Skip to content
2000
Volume 26, Issue 6
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

Introduction

Diabetic nephropathy is characterized by elevated oxidative stress and chronic inflammation in the kidneys. A class of proteins called sirtuins is well-known to be important for a number of cellular functions, such as metabolism, stress tolerance, and ageing. Among them, SIRT1 is associated with the progression of diabetic nephropathy, a dangerous kidney-related consequence of diabetes mellitus. Thus, this study aims to examine the function and pathways of sirtuin that are responsible for the progression of this disease.

Methods

Publications considered from the standard databases like Pubmed-Medline, Google Scholar, and Scopus using standard keywords, “Sirtuin,” Signalling pathway”, and “Diabetic Nephropathy” well described the actual knowledge on the scientific literature indicating patient susceptibility to kidney disease that is influenced by sirtuin-1 gene variants.

Results

The research results imply that sirtuins offer enormous promise as cutting-edge therapeutic targets for kidney disease prevention and management. Renal fibrosis, metabolic disorders, renal impairment, and a possible regulation mechanism all probably entail blocking inflammation through various signalling pathways.

Conclusion

A comprehensive understanding of the fundamental pathophysiological pathways targeting sirtuin is essential as a diagnostic tool. For the treatment of diabetic nephropathy, researchers are developing therapeutic techniques to target biological roles and functions of different types of sirtuin, processes, and signalling pathways.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037340795241202044932
2025-01-21
2025-06-06
Loading full text...

Full text loading...

References

  1. The editors of Encyclopædia Britannica. https://www.britannica.com/editor/The-Editors-of-Encyclopaedia-Britannica/4419
  2. AlamS. HasanM.K. NeazS. HussainN. HossainM.F. RahmanT. Diabetes mellitus: Insights from epidemiology, biochemistry, risk factors, diagnosis, complications and comprehensive management.Diabetology202122365010.3390/diabetology2020004
    [Google Scholar]
  3. MathersC.D. LoncarD. Projections of global mortality and burden of disease from 2002 to 2030.PLoS Med.2006311e44210.1371/journal.pmed.003044217132052
    [Google Scholar]
  4. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia: Report of a WHO/IDF consultation.2006 https://iris.who.int/handle/10665/43588
  5. ChaudhuryA. DuvoorC. Reddy DendiV.S. KraletiS. ChadaA. RavillaR. MarcoA. ShekhawatN.S. MontalesM.T. KuriakoseK. SasapuA. BeebeA. PatilN. MushamC.K. LohaniG.P. MirzaW. Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management.Front. Endocrinol. (Lausanne)20178610.3389/fendo.2017.0000628167928
    [Google Scholar]
  6. ValenciaW.M. FlorezH. How to prevent the microvascular complications of type 2 diabetes beyond glucose control.BMJ2017356i650510.1136/bmj.i650528096078
    [Google Scholar]
  7. BurrowsN.R. HoraI. GeissL.S. GreggE.W. AlbrightA. Incidence of end-stage renal disease attributed to diabetes among persons with diagnosed diabetes — United States and Puerto Rico, 2000–2014.MMWR Morb. Mortal. Wkly. Rep.201766431165117010.15585/mmwr.mm6643a229095800
    [Google Scholar]
  8. AfkarianM. ZelnickL.R. HallY.N. HeagertyP.J. TuttleK. WeissN.S. de BoerI.H. Clinical manifestations of kidney disease among US adults with diabetes, 1988-2014.JAMA2016316660261010.1001/jama.2016.1092427532915
    [Google Scholar]
  9. LoganathanT.S. SulaimanS.A. Abdul MuradN.A. ShahS.A. Abdul GaforA.H. JamalR. AbdullahN. Interactions among non-coding RNAs in diabetic nephropathy.Front. Pharmacol.20201119110.3389/fphar.2020.0019132194418
    [Google Scholar]
  10. PillaiA. FulmaliD. A narrative review of new treatment options for diabetic nephropathy.Cureus2023151e3323510.7759/cureus.3323536733548
    [Google Scholar]
  11. LiX. YangL. ChenL.L. The biogenesis, functions, and challenges of circular RNAs.Mol. Cell201871342844210.1016/j.molcel.2018.06.03430057200
    [Google Scholar]
  12. HuQ. ChenY. DengX. LiY. MaX. ZengJ. ZhaoY. Diabetic nephropathy: Focusing on pathological signals, clinical treatment, and dietary regulation.Biomed. Pharmacother.202315911425210.1016/j.biopha.2023.11425236641921
    [Google Scholar]
  13. BordoneL. GuarenteL. Calorie restriction, SIRT1 and metabolism: Understanding longevity.Nat. Rev. Mol. Cell Biol.20056429830510.1038/nrm161615768047
    [Google Scholar]
  14. HsuY.J. HsuS.C. HsuC.P. ChenY.H. ChangY.L. SadoshimaJ. HuangS.M. TsaiC.S. LinC.Y. Sirtuin 1 protects the aging heart from contractile dysfunction mediated through the inhibition of endoplasmic reticulum stress-mediated apoptosis in cardiac-specific Sirtuin 1 knockout mouse model.Int. J. Cardiol.201722854355210.1016/j.ijcard.2016.11.24727875732
    [Google Scholar]
  15. LiuX. ChenA. LiangQ. YangX. DongQ. FuM. WangS. LiY. YeY. LanZ. ChenY. OuJ.S. YangP. LuL. YanJ. Spermidine inhibits vascular calcification in chronic kidney disease through modulation of SIRT1 signaling pathway.Aging Cell2021206e1337710.1111/acel.1337733969611
