Skip to content
2000
image of The Role of Sirtuins in Diabetic Nephropathy: A Comprehensive Review

Abstract

Introduction

Diabetic nephropathy is characterized by elevated oxidative stress and chronic inflammation in the kidneys. A class of proteins called sirtuins is well-known to be important for a number of cellular functions, such as metabolism, stress tolerance, and ageing. Among them, SIRT1 is associated with the progression of diabetic nephropathy, a dangerous kidney-related consequence of diabetes mellitus. Thus, this study aims to examine the function and pathways of sirtuin that are responsible for the progression of this disease.

Methods

Publications considered from the standard databases like PUBMED-MEDLINE, Google Scholar, and Scopus using standard keywords, “Sirtuin,” Signalling pathway”, and “Diabetic Nephropathy” well described the actual knowledge on the scientific literature indicating patient susceptibility to kidney disease that is influenced by sirtuin-1 gene variants.

Results

The research results imply that sirtuins offer enormous promise as cutting-edge therapeutic targets for kidney disease prevention and management. Renal fibrosis, metabolic disorders, renal impairment, and a possible regulation mechanism all probably entail blocking inflammation through various signalling pathways.

Conclusion

A comprehensive understanding of the fundamental pathophysiological pathways targeting sirtuin is essential as a diagnostic tool. For the treatment of diabetic nephropathy, researchers are developing therapeutic techniques to target biological roles and functions of different types of sirtuin, processes, and signalling pathways.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037340795241202044932
2025-01-21
2025-03-13
Loading full text...

Full text loading...

References

  1. The editors of Encyclopædia Britannica. https://www.britannica.com/editor/The-Editors-of-Encyclopaedia-Britannica/4419
  2. Alam S. Hasan M.K. Neaz S. Hussain N. Hossain M.F. Rahman T. Diabetes mellitus: Insights from epidemiology, biochemistry, risk factors, diagnosis, complications and comprehensive management. Diabetology 2021 2 2 36 50 10.3390/diabetology2020004
    [Google Scholar]
  3. Mathers C.D. Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006 3 11 e442 10.1371/journal.pmed.0030442 17132052
    [Google Scholar]
  4. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia: Report of a WHO/IDF consultation. 2006 https://iris.who.int/handle/10665/43588
  5. Chaudhury A. Duvoor C. Reddy Dendi V.S. Kraleti S. Chada A. Ravilla R. Marco A. Shekhawat N.S. Montales M.T. Kuriakose K. Sasapu A. Beebe A. Patil N. Musham C.K. Lohani G.P. Mirza W. Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management. Front. Endocrinol. (Lausanne) 2017 8 6 10.3389/fendo.2017.00006 28167928
    [Google Scholar]
  6. Valencia W.M. Florez H. How to prevent the microvascular complications of type 2 diabetes beyond glucose control. BMJ 2017 356 i6505 10.1136/bmj.i6505 28096078
    [Google Scholar]
  7. Burrows N.R. Hora I. Geiss L.S. Gregg E.W. Albright A. Incidence of end-stage renal disease attributed to diabetes among persons with diagnosed diabetes — United States and Puerto Rico, 2000–2014. MMWR Morb. Mortal. Wkly. Rep. 2017 66 43 1165 1170 10.15585/mmwr.mm6643a2 29095800
    [Google Scholar]
  8. Afkarian M. Zelnick L.R. Hall Y.N. Heagerty P.J. Tuttle K. Weiss N.S. de Boer I.H. Clinical manifestations of kidney disease among US adults with diabetes, 1988-2014. JAMA 2016 316 6 602 610 10.1001/jama.2016.10924 27532915
    [Google Scholar]
  9. Loganathan T.S. Sulaiman S.A. Abdul Murad N.A. Shah S.A. Abdul Gafor A.H. Jamal R. Abdullah N. Interactions among non-coding RNAs in diabetic nephropathy. Front. Pharmacol. 2020 11 191 10.3389/fphar.2020.00191 32194418
    [Google Scholar]
  10. Pillai A. Fulmali D. A narrative review of new treatment options for diabetic nephropathy. Cureus 2023 15 1 e33235 10.7759/cureus.33235 36733548
    [Google Scholar]
  11. Li X. Yang L. Chen L.L. The biogenesis, functions, and challenges of circular RNAs. Mol. Cell 2018 71 3 428 442 10.1016/j.molcel.2018.06.034 30057200
    [Google Scholar]
  12. Hu Q. Chen Y. Deng X. Li Y. Ma X. Zeng J. Zhao Y. Diabetic nephropathy: Focusing on pathological signals, clinical treatment, and dietary regulation. Biomed. Pharmacother. 2023 e 159 114252 10.1016/j.biopha.2023.114252 36641921
    [Google Scholar]
  13. Bordone L. Guarente L. Calorie restriction, SIRT1 and metabolism: Understanding longevity. Nat. Rev. Mol. Cell Biol. 2005 6 4 298 305 10.1038/nrm1616 15768047
    [Google Scholar]
  14. Hsu Y.J. Hsu S.C. Hsu C.P. Chen Y.H. Chang Y.L. Sadoshima J. Huang S.M. Tsai C.S. Lin C.Y. Sirtuin 1 protects the aging heart from contractile dysfunction mediated through the inhibition of endoplasmic reticulum stress-mediated apoptosis in cardiac-specific Sirtuin 1 knockout mouse model. Int. J. Cardiol. 2017 228 543 552 10.1016/j.ijcard.2016.11.247 27875732
    [Google Scholar]
  15. Liu X. Chen A. Liang Q. Yang X. Dong Q. Fu M. Wang S. Li Y. Ye Y. Lan Z. Chen Y. Ou J.S. Yang P. Lu L. Yan J. Spermidine inhibits vascular calcification in chronic kidney disease through modulation of SIRT1 signaling pathway. Aging Cell 2021 20 6 e13377 10.1111/acel.13377 33969611
    [Google Scholar]
  16. Hershberger K.A. Martin A.S. Hirschey M.D. Role of NAD+ and mitochondrial sirtuins in cardiac and renal diseases. Nat. Rev. Nephrol. 2017 13 4 213 225 10.1038/nrneph.2017.5 28163307
