetics20105758358910.4161/epi.5.7.1276220647767
    [Google Scholar]
  58. Vahdati HassaniF. MehriS. AbnousK. Birner-GruenbergerR. HosseinzadehH. Protective effect of crocin on BPA-induced liver toxicity in rats through inhibition of oxidative stress and downregulation of MAPK and MAPKAP signaling pathway and miRNA-122 expression.Food Chem. Toxicol.2017107Pt A39540510.1016/j.fct.2017.07.00728689058
    [Google Scholar]
  59. GrenierB. HacklM. SkalickyS. ThamheslM. MollW.D. BerriosR. SchatzmayrG. NaglV. MicroRNAs in porcine uterus and serum are affected by zearalenone and represent a new target for mycotoxin biomarker discovery.Sci. Rep.201991940810.1038/s41598‑019‑45784‑x31253833
    [Google Scholar]
  60. FuJ. WangM. ChaudhryM.T. TianY. LiuC. Combined RNA-Seq with small RNA revealed ribosome biogenesis and oxidative stress associated with cadmium response in carp (Cyprinus carpio L.) Hepato-pancreas.Aquaculture202051873481710.1016/j.aquaculture.2019.734817
    [Google Scholar]
  61. PiaoF. ChenY. YuL. ShiX. LiuX. JiangL. YangG. WangN. GaoB. ZhangC. 2,5-hexanedione-induced deregulation of axon-related microRNA expression in rat nerve tissues.Toxicol. Lett.20203209510210.1016/j.toxlet.2019.11.01931760062
    [Google Scholar]
  62. MarinD.E. BraicuC. DumitrescuG. PistolG.C. CojocneanuR. NeagoeI.B. TaranuI. MicroRNA profiling in kidney in pigs fed ochratoxin A contaminated diet.Ecotoxicol. Environ. Saf.201918410963710.1016/j.ecoenv.2019.10963731499447
    [Google Scholar]
  63. FengY. ChenX. MaJ. ZhangB. LiX. Aberrant expressional profiling of known micrornas in the liver of silver carp (Hypophthalmichthys molitrix) following microcystin-LR exposure based on samllRNA sequencing.Toxins20201214110.3390/toxins1201004131936480
    [Google Scholar]
  64. ChenM. LiX. FanR. YangJ. JinX. HamidS. XuS. Cadmium induces BNIP3-dependent autophagy in chicken spleen by modulating miR-33-AMPK axis.Chemosphere201819439640210.1016/j.chemosphere.2017.12.02629223809
    [Google Scholar]
  65. PillarN. HaguelD. GradM. ShapiraG. YoffeL. ShomronN. Characterization of MicroRNA and gene expression profiles following ricin intoxication.Toxins201911525010.3390/toxins1105025031052539
    [Google Scholar]
  66. BonatoM. CorràF. BellioM. GuidolinL. TallandiniL. IratoP. SantovitoG. PFAS environmental pollution and antioxidant responses: An overview of the impact on human field.Int. J. Environ. Res. Public Health20201721802010.3390/ijerph1721802033143342
    [Google Scholar]
  67. MamsenL.S. BjörvangR.D. MucsD. VinnarsM.T. PapadogiannakisN. LindhC.H. AndersenC.Y. DamdimopoulouP. Concentrations of perfluoroalkyl substances (PFASs) in human embryonic and fetal organs from first, second, and third trimester pregnancies.Environ. Int.201912448249210.1016/j.envint.2019.01.01030684806
    [Google Scholar]
  68. MitroS.D. SagivS.K. Rifas-ShimanS.L. CalafatA.M. FleischA.F. JaacksL.M. WilliamsP.L. OkenE. James-ToddT.M. Per- and polyfluoroalkyl substance exposure, gestational weight gain, and postpartum weight changes in project viva.Obesity (Silver Spring)202028101984199210.1002/oby.2293332959518
    [Google Scholar]
  69. RomanoM.E. HeggesethB.C. GallagherL.G. BotelhoJ.C. CalafatA.M. Gilbert-DiamondD. KaragasM.R. Gestational per- and polyfluoroalkyl substances exposure and infant body mass index trajectory in the new hampshire birth cohort study.Environ. Res.2022215Pt 311441810.1016/j.envres.2022.11441836162478
    [Google Scholar]
  70. StyneD.M. Childhood and adolescent obesity. Prevalence and significance.Pediatr. Clin. North Am.2001484823854, vii10.1016/S0031‑3955(05)70344‑811494639
    [Google Scholar]
  71. KohutT. RobbinsJ. PanganibanJ. Update on childhood/adolescent obesity and its sequela.Curr. Opin. Pediatr.201931564565310.1097/MOP.000000000000078631145127
    [Google Scholar]
  72. OhJ. SchmidtR.J. TancrediD. CalafatA.M. RoaD.L. Hertz-PicciottoI. ShinH.M. Prenatal exposure to per- and polyfluoroalkyl substances and cognitive development in infancy and toddlerhood.Environ. Res.202119611093910.1016/j.envres.2021.11093933647299
    [Google Scholar]