    [Google Scholar]
  16. HershbergerK.A. MartinA.S. HirscheyM.D. Role of NAD+ and mitochondrial sirtuins in cardiac and renal diseases.Nat. Rev. Nephrol.201713421322510.1038/nrneph.2017.528163307
    [Google Scholar]
  17. WakinoS. HasegawaK. ItohH. Sirtuin and metabolic kidney disease.Kidney Int.201588469169810.1038/ki.2015.15726083654
    [Google Scholar]
  18. HebertA.S. Dittenhafer-ReedK.E. YuW. BaileyD.J. SelenE.S. BoersmaM.D. CarsonJ.J. TonelliM. BalloonA.J. HigbeeA.J. WestphallM.S. PagliariniD.J. ProllaT.A. Assadi-PorterF. RoyS. DenuJ.M. CoonJ.J. Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome.Mol. Cell201349118619910.1016/j.molcel.2012.10.02423201123
    [Google Scholar]
  19. BellE.L. GuarenteL. The SirT3 divining rod points to oxidative stress.Mol. Cell201142556156810.1016/j.molcel.2011.05.00821658599
    [Google Scholar]
  20. AhnB.H. KimH.S. SongS. LeeI.H. LiuJ. VassilopoulosA. DengC.X. FinkelT. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis.Proc. Natl. Acad. Sci. USA200810538144471445210.1073/pnas.080379010518794531
    [Google Scholar]
  21. FinleyL.W.S. HaasW. Desquiret-DumasV. WallaceD.C. ProcaccioV. GygiS.P. HaigisM.C. Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity.PLoS One201168e2329510.1371/journal.pone.002329521858060
    [Google Scholar]
  22. RahmanM. NiralaN.K. SinghA. ZhuL.J. TaguchiK. BambaT. FukusakiT. ShawL.M. LambrightD.J. AcharyaJ.K. Drosophila Sirt2/mammalian SIRT3 deacetylates ATP synthase β and regulates complex V activity.J Cell Biol.2014206228930510.1083/jcb.201404118
    [Google Scholar]
  23. MorigiM. PericoL. BenigniA. Sirtuins in renal health and disease.J. Am. Soc. Nephrol.20182971799180910.1681/ASN.201711121829712732
    [Google Scholar]
  24. WangZ YingZ Bosy-WestphalA ZhangJ SchautzB LaterW HeymsfieldS.B. MüllerM.J. Specific metabolic rates of major organs and tissues across adulthood: Evaluation by mechanistic model of resting energy expenditure.Am. J. Clin. Nutr.20109261369137710.3945/ajcn.2010.29885
    [Google Scholar]
  25. BhargavaP. SchnellmannR.G. Mitochondrial energetics in the kidney.Nat. Rev. Nephrol.2017131062964610.1038/nrneph.2017.10728804120
    [Google Scholar]
  26. HongY.A. KimJ.E. JoM. KoG.J. The role of sirtuins in kidney diseases.Int. J. Mol. Sci.20202118668610.3390/ijms2118668632932720
    [Google Scholar]
  27. KumeS UzuT. HoriikeK. Chin-KanasakiM. IsshikiK. ArakiS-I Sugimoto T. HanedaM. KashiwagiA. KoyaD. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney.J Clin Invest.201012041043105510.1172/JCI41376
    [Google Scholar]
  28. KhaderA. YangW.L. KuncewitchM. JacobA. PrinceJ.M. AsirvathamJ.R. NicastroJ. CoppaG.F. WangP. Sirtuin 1 activation stimulates mitochondrial biogenesis and attenuates renal injury after ischemia-reperfusion.Transplantation201498214815610.1097/TP.000000000000019424918615
    [Google Scholar]
  29. RodgersJ.T. LerinC. HaasW. GygiS.P. SpiegelmanB.M. PuigserverP. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1.Nature2005434702911311810.1038/nature0335415744310
    [Google Scholar]
  30. KumeS. HanedaM. KanasakiK. SugimotoT. ArakiS. IsonoM. IsshikiK. UzuT. KashiwagiA. KoyaD. Silent information regulator 2 (SIRT1) attenuates oxidative stress-induced mesangial cell apoptosis via p53 deacetylation.Free Radic. Biol. Med.200640122175218210.1016/j.freeradbiomed.2006.02.01416785031
    [Google Scholar]
  31. YoshizakiT. SchenkS. ImamuraT. BabendureJ.L. SonodaN. BaeE.J. OhD.Y. LuM. MilneJ.C. WestphalC. BandyopadhyayG. OlefskyJ.M. SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity.Am. J. Physiol. Endocrinol. Metab.20102983E419E42810.1152/ajpendo.00417.200919996381
    [Google Scholar]
  32. WangW. SunW. ChengY. XuZ. CaiL. Role of sirtuin-1 in diabetic nephropathy.J. Mol. Med. (Berl.)201997329130910.1007/s00109‑019‑01743‑730707256
    [Google Scholar]
  33. VachharajaniV.T. LiuT. WangX. HothJ.J. YozaB.K. McCallC.E. Sirtuins link inflammation and metabolism.J. Immunol. Res.2016201611010.1155/2016/816727326904696
    [Google Scholar]
  34. HuangK. HuangJ. XieX. WangS. ChenC. ShenX. LiuP. HuangH. Sirt1 resists advanced glycation end products-induced expressions of fibronectin and TGF-β1 by activating the Nrf2/ARE pathway in glomerular mesangial cells.Free Radic. Biol. Med.20136552854010.1016/j.freeradbiomed.2013.07.02923891678
    [Google Scholar]
  35. ZhongX. ZhangJ. RUNX3-activated apelin signaling inhibits cell proliferation and fibrosis in diabetic nephropathy by regulation of the SIRT1/FOXO pathway.Diabetol. Metab. Syndr.202416116710.1186/s13098‑024‑01393‑x39014438
    [Google Scholar]
  36. Asensio-LopezM.C. SassiY. SolerF. Fernandez del PalacioM.J. Pascual-FigalD. LaxA. The miRNA199a/SIRT1/P300/Yy1/sST2 signaling axis regulates adverse cardiac remodeling following MI.Sci. Rep.2021111391510.1038/s41598‑021‑82745‑933594087
    [Google Scholar]
  37. GomesP. Fleming OuteiroT. CavadasC. Emerging role of sirtuin 2 in the regulation of mammalian metabolism.Trends Pharmacol. Sci.2015361175676810.1016/j.tips.2015.08.00126538315