    [Google Scholar]
  17. Wakino S. Hasegawa K. Itoh H. Sirtuin and metabolic kidney disease. Kidney Int. 2015 88 4 691 698 10.1038/ki.2015.157 26083654
    [Google Scholar]
  18. Hebert A.S. Dittenhafer-Reed K.E. Yu W. Bailey D.J. Selen E.S. Boersma M.D. Carson J.J. Tonelli M. Balloon A.J. Higbee A.J. Westphall M.S. Pagliarini D.J. Prolla T.A. Assadi-Porter F. Roy S. Denu J.M. Coon J.J. Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol. Cell 2013 49 1 186 199 10.1016/j.molcel.2012.10.024 23201123
    [Google Scholar]
  19. Bell E.L. Guarente L. The SirT3 divining rod points to oxidative stress. Mol. Cell 2011 42 5 561 568 10.1016/j.molcel.2011.05.008 21658599
    [Google Scholar]
  20. Ahn B.H. Kim H.S. Song S. Lee I.H. Liu J. Vassilopoulos A. Deng C.X. Finkel T. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl. Acad. Sci. USA 2008 105 38 14447 14452 10.1073/pnas.0803790105 18794531
    [Google Scholar]
  21. Finley L.W.S. Haas W. Desquiret-Dumas V. Wallace D.C. Procaccio V. Gygi S.P. Haigis M.C. Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity. PLoS One 2011 6 8 e23295 10.1371/journal.pone.0023295 21858060
    [Google Scholar]
  22. Rahman M. Nirala N.K. Singh A. Zhu L.J. Taguchi K. Bamba T. Fukusaki T. Shaw L.M. Lambright D.J. Acharya J.K. Drosophila Sirt2/mammalian SIRT3 deacetylates ATP synthase β and regulates complex V activity. J Cell Biol. 2014 206 2 289 305 10.1083/jcb.201404118
    [Google Scholar]
  23. Morigi M. Perico L. Benigni A. Sirtuins in renal health and disease. J. Am. Soc. Nephrol. 2018 29 7 1799 1809 10.1681/ASN.2017111218 29712732
    [Google Scholar]
  24. Wang Z Ying Z Bosy-Westphal A Zhang J Schautz B Later W Heymsfield S.B. Müller M.J. Specific metabolic rates of major organs and tissues across adulthood: Evaluation by mechanistic model of resting energy expenditure. Am J Clin Nutr 2010 92 6 1369 1377 10.3945/ajcn.2010.29885
    [Google Scholar]
  25. Bhargava P. Schnellmann R.G. Mitochondrial energetics in the kidney. Nat. Rev. Nephrol. 2017 13 10 629 646 10.1038/nrneph.2017.107 28804120
    [Google Scholar]
  26. Hong Y.A. Kim J.E. Jo M. Ko G.J. The role of sirtuins in kidney diseases. Int. J. Mol. Sci. 2020 21 18 6686 10.3390/ijms21186686 32932720
    [Google Scholar]
  27. Kume S Uzu T. Horiike K. Chin-Kanasaki M. Isshiki K. Araki S-I Sugimoto T. Haneda M. Kashiwagi A. Koya D. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J Clin Invest. 2010 120 4 1043 1055 10.1172/JCI41376
    [Google Scholar]
  28. Khader A. Yang W.L. Kuncewitch M. Jacob A. Prince J.M. Asirvatham J.R. Nicastro J. Coppa G.F. Wang P. Sirtuin 1 activation stimulates mitochondrial biogenesis and attenuates renal injury after ischemia-reperfusion. Transplantation 2014 98 2 148 156 10.1097/TP.0000000000000194 24918615
    [Google Scholar]
  29. Rodgers J.T. Lerin C. Haas W. Gygi S.P. Spiegelman B.M. Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 2005 434 7029 113 118 10.1038/nature03354 15744310
    [Google Scholar]
  30. Kume S. Haneda M. Kanasaki K. Sugimoto T. Araki S. Isono M. Isshiki K. Uzu T. Kashiwagi A. Koya D. Silent information regulator 2 (SIRT1) attenuates oxidative stress-induced mesangial cell apoptosis via p53 deacetylation. Free Radic. Biol. Med. 2006 40 12 2175 2182 10.1016/j.freeradbiomed.2006.02.014 16785031
    [Google Scholar]
  31. Yoshizaki T. Schenk S. Imamura T. Babendure J.L. Sonoda N. Bae E.J. Oh D.Y. Lu M. Milne J.C. Westphal C. Bandyopadhyay G. Olefsky J.M. SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity. Am. J. Physiol. Endocrinol. Metab. 2010 298 3 E419 E428 10.1152/ajpendo.00417.2009 19996381
    [Google Scholar]
  32. Wang W. Sun W. Cheng Y. Xu Z. Cai L. Role of sirtuin-1 in diabetic nephropathy. J. Mol. Med. (Berl.) 2019 97 3 291 309 10.1007/s00109‑019‑01743‑7 30707256
    [Google Scholar]
  33. Vachharajani V.T. Liu T. Wang X. Hoth J.J. Yoza B.K. McCall C.E. Sirtuins link inflammation and metabolism. J. Immunol. Res. 2016 2016 1 10 10.1155/2016/8167273 26904696
    [Google Scholar]
  34. Huang K. Huang J. Xie X. Wang S. Chen C. Shen X. Liu P. Huang H. Sirt1 resists advanced glycation end products-induced expressions of fibronectin and TGF-β1 by activating the Nrf2/ARE pathway in glomerular mesangial cells. Free Radic. Biol. Med. 2013 65 528 540 10.1016/j.freeradbiomed.2013.07.029 23891678
    [Google Scholar]
  35. Zhong X. Zhang J. RUNX3-activated apelin signaling inhibits cell proliferation and fibrosis in diabetic nephropathy by regulation of the SIRT1/FOXO pathway. Diabetol. Metab. Syndr. 2024 16 1 167 10.1186/s13098‑024‑01393‑x 39014438
    [Google Scholar]
  36. Asensio-Lopez M.C. Sassi Y. Soler F. Fernandez del Palacio M.J. Pascual-Figal D. Lax A. The miRNA199a/SIRT1/P300/Yy1/sST2 signaling axis regulates adverse cardiac remodeling following MI. Sci. Rep. 2021 11 1 3915 10.1038/s41598‑021‑82745‑9 33594087
    [Google Scholar]
  37. Gomes P. Fleming Outeiro T. Cavadas C. Emerging role of sirtuin 2 in the regulation of mammalian metabolism. Trends Pharmacol. Sci. 2015 36 11 756 768 10.1016/j.tips.2015.08.001 26538315
    [Google Scholar]
  38. Michan S. Sinclair D. Sirtuins in mammals: Insights into their biological function. Biochem. J. 2007 404 1 1 13 10.1042/BJ20070140 17447894
    [Google Scholar]