  73. CardenasA. HauserR. GoldD.R. KleinmanK.P. HivertM.F. FleischA.F. LinP.I.D. CalafatA.M. WebsterT.F. HortonE.S. OkenE. Association of perfluoroalkyl and polyfluoroalkyl substances with adiposity.JAMA Netw. Open201814e18149310.1001/jamanetworkopen.2018.149330646133
    [Google Scholar]
  74. HuangQ. ChenQ. Mediating roles of PPARs in the effects of environmental chemicals on sex steroids.PPAR Res.201720171810.1155/2017/320316128819354
    [Google Scholar]
  75. BodinJ. GroengE.C. AndreassenM. DirvenH. NygaardU.C. Exposure to perfluoroundecanoic acid (PFUnDA) accelerates insulitis development in a mouse model of type 1 diabetes.Toxicol. Rep.2016366467210.1016/j.toxrep.2016.08.00928959590
    [Google Scholar]
  76. VeugelersP.J. FitzgeraldA.L. Prevalence of and risk factors for childhood overweight and obesity.CMAJ2005173660761310.1503/cmaj.05044516157724
    [Google Scholar]
  77. Weihrauch-BlüherS. WiegandS. Risk factors and implications of childhood obesity.Curr. Obes. Rep.20187425425910.1007/s13679‑018‑0320‑030315490
    [Google Scholar]
  78. SethA. SharmaR. Childhood obesity.Indian J. Pediatr.201380430931710.1007/s12098‑012‑0931‑523255079
    [Google Scholar]
  79. LeeE.B. MattsonM.P. The neuropathology of obesity: Insights from human disease.Acta Neuropathol.2014127132810.1007/s00401‑013‑1190‑x24096619
    [Google Scholar]
  80. SusakiE. NakayamaK.I. An animal model manifesting neurodegeneration and obesity.Aging (Albany NY)20102745345610.18632/aging.10017220622266
    [Google Scholar]
  81. KaiserA.M. Zare JeddiM. UhlM. JornodF. FernandezM.F. AudouzeK. Characterization of potential adverse outcome pathways related to metabolic outcomes and exposure to per- and polyfluoroalkyl substances using artificial intelligence.Toxics202210844910.3390/toxics1008044936006128
    [Google Scholar]
  82. BanikA. KandilyaD. RamyaS. StünkelW. ChongY. DheenS. Maternal factors that induce epigenetic changes contribute to neurological disorders in offspring.Genes20178615010.3390/genes806015028538662
    [Google Scholar]
  83. Wilhelm-BenartziC.S. HousemanE.A. MaccaniM.A. PoageG.M. KoestlerD.C. LangevinS.M. GagneL.A. BanisterC.E. PadburyJ.F. MarsitC.J. In utero exposures, infant growth, and DNA methylation of repetitive elements and developmentally related genes in human placenta.Environ. Health Perspect.2012120229630210.1289/ehp.110392722005006
    [Google Scholar]
  84. KubotaT. MiyakeK. HirasawaT. Epigenetics in neurodevelopmental and mental disorders.Med. Epigenet.201311525910.1159/000354718
    [Google Scholar]
  85. BoseR. SpulberS. CeccatelliS. The threat posed by environmental contaminants on neurodevelopment: What can we learn from neural stem cells?Int. J. Mol. Sci.2023245433810.3390/ijms2405433836901772
    [Google Scholar]
  86. FryR.C. BangmaJ. SzilagyiJ. RagerJ.E. Developing novel in vitro methods for the risk assessment of developmental and placental toxicants in the environment.Toxicol. Appl. Pharmacol.201937811463510.1016/j.taap.2019.11463531233757
    [Google Scholar]
  87. MorkenN.H. KlungsøyrK. SkjaervenR. Perinatal mortality by gestational week and size at birth in singleton pregnancies at and beyond term: A nationwide population-based cohort study.BMC Pregnancy Childbirth201414117210.1186/1471‑2393‑14‑17224885576
    [Google Scholar]
  88. VernerM.A. LoccisanoA.E. MorkenN.H. YoonM. WuH. McDougallR. MaisonetM. MarcusM. KishiR. MiyashitaC. ChenM.H. HsiehW.S. AndersenM.E. ClewellH.J.III LongneckerM.P. Associations of perfluoroalkyl substances (PFAS) with lower birth weight: An evaluation of potential confounding by glomerular filtration rate using a physiologically based pharmacokinetic model (PBPK).Environ. Health Perspect.2015123121317132410.1289/ehp.140883726008903
    [Google Scholar]
  89. O’NeilA. ItsiopoulosC. SkouterisH. OpieR.S. McPhieS. HillB. JackaF.N. Preventing mental health problems in offspring by targeting dietary intake of pregnant women.BMC Med.201412120810.1186/s12916‑014‑0208‑025394602
    [Google Scholar]
/content/journals/cpr/10.2174/0115733963267526231120110100
Loading
/content/journals/cpr/10.2174/0115733963267526231120110100
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): child development; chronic disorder; fluoroalkyl substances; Obesity; PPAR-γ; pregnancy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test