    [Google Scholar]
  38. MichanS. SinclairD. Sirtuins in mammals: Insights into their biological function.Biochem. J.2007404111310.1042/BJ2007014017447894
    [Google Scholar]
  39. HeM. ChiangH.H. LuoH. ZhengZ. QiaoQ. WangL. TanM. OhkuboR. MuW.C. ZhaoS. WuH. ChenD. An acetylation switch of the NLRP3 Inflammasome regulates aging-associated chronic inflammation and insulin resistance.Cell Metab.2020313580591.e510.1016/j.cmet.2020.01.00932032542
    [Google Scholar]
  40. JungY.J. LeeA.S. Nguyen-ThanhT. KimD. KangK.P. LeeS. ParkS.K. KimW. SIRT2 regulates LPS-induced renal tubular CXCL2 and CCL2 expression.J. Am. Soc. Nephrol.20152671549156010.1681/ASN.201403022625349202
    [Google Scholar]
  41. SomeyaS. YuW. HallowsW.C. XuJ. VannJ.M. LeeuwenburghC. TanokuraM. DenuJ.M. ProllaT.A. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction.Cell2010143580281210.1016/j.cell.2010.10.00221094524
    [Google Scholar]
  42. ZhangL. ChenC.L. KangP.T. JinZ. ChenY.R. Differential protein acetylation assists import of excess SOD2 into mitochondria and mediates SOD2 aggregation associated with cardiac hypertrophy in the murine SOD2-tg heart.Free Radic. Biol. Med.201710859560910.1016/j.freeradbiomed.2017.04.02228433661
    [Google Scholar]
  43. MorigiM. PericoL. RotaC. LongarettiL. ContiS. RottoliD. NovelliR. RemuzziG. BenigniA. Sirtuin 3–dependent mitochondrial dynamic improvements protect against acute kidney injury. J. Clin Invest.2015125271510.1172/JCI77632
    [Google Scholar]
  44. KitadaM. KumeS. Takeda-WatanabeA. KanasakiK. KoyaD. Sirtuins and renal diseases: Relationship with aging and diabetic nephropathy.Clin. Sci. (Lond.)2013124315316410.1042/CS2012019023075334
    [Google Scholar]
  45. TranM.T. ZsengellerZ.K. BergA.H. KhankinE.V. BhasinM.K. KimW. ClishC.B. StillmanI.E. KarumanchiS.A. RheeE.P. ParikhS.M. PGC1α drives NAD biosynthesis linking oxidative metabolism to renal protection.Nature2016531759552853210.1038/nature1718426982719
    [Google Scholar]
  46. KongX. WangR. XueY. LiuX. ZhangH. ChenY. FangF. ChangY. Sirtuin 3, a new target of PGC-1α, plays an important role in the suppression of ROS and mitochondrial biogenesis.PLoS One201057e1170710.1371/journal.pone.001170720661474
    [Google Scholar]
  47. ZhangX. RenX. ZhangQ. LiZ. MaS. BaoJ. LiZ. BaiX. ZhengL. ZhangZ. ShangS. ZhangC. WangC. CaoL. WangQ. JiJ. PGC-1α/ERRα-Sirt3 pathway regulates daergic neuronal death by directly deacetylating SOD2 and ATP synthase β.Antioxid. Redox Signal.201624631232810.1089/ars.2015.640326421366
    [Google Scholar]
  48. XuX. ZhangL. HuaF. ZhangC. ZhangC. MiX. QinN. WangJ. ZhuA. QinZ. ZhouF. FOXM1-activated SIRT4 inhibits NF-κB signaling and NLRP3 inflammasome to alleviate kidney injury and podocyte pyroptosis in diabetic nephropathy.Exp. Cell Res.2021408211286310.1016/j.yexcr.2021.11286334626587
    [Google Scholar]
  49. ShiJ.X. WangQ.J. LiH. HuangQ. SIRT4 overexpression protects against diabetic nephropathy by inhibiting podocyte apoptosis.Exp. Ther. Med.201713134234810.3892/etm.2016.393828123512
    [Google Scholar]
  50. HanY. ZhouS. CoetzeeS. ChenA. SIRT4 and its roles in energy and redox metabolism in health, disease and during exercise.Front. Physiol.201910100610.3389/fphys.2019.0100631447696
    [Google Scholar]
  51. TaoY. YuS. ChaoM. WangY. XiongJ. LaiH. SIRT4 suppresses the PI3K/Akt/NF-κB signaling pathway and attenuates HUVEC injury induced by oxLDL.Mol. Med. Rep.20191964973497910.3892/mmr.2019.1016131059091
    [Google Scholar]
  52. SinghC.K. ChhabraG. NdiayeM.A. Garcia-PetersonL.M. MackN.J. AhmadN. The role of sirtuins in antioxidant and redox signaling.Antioxid. Redox Signal.201828864366110.1089/ars.2017.729028891317
    [Google Scholar]
  53. ElkhwankyM.S. HakkolaJ. Extranuclear sirtuins and metabolic stress.Antioxid. Redox Signal.201828866267610.1089/ars.2017.727028707980
    [Google Scholar]
  54. TaoY. HuangC. HuangY. HongL. WangH. ZhouZ. QiuY. SIRT4 suppresses inflammatory responses in human umbilical vein endothelial cells.Cardiovasc. Toxicol.201515321722310.1007/s12012‑014‑9287‑625331589
    [Google Scholar]
  55. YuJ. SadhukhanS. NoriegaL.G. MoullanN. HeB. WeissR.S. LinH. SchoonjansK. AuwerxJ. Metabolic characterization of a sirt5 deficient mouse model.Sci. Rep.201331280610.1038/srep0280624076663
    [Google Scholar]
  56. TanM. PengC. AndersonK.A. ChhoyP. XieZ. DaiL. ParkJ. ChenY. HuangH. ZhangY. RoJ. WagnerG.R. GreenM.F. MadsenA.S. SchmiesingJ. PetersonB.S. XuG. IlkayevaO.R. MuehlbauerM.J. BraulkeT. MühlhausenC. BackosD.S. OlsenC.A. McGuireP.J. PletcherS.D. LombardD.B. HirscheyM.D. ZhaoY. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5.Cell Metab.201419460561710.1016/j.cmet.2014.03.01424703693
    [Google Scholar]
  57. NishidaY. RardinM.J. CarricoC. HeW. SahuA.K. GutP. NajjarR. FitchM. HellersteinM. GibsonB.W. VerdinE. SIRT5 regulates both cytosolic and mitochondrial protein malonylation with glycolysis as a major target.Mol. Cell201559232133210.1016/j.molcel.2015.05.02226073543