  39. He M. Chiang H.H. Luo H. Zheng Z. Qiao Q. Wang L. Tan M. Ohkubo R. Mu W.C. Zhao S. Wu H. Chen D. An acetylation switch of the NLRP3 Inflammasome regulates aging-associated chronic inflammation and insulin resistance. Cell Metab. 2020 31 3 580 591.e5 10.1016/j.cmet.2020.01.009 32032542
    [Google Scholar]
  40. Jung Y.J. Lee A.S. Nguyen-Thanh T. Kim D. Kang K.P. Lee S. Park S.K. Kim W. SIRT2 regulates LPS-induced renal tubular CXCL2 and CCL2 expression. J. Am. Soc. Nephrol. 2015 26 7 1549 1560 10.1681/ASN.2014030226 25349202
    [Google Scholar]
  41. Someya S. Yu W. Hallows W.C. Xu J. Vann J.M. Leeuwenburgh C. Tanokura M. Denu J.M. Prolla T.A. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 2010 143 5 802 812 10.1016/j.cell.2010.10.002 21094524
    [Google Scholar]
  42. Zhang L. Chen C.L. Kang P.T. Jin Z. Chen Y.R. Differential protein acetylation assists import of excess SOD2 into mitochondria and mediates SOD2 aggregation associated with cardiac hypertrophy in the murine SOD2-tg heart. Free Radic. Biol. Med. 2017 108 595 609 10.1016/j.freeradbiomed.2017.04.022 28433661
    [Google Scholar]
  43. Morigi M. Perico L. Rota C. Longaretti L. Conti S. Rottoli D. Novelli R. Remuzzi G. Benigni A. Sirtuin 3–dependent mitochondrial dynamic improvements protect against acute kidney injury. J. Clin Invest. 2015 125 2 715 10.1172/JCI77632
    [Google Scholar]
  44. Kitada M. Kume S. Takeda-Watanabe A. Kanasaki K. Koya D. Sirtuins and renal diseases: Relationship with aging and diabetic nephropathy. Clin. Sci. (Lond.) 2013 124 3 153 164 10.1042/CS20120190 23075334
    [Google Scholar]
  45. Tran M.T. Zsengeller Z.K. Berg A.H. Khankin E.V. Bhasin M.K. Kim W. Clish C.B. Stillman I.E. Karumanchi S.A. Rhee E.P. Parikh S.M. PGC1α drives NAD biosynthesis linking oxidative metabolism to renal protection. Nature 2016 531 7595 528 532 10.1038/nature17184 26982719
    [Google Scholar]
  46. Kong X. Wang R. Xue Y. Liu X. Zhang H. Chen Y. Fang F. Chang Y. Sirtuin 3, a new target of PGC-1α, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS One 2010 5 7 e11707 10.1371/journal.pone.0011707 20661474
    [Google Scholar]
  47. Zhang X. Ren X. Zhang Q. Li Z. Ma S. Bao J. Li Z. Bai X. Zheng L. Zhang Z. Shang S. Zhang C. Wang C. Cao L. Wang Q. Ji J. PGC-1α/ERRα-Sirt3 pathway regulates daergic neuronal death by directly deacetylating SOD2 and ATP synthase β. Antioxid. Redox Signal. 2016 24 6 312 328 10.1089/ars.2015.6403 26421366
    [Google Scholar]
  48. Xu X. Zhang L. Hua F. Zhang C. Zhang C. Mi X. Qin N. Wang J. Zhu A. Qin Z. Zhou F. FOXM1-activated SIRT4 inhibits NF-κB signaling and NLRP3 inflammasome to alleviate kidney injury and podocyte pyroptosis in diabetic nephropathy. Exp. Cell Res. 2021 408 2 112863 10.1016/j.yexcr.2021.112863 34626587
    [Google Scholar]
  49. Shi J.X. Wang Q.J. Li H. Huang Q. SIRT4 overexpression protects against diabetic nephropathy by inhibiting podocyte apoptosis. Exp. Ther. Med. 2017 13 1 342 348 10.3892/etm.2016.3938 28123512
    [Google Scholar]
  50. Han Y. Zhou S. Coetzee S. Chen A. SIRT4 and its roles in energy and redox metabolism in health, disease and during exercise. Front. Physiol. 2019 10 1006 10.3389/fphys.2019.01006 31447696
    [Google Scholar]
  51. Tao Y. Yu S. Chao M. Wang Y. Xiong J. Lai H. SIRT4 suppresses the PI3K/Akt/NF‑κB signaling pathway and attenuates HUVEC injury induced by oxLDL. Mol. Med. Rep. 2019 19 6 4973 4979 10.3892/mmr.2019.10161 31059091
    [Google Scholar]
  52. Singh C.K. Chhabra G. Ndiaye M.A. Garcia-Peterson L.M. Mack N.J. Ahmad N. The role of sirtuins in antioxidant and redox signaling. Antioxid. Redox Signal. 2018 28 8 643 661 10.1089/ars.2017.7290 28891317
    [Google Scholar]
  53. Elkhwanky M.S. Hakkola J. Extranuclear sirtuins and metabolic stress. Antioxid. Redox Signal. 2018 28 8 662 676 10.1089/ars.2017.7270 28707980
    [Google Scholar]
  54. Tao Y. Huang C. Huang Y. Hong L. Wang H. Zhou Z. Qiu Y. SIRT4 suppresses inflammatory responses in human umbilical vein endothelial cells. Cardiovasc. Toxicol. 2015 15 3 217 223 10.1007/s12012‑014‑9287‑6 25331589
    [Google Scholar]
  55. Yu J. Sadhukhan S. Noriega L.G. Moullan N. He B. Weiss R.S. Lin H. Schoonjans K. Auwerx J. Metabolic characterization of a sirt5 deficient mouse model. Sci. Rep. 2013 3 1 2806 10.1038/srep02806 24076663
    [Google Scholar]
  56. Tan M. Peng C. Anderson K.A. Chhoy P. Xie Z. Dai L. Park J. Chen Y. Huang H. Zhang Y. Ro J. Wagner G.R. Green M.F. Madsen A.S. Schmiesing J. Peterson B.S. Xu G. Ilkayeva O.R. Muehlbauer M.J. Braulke T. Mühlhausen C. Backos D.S. Olsen C.A. McGuire P.J. Pletcher S.D. Lombard D.B. Hirschey M.D. Zhao Y. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab. 2014 19 4 605 617 10.1016/j.cmet.2014.03.014 24703693
    [Google Scholar]
  57. Nishida Y. Rardin M.J. Carrico C. He W. Sahu A.K. Gut P. Najjar R. Fitch M. Hellerstein M. Gibson B.W. Verdin E. SIRT5 regulates both cytosolic and mitochondrial protein malonylation with glycolysis as a major target. Mol. Cell 2015 59 2 321 332 10.1016/j.molcel.2015.05.022 26073543
    [Google Scholar]
  58. Chiba T. Peasley K.D. Cargill K.R. Maringer K.V. Bharathi S.S. Mukherjee E. Zhang Y. Holtz A. Basisty N. Yagobian S.D. Schilling B. Goetzman E.S. Sims-Lucas S. Sirtuin 5 regulates proximal tubule fatty acid oxidation to protect against AKI. J. Am. Soc. Nephrol. 2019 30 12 2384 2398 10.1681/ASN.2019020163 31575700
    [Google Scholar]
  59. Baek J. Sas K. He C. Nair V. Giblin W. Inoki A. Zhang H. Yingbao Y. Hodgin J. Nelson R.G. The deacylase sirtuin 5 reduces malonylation in nonmitochondrial metabolic pathways in diabetic kidney disease. J Biol Chem 2023 299 3 102960 10.1016/j.jbc.2023.102960
    [Google Scholar]
  60. Huang W. Liu H. Zhu S. Woodson M. Liu R. Tilton R.G. Miller J.D. Zhang W. Sirt6 deficiency results in progression of glomerular injury in the kidney. Aging (Albany NY) 2017 9 3 1069 1083 10.18632/aging.101214 28351995
    [Google Scholar]
  61. Cai J. Liu Z. Huang X. Shu S. Hu X. Zheng M. Tang C. Liu Y. Chen G. Sun L. Liu H. Liu F. Cheng J. Dong Z. The deacetylase sirtuin 6 protects against kidney fibrosis by epigenetically blocking β-catenin target gene expression. Kidney Int. 2020 97 1 106 118 10.1016/j.kint.2019.08.028 31787254
    [Google Scholar]
  62. Li X. Li W. Zhang Z. Wang W. Huang H. SIRT6 overexpression retards renal interstitial fibrosis through targeting HIPK2 in chronic kidney disease. Front. Pharmacol. 2022 13 1007168 10.3389/fphar.2022.1007168 36172184
    [Google Scholar]
  63. Hou T. Tian Y. Cao Z. Zhang J. Feng T. Tao W. Sun H. Wen H. Lu X. Zhu Q. Li M. Lu X. Liu B. Zhao Y. Yang Y. Zhu W.G. Cytoplasmic SIRT6-mediated ACSL5 deacetylation impedes nonalcoholic fatty liver disease by facilitating hepatic fatty acid oxidation. Mol. Cell 2022 82 21 4099 4115.e9 10.1016/j.molcel.2022.09.018 36208627
    [Google Scholar]
  64. Miyasato Y. Yoshizawa T. Sato Y. Nakagawa T. Miyasato Y. Kakizoe Y. Kuwabara T. Adachi M. Ianni A. Braun T. Komohara Y. Mukoyama M. Yamagata K. Sirtuin 7 deficiency ameliorates Cisplatin-induced acute kidney injury through regulation of the inflammatory response. Sci. Rep. 2018 8 1 5927 10.1038/s41598‑018‑24257‑7 29651144
    [Google Scholar]
  65. Yi X. Wang H. Yang Y. Wang H. Zhang H. Guo S. Chen J. Du J. Tian Y. Ma J. Zhang B. Wu L. Shi Q. Gao T. Guo W. Li C. SIRT7 orchestrates melanoma progression by simultaneously promoting cell survival and immune evasion via UPR activation. Signal Transduct. Target. Ther. 2023 8 1 107 10.1038/s41392‑023‑01314‑w 36918544
    [Google Scholar]
  66. Li X.T. Song J.W. Zhang Z.Z. Zhang M.W. Liang L.R. Miao R. Liu Y. Chen Y.H. Liu X.Y. Zhong J.C. Sirtuin 7 mitigates renal ferroptosis, fibrosis and injury in hypertensive mice by facilitating the KLF15/Nrf2 signaling. Free Radic. Biol. Med. 2022 193 Pt 1 459 473 10.1016/j.freeradbiomed.2022.10.320 36334846
    [Google Scholar]
  67. Sánchez-Navarro A. Martínez-Rojas M.Á. Albarrán-Godinez A. Pérez-Villalva R. Auwerx J. de la Cruz A. Noriega L.G. Rosetti F. Bobadilla N.A. Sirtuin 7 deficiency reduces inflammation and tubular damage induced by an episode of acute kidney injury. Int. J. Mol. Sci. 2022 23 5 2573 10.3390/ijms23052573 35269715
    [Google Scholar]
  68. Kiran S. Anwar T. Kiran M. Ramakrishna G. Sirtuin 7 in cell proliferation, stress and disease: Rise of the seventh sirtuin! Cell. Signal. 2015 27 3 673 682 10.1016/j.cellsig.2014.11.026 25435428
    [Google Scholar]
  69. Vazquez B.N. Thackray J.K. Serrano L. Sirtuins and DNA damage repair: SIRT7 comes to play. Nucleus 2017 8 2 107 115 10.1080/19491034.2016.1264552 28406750
    [Google Scholar]
  70. Li L. Shi L. Yang S. Yan R. Zhang D. Yang J. He L. Li W. Yi X. Sun L. Liang J. Cheng Z. Shi L. Shang Y. Yu W. SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability. Nat. Commun. 2016 7 1 12235 10.1038/ncomms12235 27436229
    [Google Scholar]
  71. Hasegawa K. Wakino S. Yoshioka K. Tatematsu S. Hara Y. Minakuchi H. Washida N. Tokuyama H. Hayashi K. Itoh H. Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression. Biochem. Biophys. Res. Commun. 2008 372 1 51 56 10.1016/j.bbrc.2008.04.176 18485895
    [Google Scholar]
  72. Wu L. Zhang Y. Ma X. Zhang N. Qin G. The effect of resveratrol on FoxO1 expression in kidneys of diabetic nephropathy rats. Mol. Biol. Rep. 2012 39 9 9085 9093 10.1007/s11033‑012‑1780‑z 22733486
    [Google Scholar]
  73. Tikoo K. Lodea S. Karpe P.A. Kumar S. Calorie restriction mimicking effects of roflumilast prevents diabetic nephropathy. Biochem. Biophys. Res. Commun. 2014 450 4 1581 1586 10.1016/j.bbrc.2014.07.039 25035926
    [Google Scholar]
  74. Park H.S. Lim J.H. Kim M.Y. Kim Y. Hong Y.A. Choi S.R. Chung S. Kim H.W. Choi B.S. Kim Y.S. Chang Y.S. Park C.W. Resveratrol increases AdipoR1 and AdipoR2 expression in type 2 diabetic nephropathy. J. Transl. Med. 2016 14 1 176 10.1186/s12967‑016‑0922‑9 27286657
    [Google Scholar]
  75. Hussein M.M.A. Mahfouz M.K. Effect of resveratrol and rosuvastatin on experimental diabetic nephropathy in rats. Biomed. Pharmacother. 2016 82 685 692 10.1016/j.biopha.2016.06.004 27470412
    [Google Scholar]
  76. Xu J. Liu L.Q. Xu L.L. Xing Y. Ye S. Metformin alleviates renal injury in diabetic rats by inducing Sirt1/FoxO1 autophagic signal axis. Clin. Exp. Pharmacol. Physiol. 2020 47 4 599 608 10.1111/1440‑1681.13226 31821581
    [Google Scholar]
  77. Samadi M. Aziz S.G.G. Naderi R. The effect of tropisetron on oxidative stress, SIRT1, FOXO3a, and claudin-1 in the renal tissue of STZ-induced diabetic rats. Cell Stress Chaperones 2021 26 1 217 227 10.1007/s12192‑020‑01170‑5 33047279
    [Google Scholar]
  78. Wang F. Nguyen M. Qin F.X.F. Tong Q. SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell 2007 6 4 505 514 10.1111/j.1474‑9726.2007.00304.x 17521387
    [Google Scholar]
  79. Wang Z. Li Y. Wang Y. Zhao K. Chi Y. Wang B. Pyrroloquinoline quinine protects HK-2 cells against high glucose-induced oxidative stress and apoptosis through Sirt3 and PI3K/Akt/FoxO3a signaling pathway. Biochem. Biophys. Res. Commun. 2019 508 2 398 404 10.1016/j.bbrc.2018.11.140 30502093