    [Google Scholar]
  58. ChibaT. PeasleyK.D. CargillK.R. MaringerK.V. BharathiS.S. MukherjeeE. ZhangY. HoltzA. BasistyN. YagobianS.D. SchillingB. GoetzmanE.S. Sims-LucasS. Sirtuin 5 regulates proximal tubule fatty acid oxidation to protect against AKI.J. Am. Soc. Nephrol.201930122384239810.1681/ASN.201902016331575700
    [Google Scholar]
  59. BaekJ. SasK. HeC. NairV. GiblinW. InokiA. ZhangH. YingbaoY. HodginJ. NelsonR.G. The deacylase sirtuin 5 reduces malonylation in nonmitochondrial metabolic pathways in diabetic kidney disease.J. Biol. Chem.2023299310296010.1016/j.jbc.2023.102960
    [Google Scholar]
  60. HuangW. LiuH. ZhuS. WoodsonM. LiuR. TiltonR.G. MillerJ.D. ZhangW. Sirt6 deficiency results in progression of glomerular injury in the kidney.Aging (Albany NY)2017931069108310.18632/aging.10121428351995
    [Google Scholar]
  61. CaiJ. LiuZ. HuangX. ShuS. HuX. ZhengM. TangC. LiuY. ChenG. SunL. LiuH. LiuF. ChengJ. DongZ. The deacetylase sirtuin 6 protects against kidney fibrosis by epigenetically blocking β-catenin target gene expression.Kidney Int.202097110611810.1016/j.kint.2019.08.02831787254
    [Google Scholar]
  62. LiX. LiW. ZhangZ. WangW. HuangH. SIRT6 overexpression retards renal interstitial fibrosis through targeting HIPK2 in chronic kidney disease.Front. Pharmacol.202213100716810.3389/fphar.2022.100716836172184
    [Google Scholar]
  63. HouT. TianY. CaoZ. ZhangJ. FengT. TaoW. SunH. WenH. LuX. ZhuQ. LiM. LuX. LiuB. ZhaoY. YangY. ZhuW.G. Cytoplasmic SIRT6-mediated ACSL5 deacetylation impedes nonalcoholic fatty liver disease by facilitating hepatic fatty acid oxidation.Mol. Cell2022822140994115.e910.1016/j.molcel.2022.09.01836208627
    [Google Scholar]
  64. MiyasatoY. YoshizawaT. SatoY. NakagawaT. MiyasatoY. KakizoeY. KuwabaraT. AdachiM. IanniA. BraunT. KomoharaY. MukoyamaM. YamagataK. Sirtuin 7 deficiency ameliorates Cisplatin-induced acute kidney injury through regulation of the inflammatory response.Sci. Rep.201881592710.1038/s41598‑018‑24257‑729651144
    [Google Scholar]
  65. YiX. WangH. YangY. WangH. ZhangH. GuoS. ChenJ. DuJ. TianY. MaJ. ZhangB. WuL. ShiQ. GaoT. GuoW. LiC. SIRT7 orchestrates melanoma progression by simultaneously promoting cell survival and immune evasion via UPR activation.Signal Transduct. Target. Ther.20238110710.1038/s41392‑023‑01314‑w36918544
    [Google Scholar]
  66. LiX.T. SongJ.W. ZhangZ.Z. ZhangM.W. LiangL.R. MiaoR. LiuY. ChenY.H. LiuX.Y. ZhongJ.C. Sirtuin 7 mitigates renal ferroptosis, fibrosis and injury in hypertensive mice by facilitating the KLF15/Nrf2 signaling.Free Radic. Biol. Med.2022193Pt 145947310.1016/j.freeradbiomed.2022.10.32036334846
    [Google Scholar]
  67. Sánchez-NavarroA. Martínez-RojasM.Á. Albarrán-GodinezA. Pérez-VillalvaR. AuwerxJ. de la CruzA. NoriegaL.G. RosettiF. BobadillaN.A. Sirtuin 7 deficiency reduces inflammation and tubular damage induced by an episode of acute kidney injury.Int. J. Mol. Sci.2022235257310.3390/ijms2305257335269715
    [Google Scholar]
  68. KiranS. AnwarT. KiranM. RamakrishnaG. Sirtuin 7 in cell proliferation, stress and disease: Rise of the seventh sirtuin!Cell. Signal.201527367368210.1016/j.cellsig.2014.11.02625435428
    [Google Scholar]
  69. VazquezB.N. ThackrayJ.K. SerranoL. Sirtuins and DNA damage repair: SIRT7 comes to play.Nucleus20178210711510.1080/19491034.2016.126455228406750
    [Google Scholar]
  70. LiL. ShiL. YangS. YanR. ZhangD. YangJ. HeL. LiW. YiX. SunL. LiangJ. ChengZ. ShiL. ShangY. YuW. SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability.Nat. Commun.2016711223510.1038/ncomms1223527436229
    [Google Scholar]
  71. HasegawaK. WakinoS. YoshiokaK. TatematsuS. HaraY. MinakuchiH. WashidaN. TokuyamaH. HayashiK. ItohH. Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression.Biochem. Biophys. Res. Commun.20083721515610.1016/j.bbrc.2008.04.17618485895
    [Google Scholar]
  72. WuL. ZhangY. MaX. ZhangN. QinG. The effect of resveratrol on FoxO1 expression in kidneys of diabetic nephropathy rats.Mol. Biol. Rep.20123999085909310.1007/s11033‑012‑1780‑z22733486
    [Google Scholar]
  73. TikooK. LodeaS. KarpeP.A. KumarS. Calorie restriction mimicking effects of roflumilast prevents diabetic nephropathy.Biochem. Biophys. Res. Commun.201445041581158610.1016/j.bbrc.2014.07.03925035926
    [Google Scholar]
  74. ParkH.S. LimJ.H. KimM.Y. KimY. HongY.A. ChoiS.R. ChungS. KimH.W. ChoiB.S. KimY.S. ChangY.S. ParkC.W. Resveratrol increases AdipoR1 and AdipoR2 expression in type 2 diabetic nephropathy.J. Transl. Med.201614117610.1186/s12967‑016‑0922‑927286657
    [Google Scholar]
  75. HusseinM.M.A. MahfouzM.K. Effect of resveratrol and rosuvastatin on experimental diabetic nephropathy in rats.Biomed. Pharmacother.20168268569210.1016/j.biopha.2016.06.00427470412
    [Google Scholar]
  76. XuJ. LiuL.Q. XuL.L. XingY. YeS. Metformin alleviates renal injury in diabetic rats by inducing Sirt1/FoxO1 autophagic signal axis.Clin. Exp. Pharmacol. Physiol.202047459960810.1111/1440‑1681.1322631821581
    [Google Scholar]