    [Google Scholar]
  80. van der Vos K.E. Coffer P.J. The extending network of FOXO transcriptional target genes. Antioxid. Redox Signal. 2011 14 4 579 592 10.1089/ars.2010.3419 20673124
    [Google Scholar]
  81. Kim M.Y. Lim J.H. Youn H.H. Hong Y.A. Yang K.S. Park H.S. Chung S. Koh S.H. Shin S.J. Choi B.S. Kim H.W. Kim Y.S. Lee J.H. Chang Y.S. Park C.W. Resveratrol prevents renal lipotoxicity and inhibits mesangial cell glucotoxicity in a manner dependent on the AMPK–SIRT1–PGC1α axis in db/db mice. Diabetologia 2013 56 1 204 217 10.1007/s00125‑012‑2747‑2 23090186
    [Google Scholar]
  82. Jiao X. Li Y. Zhang T. Liu M. Chi Y. Role of Sirtuin3 in high glucose-induced apoptosis in renal tubular epithelial cells. Biochem. Biophys. Res. Commun. 2016 480 3 387 393 10.1016/j.bbrc.2016.10.060 27773814
    [Google Scholar]
  83. Zhou D. Zhou M. Wang Z. Fu Y. Jia M. Wang X. Liu M. Zhang Y. Sun Y. Lu Y. Tang W. Yi F. PGRN acts as a novel regulator of mitochondrial homeostasis by facilitating mitophagy and mitochondrial biogenesis to prevent podocyte injury in diabetic nephropathy. Cell Death Dis. 2019 10 7 524 10.1038/s41419‑019‑1754‑3 31285425
    [Google Scholar]
  84. Murtaza G. Khan A.K. Rashid R. Muneer S. Hasan S.M.F. Chen J. FOXO transcriptional factors and long‐term living. Oxid. Med. Cell. Longev. 2017 2017 1 3494289 10.1155/2017/3494289 28894507
    [Google Scholar]
  85. Daitoku H. Sakamaki J. Fukamizu A. Regulation of FoxO transcription factors by acetylation and protein–protein interactions. Biochim. Biophys. Acta Mol. Cell Res. 2011 1813 11 1954 1960 10.1016/j.bbamcr.2011.03.001 21396404
    [Google Scholar]
  86. Marfè G. Tafani M. Fiorito F. Pagnini U. Iovane G. De Martino L. Involvement of FOXO transcription factors, TRAIL-FasL/Fas, and sirtuin proteins family in canine coronavirus type II-induced apoptosis. PLoS One 2011 6 11 e27313 10.1371/journal.pone.0027313 22087287
    [Google Scholar]
  87. Motta M.C. Divecha N. Lemieux M. Kamel C. Chen D. Gu W. Bultsma Y. McBurney M. Guarente L. Mammalian SIRT1 represses forkhead transcription factors. Cell 2004 116 4 551 563 10.1016/S0092‑8674(04)00126‑6 14980222
    [Google Scholar]
  88. Yu S.L. Lee S.I. Park H.W. Lee S.K. Kim T.H. Kang J. Park S.R. SIRT1 suppresses in vitro decidualization of human endometrial stromal cells through the downregulation of forkhead box O1 expression. Reprod. Biol. 2022 22 3 100672 10.1016/j.repbio.2022.100672 35839571
    [Google Scholar]
  89. Yao H. Yao Z. Zhang S. Zhang W. Zhou W. Upregulation of SIRT1 inhibits H2O2‑induced osteoblast apoptosis via FoxO1/β‑catenin pathway. Mol. Med. Rep. 2018 17 5 6681 6690 10.3892/mmr.2018.8657 29512706
    [Google Scholar]
  90. Wang Y. Zhang L. Che X. Li W. Liu Z. Jiang J. Roles of SIRT1/FoxO1/SREBP-1 in the development of progestin resistance in endometrial cancer. Arch. Gynecol. Obstet. 2018 298 5 961 969 10.1007/s00404‑018‑4893‑3 30206735
    [Google Scholar]
  91. Li Z. Bridges B. Olson J. Weinman S.A. The interaction between acetylation and serine-574 phosphorylation regulates the apoptotic function of FOXO3. Oncogene 2017 36 13 1887 1898 10.1038/onc.2016.359 27669435
    [Google Scholar]
  92. Wang F. Chan C-H. Chen K. Guan X. Lin H-K. Tong Q. Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to Skp2-mediated FOXO3 ubiquitination and degradation. Oncogene 2012 31 12 1546 1557 10.1038/onc.2011.347 21841822
    [Google Scholar]
  93. Lempiäinen H. Halazonetis T.D. Emerging common themes in regulation of PIKKs and PI3Ks. EMBO J. 2009 28 20 3067 3073 10.1038/emboj.2009.281 19779456
    [Google Scholar]
  94. Sabatini D.M. mTOR and cancer: Insights into a complex relationship. Nat. Rev. Cancer 2006 6 9 729 734 10.1038/nrc1974 16915295
    [Google Scholar]
  95. Haar E.V. Lee S. Bandhakavi S. Griffin T.J. Kim D.H. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat. Cell Biol. 2007 9 3 316 323 10.1038/ncb1547 17277771
    [Google Scholar]
  96. Lieberthal W. Levine J.S. The role of the mammalian target of rapamycin (mTOR) in renal disease. J. Am. Soc. Nephrol. 2009 20 12 2493 2502 10.1681/ASN.2008111186 19875810
    [Google Scholar]
  97. Fantus D. Rogers N.M. Grahammer F. Huber T.B. Thomson A.W. Roles of mTOR complexes in the kidney: Implications for renal disease and transplantation. Nat. Rev. Nephrol. 2016 12 10 587 609 10.1038/nrneph.2016.108 27477490
    [Google Scholar]
  98. Inoki K Mori H Wang J Suzuki T Hong S Yoshida S Blattner S.M. Ikenoue T. Rüegg M.A. Hall M.N. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J Clin Invest. 2011 121 6 2181 10.1172/JCI44771
    [Google Scholar]
  99. Laplante M. Sabatini D.M. mTOR signaling in growth control and disease. Cell 2012 149 2 274 293 10.1016/j.cell.2012.03.017 22500797
    [Google Scholar]
  100. Menon S. Dibble C.C. Talbott G. Hoxhaj G. Valvezan A.J. Takahashi H. Cantley L.C. Manning B.D. Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 2014 156 4 771 785 10.1016/j.cell.2013.11.049 24529379
    [Google Scholar]
  101. Kim E. Goraksha-Hicks P. Li L. Neufeld T.P. Guan K.L. Regulation of TORC1 by Rag GTPases in nutrient response. Nat. Cell Biol. 2008 10 8 935 945 10.1038/ncb1753 18604198
    [Google Scholar]
  102. Sancak Y. Peterson T.R. Shaul Y.D. Lindquist R.A. Thoreen C.C. Bar-Peled L. Sabatini D.M. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008 320 5882 1496 1501 10.1126/science.1157535 18497260
    [Google Scholar]
  103. Kogot-Levin A. Hinden L. Riahi Y. Israeli T. Tirosh B. Cerasi E. Mizrachi E.B. Tam J. Mosenzon O. Leibowitz G. Proximal tubule mTORC1 is a central player in the pathophysiology of diabetic nephropathy and its correction by SGLT2 inhibitors. Cell Rep. 2020 32 4 107954 10.1016/j.celrep.2020.107954 32726619
    [Google Scholar]
  104. Yasuda-Yamahara M. Kume S. Maegawa H. Roles of mTOR in diabetic kidney disease. Antioxidants 2021 10 2 321 10.3390/antiox10020321 33671526
    [Google Scholar]
  105. Dibble C.C. Elis W. Menon S. Qin W. Klekota J. Asara J.M. Finan P.M. Kwiatkowski D.J. Murphy L.O. Manning B.D. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol. Cell 2012 47 4 535 546 10.1016/j.molcel.2012.06.009 22795129
    [Google Scholar]
  106. Huang J. Manning B.D. The TSC1–TSC2 complex: A molecular switchboard controlling cell growth. Biochem. J. 2008 412 2 179 190 10.1042/BJ20080281 18466115
    [Google Scholar]
  107. Bian C. Zhang H. Gao J. Wang Y. Li J. Guo D. Wang W. Song Y. Weng Y. Ren H. SIRT6 regulates SREBP1c-induced glucolipid metabolism in liver and pancreas via the AMPKα-mTORC1 pathway. Lab. Invest. 2022 102 5 474 484 10.1038/s41374‑021‑00715‑1 34923569
    [Google Scholar]
  108. Lan F. Cacicedo J.M. Ruderman N. Ido Y. SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J Biol Chem. 2008 283 41 27628 27635 10.1074/jbc.M805711200
    [Google Scholar]
  109. Price N.L. Gomes A.P. Ling A.J.Y. Duarte F.V. Martin-Montalvo A. North B.J. Agarwal B. Ye L. Ramadori G. Teodoro J.S. Hubbard B.P. Varela A.T. Davis J.G. Varamini B. Hafner A. Moaddel R. Rolo A.P. Coppari R. Palmeira C.M. de Cabo R. Baur J.A. Sinclair D.A. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 2012 15 5 675 690 10.1016/j.cmet.2012.04.003 22560220
    [Google Scholar]
  110. Cantó C. Gerhart-Hines Z. Feige J.N. Lagouge M. Noriega L. Milne J.C. Elliott P.J. Puigserver P. Auwerx J. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 2009 458 7241 1056 1060 10.1038/nature07813 19262508
    [Google Scholar]
  111. Akhtar S. Siragy H.M. Pro-renin receptor suppresses mitochondrial biogenesis and function via AMPK/SIRT-1/ PGC-1α pathway in diabetic kidney. PLoS One 2019 14 12 e0225728 10.1371/journal.pone.0225728 31800607
    [Google Scholar]
  112. Bao L. Cai X. Zhang Z. Li Y. Grape seed procyanidin B2 ameliorates mitochondrial dysfunction and inhibits apoptosis via the AMP-activated protein kinase–silent mating type information regulation 2 homologue 1–PPARγ co-activator-1α axis in rat mesangial cells under high-dose glucosamine. Br. J. Nutr. 2015 113 1 35 44 10.1017/S000711451400347X 25404010
    [Google Scholar]
  113. Weng W. Ge T. Wang Y. He L. Liu T. Wang W. Zheng Z. Yu L. Zhang C. Lu X. Therapeutic effects of fibroblast growth factor-21 on diabetic nephropathy and the possible mechanism in Type 1 diabetes mellitus mice. Diabetes Metab. J. 2020 44 4 566 580 10.4093/dmj.2019.0089 32431116
    [Google Scholar]
  114. Ding D.F. You N. Wu X.M. Xu J.R. Hu A.P. Ye X.L. Zhu Q. Jiang X.Q. Miao H. Liu C. Lu Y.B. Resveratrol attenuates renal hypertrophy in early-stage diabetes by activating AMPK. Am. J. Nephrol. 2010 31 4 363 374 10.1159/000300388 20332614
    [Google Scholar]
  115. Cammisotto P.G. Londono I. Gingras D. Bendayan M. American Journal of Physiology Renal Physiology Control of glycogen synthase through ADIPOR1-AMPK pathway in renal distal tubules of normal and diabetic rats. Am. J. Physiol. Renal Physiol. 2008 294 4 F881 F889 10.1152/ajprenal.00373.2007 18256313
    [Google Scholar]
  116. Kitada M. Takeda A. Nagai T. Ito H. Kanasaki K. Koya D. Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirt1 in diabetic Wistar fatty (fa/fa) rats: A model of type 2 diabetes. Exp. Diabetes Res. 2011 2011 1 11 10.1155/2011/908185 21949662
    [Google Scholar]
  117. Fu Y. Sun Y. Wang M. Hou Y. Huang W. Zhou D. Wang Z. Yang S. Tang W. Zhen J. Li Y. Wang X. Liu M. Zhang Y. Wang B. Liu G. Yu X. Sun J. Zhang C. Yi F. Elevation of JAML promotes diabetic kidney disease by modulating podocyte lipid metabolism. Cell Metab. 2020 32 6 1052 1062.e8 10.1016/j.cmet.2020.10.019 33186558
    [Google Scholar]
  118. Li F. Chen Y. Li Y. Huang M. Zhao W. Geniposide alleviates diabetic nephropathy of mice through AMPK/SIRT1/NF-κB pathway. Eur. J. Pharmacol. 2020 886 173449 10.1016/j.ejphar.2020.173449 32758570
    [Google Scholar]
  119. Cai Y.Y. Zhang H.B. Fan C.X. Zeng Y.M. Zou S.Z. Wu C.Y. Wang L. Fang S. Li P. Xue Y.M. Guan M.P. Renoprotective effects of brown adipose tissue activation in diabetic mice. J. Diabetes 2019 11 12 958 970 10.1111/1753‑0407.12938 31020790
    [Google Scholar]
  120. Zhu H. Fang Z. Chen J. Yang Y. Gan J. Luo L. Zhan X. PARP-1 and SIRT-1 are interacted in diabetic nephropathy by activating AMPK/PGC-1α signaling pathway. Diabetes Metab. Syndr. Obes. 2021 14 355 366 10.2147/DMSO.S291314 33531822
    [Google Scholar]
  121. Zhuo L. Fu B. Bai X. Zhang B. Wu L. Cui J. Cui S. Wei R. Chen X. Cai G. NAD blocks high glucose induced mesangial hypertrophy via activation of the sirtuins-AMPK-mTOR pathway. Cell. Physiol. Biochem. 2011 27 6 681 690 10.1159/000330077 21691086
    [Google Scholar]
  122. Ren H. Shao Y. Wu C. Ma X. Lv C. Wang Q. Metformin alleviates oxidative stress and enhances autophagy in diabetic kidney disease via AMPK/SIRT1-FoxO1 pathway. Mol. Cell. Endocrinol. 2020 500 110628 10.1016/j.mce.2019.110628 31647955