  77. SamadiM. AzizS.G.G. NaderiR. The effect of tropisetron on oxidative stress, SIRT1, FOXO3a, and claudin-1 in the renal tissue of STZ-induced diabetic rats.Cell Stress Chaperones202126121722710.1007/s12192‑020‑01170‑533047279
    [Google Scholar]
  78. WangF. NguyenM. QinF.X.F. TongQ. SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction.Aging Cell20076450551410.1111/j.1474‑9726.2007.00304.x17521387
    [Google Scholar]
  79. WangZ. LiY. WangY. ZhaoK. ChiY. WangB. Pyrroloquinoline quinine protects HK-2 cells against high glucose-induced oxidative stress and apoptosis through Sirt3 and PI3K/Akt/FoxO3a signaling pathway.Biochem. Biophys. Res. Commun.2019508239840410.1016/j.bbrc.2018.11.14030502093
    [Google Scholar]
  80. van der VosK.E. CofferP.J. The extending network of FOXO transcriptional target genes.Antioxid. Redox Signal.201114457959210.1089/ars.2010.341920673124
    [Google Scholar]
  81. KimM.Y. LimJ.H. YounH.H. HongY.A. YangK.S. ParkH.S. ChungS. KohS.H. ShinS.J. ChoiB.S. KimH.W. KimY.S. LeeJ.H. ChangY.S. ParkC.W. Resveratrol prevents renal lipotoxicity and inhibits mesangial cell glucotoxicity in a manner dependent on the AMPK–SIRT1–PGC1α axis in db/db mice.Diabetologia201356120421710.1007/s00125‑012‑2747‑223090186
    [Google Scholar]
  82. JiaoX. LiY. ZhangT. LiuM. ChiY. Role of Sirtuin3 in high glucose-induced apoptosis in renal tubular epithelial cells.Biochem. Biophys. Res. Commun.2016480338739310.1016/j.bbrc.2016.10.06027773814
    [Google Scholar]
  83. ZhouD. ZhouM. WangZ. FuY. JiaM. WangX. LiuM. ZhangY. SunY. LuY. TangW. YiF. PGRN acts as a novel regulator of mitochondrial homeostasis by facilitating mitophagy and mitochondrial biogenesis to prevent podocyte injury in diabetic nephropathy.Cell Death Dis.201910752410.1038/s41419‑019‑1754‑331285425
    [Google Scholar]
  84. MurtazaG. KhanA.K. RashidR. MuneerS. HasanS.M.F. ChenJ. FOXO transcriptional factors and long-term living.Oxid. Med. Cell. Longev.201720171349428910.1155/2017/349428928894507
    [Google Scholar]
  85. DaitokuH. SakamakiJ. FukamizuA. Regulation of FoxO transcription factors by acetylation and protein–protein interactions.Biochim. Biophys. Acta Mol. Cell Res.20111813111954196010.1016/j.bbamcr.2011.03.00121396404
    [Google Scholar]
  86. MarfèG. TafaniM. FioritoF. PagniniU. IovaneG. De MartinoL. Involvement of FOXO transcription factors, TRAIL-FasL/Fas, and sirtuin proteins family in canine coronavirus type II-induced apoptosis.PLoS One2011611e2731310.1371/journal.pone.002731322087287
    [Google Scholar]
  87. MottaM.C. DivechaN. LemieuxM. KamelC. ChenD. GuW. BultsmaY. McBurneyM. GuarenteL. Mammalian SIRT1 represses forkhead transcription factors.Cell2004116455156310.1016/S0092‑8674(04)00126‑614980222
    [Google Scholar]
  88. YuS.L. LeeS.I. ParkH.W. LeeS.K. KimT.H. KangJ. ParkS.R. SIRT1 suppresses in vitro decidualization of human endometrial stromal cells through the downregulation of forkhead box O1 expression.Reprod. Biol.202222310067210.1016/j.repbio.2022.10067235839571
    [Google Scholar]
  89. YaoH. YaoZ. ZhangS. ZhangW. ZhouW. Upregulation of SIRT1 inhibits H2O2-induced osteoblast apoptosis via FoxO1/β-catenin pathway.Mol. Med. Rep.20181756681669010.3892/mmr.2018.865729512706
    [Google Scholar]
  90. WangY. ZhangL. CheX. LiW. LiuZ. JiangJ. Roles of SIRT1/FoxO1/SREBP-1 in the development of progestin resistance in endometrial cancer.Arch. Gynecol. Obstet.2018298596196910.1007/s00404‑018‑4893‑330206735
    [Google Scholar]
  91. LiZ. BridgesB. OlsonJ. WeinmanS.A. The interaction between acetylation and serine-574 phosphorylation regulates the apoptotic function of FOXO3.Oncogene201736131887189810.1038/onc.2016.35927669435
    [Google Scholar]
  92. WangF. ChanC-H. ChenK. GuanX. LinH-K. TongQ. Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to Skp2-mediated FOXO3 ubiquitination and degradation.Oncogene201231121546155710.1038/onc.2011.34721841822
    [Google Scholar]
  93. LempiäinenH. HalazonetisT.D. Emerging common themes in regulation of PIKKs and PI3Ks.EMBO J.200928203067307310.1038/emboj.2009.28119779456
    [Google Scholar]
  94. SabatiniD.M. mTOR and cancer: Insights into a complex relationship.Nat. Rev. Cancer20066972973410.1038/nrc197416915295
    [Google Scholar]
  95. HaarE.V. LeeS. BandhakaviS. GriffinT.J. KimD.H. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40.Nat. Cell Biol.20079331632310.1038/ncb154717277771
    [Google Scholar]
  96. LieberthalW. LevineJ.S. The role of the mammalian target of rapamycin (mTOR) in renal disease.J. Am. Soc. Nephrol.200920122493250210.1681/ASN.200811118619875810
    [Google Scholar]
  97. FantusD. RogersN.M. GrahammerF. HuberT.B. ThomsonA.W. Roles of mTOR complexes in the kidney: Implications for renal disease and transplantation.Nat. Rev. Nephrol.2016121058760910.1038/nrneph.2016.10827477490
    [Google Scholar]
  98. InokiK MoriH WangJ SuzukiT HongS YoshidaS BlattnerS.M. IkenoueT. RüeggM.A. HallM.N. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice.J Clin Invest.20111216218110.1172/JCI44771
    [Google Scholar]