    [Google Scholar]
  123. Villena JA New insights into PGC-1 coactivators: Redefining their role in the regulation of mitochondrial function and beyond. FEBS J 2015 282 4 647 672 10.1111/febs.13175
    [Google Scholar]
  124. Besseiche A. Riveline J.P. Gautier J.F. Bréant B. Blondeau B. Metabolic roles of PGC-1α and its implications for type 2 diabetes. Diabetes Metab. 2015 41 5 347 357 10.1016/j.diabet.2015.02.002 25753246
    [Google Scholar]
  125. Jäger S. Handschin C. St-Pierre J. Spiegelman B.M. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc. Natl. Acad. Sci. USA 2007 104 29 12017 12022 10.1073/pnas.0705070104 17609368
    [Google Scholar]
  126. Tang F. Hao Y. Zhang X. Qin J. Effect of echinacoside on kidney fibrosis by inhibition of TGF-β1/Smads signaling pathway in the db/db mice model of diabetic nephropathy. Drug Des. Devel. Ther. 2017 11 2813 2826 10.2147/DDDT.S143805 29033543
    [Google Scholar]
  127. Yao Y. Li Y. Zeng X. Ye Z. Li X. Zhang L. Losartan alleviates renal fibrosis and inhibits endothelial-to-mesenchymal transition (EMT) Under high-fat diet-induced hyperglycemia. Front. Pharmacol. 2018 9 1213 10.3389/fphar.2018.01213 30420805
    [Google Scholar]
  128. Papadimitriou A. Silva K.C. Peixoto E.B.M.I. Borges C.M. Lopes de Faria J.M. Lopes de Faria J.B. American Journal of Physiology Renal Physiology Theobromine increases NAD + /Sirt-1 activity and protects the kidney under diabetic conditions. Am. J. Physiol. Renal Physiol. 2015 308 3 F209 F225 10.1152/ajprenal.00252.2014 25411384
    [Google Scholar]
  129. Mortuza R. Feng B. Chakrabarti S. SIRT 1 reduction causes renal and retinal injury in diabetes through endothelin 1 and transforming growth factor β1. J. Cell. Mol. Med. 2015 19 8 1857 1867 10.1111/jcmm.12557 25753689
    [Google Scholar]
  130. Sun Z. Ma Y. Chen F. Wang S. Chen B. Shi J. miR-133b and miR-199b knockdown attenuate TGF-β1-induced epithelial to mesenchymal transition and renal fibrosis by targeting SIRT1 in diabetic nephropathy. Eur. J. Pharmacol. 2018 837 96 104 10.1016/j.ejphar.2018.08.022 30125566
    [Google Scholar]
  131. Isono M. Chen S. Won Hong S. Carmen Iglesias-de la Cruz M. Ziyadeh F.N. Smad pathway is activated in the diabetic mouse kidney and Smad3 mediates TGF-β-induced fibronectin in mesangial cells. Biochem. Biophys. Res. Commun. 2002 296 5 1356 1365 10.1016/S0006‑291X(02)02084‑3 12207925
    [Google Scholar]
  132. Wolf G. Sharma K. Chen Y. Ericksen M. Ziyadeh F.N. High glucose-induced proliferation in mesangial cells is reversed by autocrine TGF-β. Kidney Int. 1992 42 3 647 656 10.1038/ki.1992.330 1357223
    [Google Scholar]
  133. Hoffman B.B. Sharma K. Zhu Y. Ziyadeh F.N. Transcriptional activation of transforming growth factor-β1 in mesangial cell culture by high glucose concentration. Kidney Int. 1998 54 4 1107 1116 10.1046/j.1523‑1755.1998.00119.x 9767526
    [Google Scholar]
  134. Han D.C. Isono M. Hoffman B.B. Ziyadeh F.N. High glucose stimulates proliferation and collagen type I synthesis in renal cortical fibroblasts: Mediation by autocrine activation of TGF-beta. J. Am. Soc. Nephrol. 1999 10 9 1891 1899 10.1681/ASN.V1091891 10477140
    [Google Scholar]
  135. Rocco M.V. Chen Y. Goldfarb S. Ziyadeh F.N. Elevated glucose stimulates TGF-β gene expression and bioactivity in proximal tubule. Kidney Int. 1992 41 1 107 114 10.1038/ki.1992.14 1593845
    [Google Scholar]
  136. Wang S. Skorczewski J. Feng X. Mei L. Murphy-Ullrich J.E. Glucose up-regulates thrombospondin 1 gene transcription and transforming growth factor-beta activity through antagonism of cGMP-dependent protein kinase repression via upstream stimulatory factor 2. J. Biol Chem 2004 279 34311 10.1074/jbc.M401629200
    [Google Scholar]
  137. Murphy-Ullrich J.E. Suto M.J. Thrombospondin-1 regulation of latent TGF-β activation: A therapeutic target for fibrotic disease. Matrix Biol. 2018 68-69 28 43 10.1016/j.matbio.2017.12.009 29288716
    [Google Scholar]
  138. Isono M. Mogyorósi A. Han D.C. Hoffman B.B. Ziyadeh F.N. Stimulation of TGF-β type II receptor by high glucose in mouse mesangial cells and in diabetic kidney. Am. J. Physiol. Renal Physiol. 2000 278 5 F830 F838 10.1152/ajprenal.2000.278.5.F830 10807596
    [Google Scholar]
  139. Juárez P. Vilchis-Landeros M.M. Ponce-Coria J. Mendoza V. Hernández-Pando R. Bobadilla N.A. López-Casillas F. Soluble betaglycan reduces renal damage progression in db/db mice. Am. J. Physiol. Renal Physiol. 2007 292 1 F321 F329 10.1152/ajprenal.00264.2006 16954341
    [Google Scholar]
  140. Gerrits T. Zandbergen M. Wolterbeek R. Bruijn J.A. Baelde H.J. Scharpfenecker M. Endoglin promotes myofibroblast differentiation and extracellular matrix production in diabetic nephropathy. Int. J. Mol. Sci. 2020 21 20 7713 10.3390/ijms21207713 33081058
    [Google Scholar]
  141. Weiss A. Attisano L. The TGFbeta superfamily signaling pathway. Wiley Interdiscip. Rev. Dev. Biol. 2013 2 1 47 63 10.1002/wdev.86 23799630
    [Google Scholar]
  142. Meng X.M. Tang P.M.K. Li J. Lan H.Y. TGF-β/Smad signaling in renal fibrosis. Front. Physiol. 2015 6 82 10.3389/fphys.2015.00082 25852569
    [Google Scholar]
  143. Russo L.M. del Re E. Brown D. Lin H.Y. Evidence for a role of transforming growth factor (TGF)-β1 in the induction of postglomerular albuminuria in diabetic nephropathy: Amelioration by soluble TGF-β type II receptor. Diabetes 2007 56 2 380 388 10.2337/db06‑1018 17259382