  99. LaplanteM. SabatiniD.M. mTOR signaling in growth control and disease.Cell2012149227429310.1016/j.cell.2012.03.01722500797
    [Google Scholar]
  100. MenonS. DibbleC.C. TalbottG. HoxhajG. ValvezanA.J. TakahashiH. CantleyL.C. ManningB.D. Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome.Cell2014156477178510.1016/j.cell.2013.11.04924529379
    [Google Scholar]
  101. KimE. Goraksha-HicksP. LiL. NeufeldT.P. GuanK.L. Regulation of TORC1 by Rag GTPases in nutrient response.Nat. Cell Biol.200810893594510.1038/ncb175318604198
    [Google Scholar]
  102. SancakY. PetersonT.R. ShaulY.D. LindquistR.A. ThoreenC.C. Bar-PeledL. SabatiniD.M. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1.Science200832058821496150110.1126/science.115753518497260
    [Google Scholar]
  103. Kogot-LevinA. HindenL. RiahiY. IsraeliT. TiroshB. CerasiE. MizrachiE.B. TamJ. MosenzonO. LeibowitzG. Proximal tubule mTORC1 is a central player in the pathophysiology of diabetic nephropathy and its correction by SGLT2 inhibitors.Cell Rep.202032410795410.1016/j.celrep.2020.10795432726619
    [Google Scholar]
  104. Yasuda-YamaharaM. KumeS. MaegawaH. Roles of mTOR in diabetic kidney disease.Antioxidants202110232110.3390/antiox1002032133671526
    [Google Scholar]
  105. DibbleC.C. ElisW. MenonS. QinW. KlekotaJ. AsaraJ.M. FinanP.M. KwiatkowskiD.J. MurphyL.O. ManningB.D. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1.Mol. Cell201247453554610.1016/j.molcel.2012.06.00922795129
    [Google Scholar]
  106. HuangJ. ManningB.D. The TSC1–TSC2 complex: A molecular switchboard controlling cell growth.Biochem. J.2008412217919010.1042/BJ2008028118466115
    [Google Scholar]
  107. BianC. ZhangH. GaoJ. WangY. LiJ. GuoD. WangW. SongY. WengY. RenH. SIRT6 regulates SREBP1c-induced glucolipid metabolism in liver and pancreas via the AMPKα-mTORC1 pathway.Lab. Invest.2022102547448410.1038/s41374‑021‑00715‑134923569
    [Google Scholar]
  108. LanF. CacicedoJ.M. RudermanN. IdoY. SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation.J Biol Chem.200828341276282763510.1074/jbc.M805711200
    [Google Scholar]
  109. PriceN.L. GomesA.P. LingA.J.Y. DuarteF.V. Martin-MontalvoA. NorthB.J. AgarwalB. YeL. RamadoriG. TeodoroJ.S. HubbardB.P. VarelaA.T. DavisJ.G. VaraminiB. HafnerA. MoaddelR. RoloA.P. CoppariR. PalmeiraC.M. de CaboR. BaurJ.A. SinclairD.A. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function.Cell Metab.201215567569010.1016/j.cmet.2012.04.00322560220
    [Google Scholar]
  110. CantóC. Gerhart-HinesZ. FeigeJ.N. LagougeM. NoriegaL. MilneJ.C. ElliottP.J. PuigserverP. AuwerxJ. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity.Nature200945872411056106010.1038/nature0781319262508
    [Google Scholar]
  111. AkhtarS. SiragyH.M. Pro-renin receptor suppresses mitochondrial biogenesis and function via AMPK/SIRT-1/ PGC-1α pathway in diabetic kidney.PLoS One20191412e022572810.1371/journal.pone.022572831800607
    [Google Scholar]
  112. BaoL. CaiX. ZhangZ. LiY. Grape seed procyanidin B2 ameliorates mitochondrial dysfunction and inhibits apoptosis via the AMP-activated protein kinase–silent mating type information regulation 2 homologue 1–PPARγ co-activator-1α axis in rat mesangial cells under high-dose glucosamine.Br. J. Nutr.20151131354410.1017/S000711451400347X25404010
    [Google Scholar]
  113. WengW. GeT. WangY. HeL. LiuT. WangW. ZhengZ. YuL. ZhangC. LuX. Therapeutic effects of fibroblast growth factor-21 on diabetic nephropathy and the possible mechanism in Type 1 diabetes mellitus mice.Diabetes Metab. J.202044456658010.4093/dmj.2019.008932431116
    [Google Scholar]
  114. DingD.F. YouN. WuX.M. XuJ.R. HuA.P. YeX.L. ZhuQ. JiangX.Q. MiaoH. LiuC. LuY.B. Resveratrol attenuates renal hypertrophy in early-stage diabetes by activating AMPK.Am. J. Nephrol.201031436337410.1159/00030038820332614
    [Google Scholar]
  115. CammisottoP.G. LondonoI. GingrasD. BendayanM. American Journal of Physiology Renal Physiology Control of glycogen synthase through ADIPOR1-AMPK pathway in renal distal tubules of normal and diabetic rats.Am. J. Physiol. Renal Physiol.20082944F881F88910.1152/ajprenal.00373.200718256313
    [Google Scholar]
  116. KitadaM. TakedaA. NagaiT. ItoH. KanasakiK. KoyaD. Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirt1 in diabetic Wistar fatty (fa/fa) rats: A model of type 2 diabetes.Exp. Diabetes Res.2011201111110.1155/2011/90818521949662
    [Google Scholar]
  117. FuY. SunY. WangM. HouY. HuangW. ZhouD. WangZ. YangS. TangW. ZhenJ. LiY. WangX. LiuM. ZhangY. WangB. LiuG. YuX. SunJ. ZhangC. YiF. Elevation of JAML promotes diabetic kidney disease by modulating podocyte lipid metabolism.Cell Metab.202032610521062.e810.1016/j.cmet.2020.10.01933186558
    [Google Scholar]
  118. LiF. ChenY. LiY. HuangM. ZhaoW. Geniposide alleviates diabetic nephropathy of mice through AMPK/SIRT1/NF-κB pathway.Eur. J. Pharmacol.202088617344910.1016/j.ejphar.2020.17344932758570
    [Google Scholar]
  119. CaiY.Y. ZhangH.B. FanC.X. ZengY.M. ZouS.Z. WuC.Y. WangL. FangS. LiP. XueY.M. GuanM.P. Renoprotective effects of brown adipose tissue activation in diabetic mice.J. Diabetes2019111295897010.1111/1753‑0407.1293831020790
    [Google Scholar]
  120. ZhuH. FangZ. ChenJ. YangY. GanJ. LuoL. ZhanX. PARP-1 and SIRT-1 are interacted in diabetic nephropathy by activating AMPK/PGC-1α signaling pathway.Diabetes Metab. Syndr. Obes.20211435536610.2147/DMSO.S29131433531822
    [Google Scholar]
  121. ZhuoL. FuB. BaiX. ZhangB. WuL. CuiJ. CuiS. WeiR. ChenX. CaiG. NAD blocks high glucose induced mesangial hypertrophy via activation of the sirtuins-AMPK-mTOR pathway.Cell. Physiol. Biochem.201127668169010.1159/00033007721691086
    [Google Scholar]
  122. RenH. ShaoY. WuC. MaX. LvC. WangQ. Metformin alleviates oxidative stress and enhances autophagy in diabetic kidney disease via AMPK/SIRT1-FoxO1 pathway.Mol. Cell. Endocrinol.202050011062810.1016/j.mce.2019.11062831647955
    [Google Scholar]
  123. VillenaJA New insights into PGC-1 coactivators: Redefining their role in the regulation of mitochondrial function and beyond.FEBS J2015282464767210.1111/febs.13175
    [Google Scholar]
  124. BesseicheA. RivelineJ.P. GautierJ.F. BréantB. BlondeauB. Metabolic roles of PGC-1α and its implications for type 2 diabetes.Diabetes Metab.201541534735710.1016/j.diabet.2015.02.00225753246
    [Google Scholar]
  125. JägerS. HandschinC. St-PierreJ. SpiegelmanB.M. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α.Proc. Natl. Acad. Sci. USA200710429120171202210.1073/pnas.070507010417609368
    [Google Scholar]
  126. TangF. HaoY. ZhangX. QinJ. Effect of echinacoside on kidney fibrosis by inhibition of TGF-β1/Smads signaling pathway in the db/db mice model of diabetic nephropathy.Drug Des. Devel. Ther.2017112813282610.2147/DDDT.S14380529033543
    [Google Scholar]
  127. YaoY. LiY. ZengX. YeZ. LiX. ZhangL. Losartan alleviates renal fibrosis and inhibits endothelial-to-mesenchymal transition (EMT) Under high-fat diet-induced hyperglycemia.Front. Pharmacol.20189121310.3389/fphar.2018.0121330420805
    [Google Scholar]
  128. PapadimitriouA. SilvaK.C. PeixotoE.B.M.I. BorgesC.M. Lopes de FariaJ.M. Lopes de FariaJ.B. American Journal of Physiology Renal Physiology Theobromine increases NAD + /Sirt-1 activity and protects the kidney under diabetic conditions.Am. J. Physiol. Renal Physiol.20153083F209F22510.1152/ajprenal.00252.201425411384
    [Google Scholar]
  129. MortuzaR. FengB. ChakrabartiS. SIRT 1 reduction causes renal and retinal injury in diabetes through endothelin 1 and transforming growth factor β1.J. Cell. Mol. Med.20151981857186710.1111/jcmm.1255725753689
    [Google Scholar]
  130. SunZ. MaY. ChenF. WangS. ChenB. ShiJ. miR-133b and miR-199b knockdown attenuate TGF-β1-induced epithelial to mesenchymal transition and renal fibrosis by targeting SIRT1 in diabetic nephropathy.Eur. J. Pharmacol.20188379610410.1016/j.ejphar.2018.08.02230125566
    [Google Scholar]
  131. IsonoM. ChenS. Won HongS. Carmen Iglesias-de la CruzM. ZiyadehF.N. Smad pathway is activated in the diabetic mouse kidney and Smad3 mediates TGF-β-induced fibronectin in mesangial cells.Biochem. Biophys. Res. Commun.200229651356136510.1016/S0006‑291X(02)02084‑312207925
    [Google Scholar]
  132. WolfG. SharmaK. ChenY. EricksenM. ZiyadehF.N. High glucose-induced proliferation in mesangial cells is reversed by autocrine TGF-β.Kidney Int.199242364765610.1038/ki.1992.3301357223
    [Google Scholar]
  133. HoffmanB.B. SharmaK. ZhuY. ZiyadehF.N. Transcriptional activation of transforming growth factor-β1 in mesangial cell culture by high glucose concentration.Kidney Int.19985441107111610.1046/j.1523‑1755.1998.00119.x9767526
    [Google Scholar]
  134. HanD.C. IsonoM. HoffmanB.B. ZiyadehF.N. High glucose stimulates proliferation and collagen type I synthesis in renal cortical fibroblasts: Mediation by autocrine activation of TGF-beta.J. Am. Soc. Nephrol.19991091891189910.1681/ASN.V109189110477140
    [Google Scholar]
  135. RoccoM.V. ChenY. GoldfarbS. ZiyadehF.N. Elevated glucose stimulates TGF-β gene expression and bioactivity in proximal tubule.Kidney Int.199241110711410.1038/ki.1992.141593845
    [Google Scholar]
  136. WangS. SkorczewskiJ. FengX. MeiL. Murphy-UllrichJ.E. Glucose up-regulates thrombospondin 1 gene transcription and transforming growth factor-beta activity through antagonism of cGMP-dependent protein kinase repression via upstream stimulatory factor 2.J. Biol. Chem.20042793431110.1074/jbc.M401629200
    [Google Scholar]
  137. Murphy-UllrichJ.E. SutoM.J. Thrombospondin-1 regulation of latent TGF-β activation: A therapeutic target for fibrotic disease.Matrix Biol.201868-69284310.1016/j.matbio.2017.12.00929288716
    [Google Scholar]
  138. IsonoM. MogyorósiA. HanD.C. HoffmanB.B. ZiyadehF.N. Stimulation of TGF-β type II receptor by high glucose in mouse mesangial cells and in diabetic kidney.Am. J. Physiol. Renal Physiol.20002785F830F83810.1152/ajprenal.2000.278.5.F83010807596
    [Google Scholar]
  139. JuárezP. Vilchis-LanderosM.M. Ponce-CoriaJ. MendozaV. Hernández-PandoR. BobadillaN.A. López-CasillasF. Soluble betaglycan reduces renal damage progression in db/db mice.Am. J. Physiol. Renal Physiol.20072921F321F32910.1152/ajprenal.00264.200616954341