    [Google Scholar]
  144. Sharma K. Jin Y. Guo J. Ziyadeh F.N. Neutralization of TGF-β by anti-TGF-β antibody attenuates kidney hypertrophy and the enhanced extracellular matrix gene expression in STZ-induced diabetic mice. Diabetes 1996 45 4 522 530 10.2337/diab.45.4.522 8603776
    [Google Scholar]
  145. Ziyadeh F.N. Hoffman B.B. Han D.C. Iglesias-de la Cruz M.C. Hong S.W. Isono M. Chen S. McGowan T.A. Sharma K. Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-β antibody in db/db diabetic mice. Proc. Natl. Acad. Sci. USA 2000 97 14 8015 8020 10.1073/pnas.120055097 10859350
    [Google Scholar]
  146. Chen S. Carmen Iglesias-de la Cruz M. Jim B. Hong S.W. Isono M. Ziyadeh F.N. Reversibility of established diabetic glomerulopathy by anti-TGF-β antibodies in db/db mice. Biochem. Biophys. Res. Commun. 2003 300 1 16 22 10.1016/S0006‑291X(02)02708‑0 12480514
    [Google Scholar]
  147. Voelker J. Berg P.H. Sheetz M. Duffin K. Shen T. Moser B. Greene T. Blumenthal S.S. Rychlik I. Yagil Y. Zaoui P. Lewis J.B. Anti–TGF-β1 antibody therapy in patients with diabetic nephropathy. J. Am. Soc. Nephrol. 2017 28 3 953 962 10.1681/ASN.2015111230 27647855
    [Google Scholar]
  148. Li M.O. Wan Y.Y. Flavell R.A. T cell-produced transforming growth factor-β1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity 2007 26 5 579 591 10.1016/j.immuni.2007.03.014 17481928
    [Google Scholar]
  149. Cooker L.A. Peterson D. Rambow J. Riser M.L. Riser R.E. Najmabadi F. Brigstock D. Riser B.L. American Journal of Physiology Renal Physiology TNF-α, but not IFN-γ, regulates CCN2 (CTGF), collagen type I, and proliferation in mesangial cells: possible roles in the progression of renal fibrosis. Am. J. Physiol. Renal Physiol. 2007 293 1 F157 F165 10.1152/ajprenal.00508.2006 17376761
    [Google Scholar]
  150. Banes A.K. Shaw S. Jenkins J. Redd H. Amiri F. Pollock D.M. Marrero M.B. Angiotensin II blockade prevents hyperglycemia-induced activation of JAK and STAT proteins in diabetic rat kidney glomeruli. Am. J. Physiol. Renal Physiol. 2004 286 4 F653 F659 10.1152/ajprenal.00163.2003 14678947
    [Google Scholar]
  151. Darnell J.E. Jr Kerr M. Stark G.R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994 264 5164 1415 1421 10.1126/science.8197455 8197455
    [Google Scholar]
  152. Marrero M.B. Banes-Berceli A.K. Stern D.M. Eaton D.C. Role of the JAK/STAT signaling pathway in diabetic nephropathy. Am. J. Physiol. Renal Physiol. 2006 290 4 F762 F768 10.1152/ajprenal.00181.2005 16527921
    [Google Scholar]
  153. Donate-Correa J. Luis-Rodríguez D. Martín-Núñez E. Tagua V.G. Hernández-Carballo C. Ferri C. Rodríguez-Rodríguez A.E. Mora-Fernández C. Navarro-González J.F. Inflammatory targets in diabetic nephropathy. J. Clin. Med. 2020 9 2 458 10.3390/jcm9020458 32046074
    [Google Scholar]
  154. Banes-Berceli A.K.L. Ketsawatsomkron P. Ogbi S. Patel B. Pollock D.M. Marrero M.B. Angiotensin II and endothelin-1 augment the vascular complications of diabetes via JAK2 activation. Am. J. Physiol. Heart Circ. Physiol. 2007 293 2 H1291 H1299 10.1152/ajpheart.00181.2007 17526654
    [Google Scholar]
  155. Ortiz-Muñoz G. Lopez-Parra V. Lopez-Franco O. Fernandez-Vizarra P. Mallavia B. Flores C. Sanz A. Blanco J. Mezzano S. Ortiz A. Egido J. Gomez-Guerrero C. Suppressors of cytokine signaling abrogate diabetic nephropathy. J. Am. Soc. Nephrol. 2010 21 5 763 772 10.1681/ASN.2009060625 20185635
    [Google Scholar]
  156. Berthier C.C. Zhang H. Schin M. Henger A. Nelson R.G. Yee B. Boucherot A. Neusser M.A. Cohen C.D. Carter-Su C. Argetsinger L.S. Rastaldi M.P. Brosius F.C. Kretzler M. Enhanced expression of Janus kinase-signal transducer and activator of transcription pathway members in human diabetic nephropathy. Diabetes 2009 58 2 469 477 10.2337/db08‑1328 19017763
    [Google Scholar]
  157. Xiao S. Yang Y. Liu Y.T. Zhu J. Liraglutide regulates the kidney and liver in diabetic nephropathy rats through the miR-34a/SIRT1 pathway. J. Diabetes Res. 2021 2021 1 12 10.1155/2021/8873956 33880382
    [Google Scholar]
  158. Xu F. Fang X. Ye Z. Tao S. Liu W. Su J. Wang X. Ligustilide alleviates podocyte injury via suppressing the SIRT1/NF-κB signaling pathways in rats with diabetic nephropathy. Ann. Transl. Med. 2020 8 18 1154 10.21037/atm‑20‑5811 33241003
    [Google Scholar]
  159. Gao H. Wu H. Maslinic acid activates renal AMPK/SIRT1 signaling pathway and protects against diabetic nephropathy in mice. BMC Endocr. Disord. 2022 22 1 25 10.1186/s12902‑022‑00935‑6 35042497
    [Google Scholar]
  160. Huang Q. Chen H. Yin K. Shen Y. Lin K. Guo X. Zhang X. Wang N. Xin W. Xu Y. Gui D. Formononetin attenuates renal tubular injury and mitochondrial damage in diabetic nephropathy partly via regulating Sirt1/PGC-1α Pathway. Front. Pharmacol. 2022 13 901234 10.3389/fphar.2022.901234 35645821
    [Google Scholar]
  161. Xue H. Li P. Luo Y. Wu C. Liu Y. Qin X. Huang X. Sun C. Salidroside stimulates the Sirt1/PGC-1α axis and ameliorates diabetic nephropathy in mice. Phytomedicine 2019 54 240 247 10.1016/j.phymed.2018.10.031 30668374
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037340795241202044932
Loading
/content/journals/cpps/10.2174/0113892037340795241202044932
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: sirtuin ; inflammation ; Diabetic nephropathy ; renal fibrosis ; signalling pathway
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test