    [Google Scholar]
  140. GerritsT. ZandbergenM. WolterbeekR. BruijnJ.A. BaeldeH.J. ScharpfeneckerM. Endoglin promotes myofibroblast differentiation and extracellular matrix production in diabetic nephropathy.Int. J. Mol. Sci.20202120771310.3390/ijms2120771333081058
    [Google Scholar]
  141. WeissA. AttisanoL. The TGFbeta superfamily signaling pathway.Wiley Interdiscip. Rev. Dev. Biol.201321476310.1002/wdev.8623799630
    [Google Scholar]
  142. MengX.M. TangP.M.K. LiJ. LanH.Y. TGF-β/Smad signaling in renal fibrosis.Front. Physiol.201568210.3389/fphys.2015.0008225852569
    [Google Scholar]
  143. RussoL.M. del ReE. BrownD. LinH.Y. Evidence for a role of transforming growth factor (TGF)-β1 in the induction of postglomerular albuminuria in diabetic nephropathy: Amelioration by soluble TGF-β type II receptor.Diabetes200756238038810.2337/db06‑101817259382
    [Google Scholar]
  144. SharmaK. JinY. GuoJ. ZiyadehF.N. Neutralization of TGF-β by anti-TGF-β antibody attenuates kidney hypertrophy and the enhanced extracellular matrix gene expression in STZ-induced diabetic mice.Diabetes199645452253010.2337/diab.45.4.5228603776
    [Google Scholar]
  145. ZiyadehF.N. HoffmanB.B. HanD.C. Iglesias-de la CruzM.C. HongS.W. IsonoM. ChenS. McGowanT.A. SharmaK. Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-β antibody in db/db diabetic mice.Proc. Natl. Acad. Sci. USA200097148015802010.1073/pnas.12005509710859350
    [Google Scholar]
  146. ChenS. Carmen Iglesias-de la CruzM. JimB. HongS.W. IsonoM. ZiyadehF.N. Reversibility of established diabetic glomerulopathy by anti-TGF-β antibodies in db/db mice.Biochem. Biophys. Res. Commun.20033001162210.1016/S0006‑291X(02)02708‑012480514
    [Google Scholar]
  147. VoelkerJ. BergP.H. SheetzM. DuffinK. ShenT. MoserB. GreeneT. BlumenthalS.S. RychlikI. YagilY. ZaouiP. LewisJ.B. Anti–TGF-β1 antibody therapy in patients with diabetic nephropathy.J. Am. Soc. Nephrol.201728395396210.1681/ASN.201511123027647855
    [Google Scholar]
  148. LiM.O. WanY.Y. FlavellR.A. T cell-produced transforming growth factor-β1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation.Immunity200726557959110.1016/j.immuni.2007.03.01417481928
    [Google Scholar]
  149. CookerL.A. PetersonD. RambowJ. RiserM.L. RiserR.E. NajmabadiF. BrigstockD. RiserB.L. American Journal of Physiology Renal Physiology TNF-α, but not IFN-γ, regulates CCN2 (CTGF), collagen type I, and proliferation in mesangial cells: possible roles in the progression of renal fibrosis.Am. J. Physiol. Renal Physiol.20072931F157F16510.1152/ajprenal.00508.200617376761
    [Google Scholar]
  150. BanesA.K. ShawS. JenkinsJ. ReddH. AmiriF. PollockD.M. MarreroM.B. Angiotensin II blockade prevents hyperglycemia-induced activation of JAK and STAT proteins in diabetic rat kidney glomeruli.Am. J. Physiol. Renal Physiol.20042864F653F65910.1152/ajprenal.00163.200314678947
    [Google Scholar]
  151. DarnellJ.E.Jr KerrM. StarkG.R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins.Science199426451641415142110.1126/science.81974558197455
    [Google Scholar]
  152. MarreroM.B. Banes-BerceliA.K. SternD.M. EatonD.C. Role of the JAK/STAT signaling pathway in diabetic nephropathy.Am. J. Physiol. Renal Physiol.20062904F762F76810.1152/ajprenal.00181.200516527921
    [Google Scholar]
  153. Donate-CorreaJ. Luis-RodríguezD. Martín-NúñezE. TaguaV.G. Hernández-CarballoC. FerriC. Rodríguez-RodríguezA.E. Mora-FernándezC. Navarro-GonzálezJ.F. Inflammatory targets in diabetic nephropathy.J. Clin. Med.20209245810.3390/jcm902045832046074
    [Google Scholar]
  154. Banes-BerceliA.K.L. KetsawatsomkronP. OgbiS. PatelB. PollockD.M. MarreroM.B. Angiotensin II and endothelin-1 augment the vascular complications of diabetes via JAK2 activation.Am. J. Physiol. Heart Circ. Physiol.20072932H1291H129910.1152/ajpheart.00181.200717526654
    [Google Scholar]
  155. Ortiz-MuñozG. Lopez-ParraV. Lopez-FrancoO. Fernandez-VizarraP. MallaviaB. FloresC. SanzA. BlancoJ. MezzanoS. OrtizA. EgidoJ. Gomez-GuerreroC. Suppressors of cytokine signaling abrogate diabetic nephropathy.J. Am. Soc. Nephrol.201021576377210.1681/ASN.200906062520185635
    [Google Scholar]
  156. BerthierC.C. ZhangH. SchinM. HengerA. NelsonR.G. YeeB. BoucherotA. NeusserM.A. CohenC.D. Carter-SuC. ArgetsingerL.S. RastaldiM.P. BrosiusF.C. KretzlerM. Enhanced expression of Janus kinase-signal transducer and activator of transcription pathway members in human diabetic nephropathy.Diabetes200958246947710.2337/db08‑132819017763
    [Google Scholar]
  157. XiaoS. YangY. LiuY.T. ZhuJ. Liraglutide regulates the kidney and liver in diabetic nephropathy rats through the miR-34a/SIRT1 pathway.J. Diabetes Res.2021202111210.1155/2021/887395633880382
    [Google Scholar]
  158. XuF. FangX. YeZ. TaoS. LiuW. SuJ. WangX. Ligustilide alleviates podocyte injury via suppressing the SIRT1/NF-κB signaling pathways in rats with diabetic nephropathy.Ann. Transl. Med.2020818115410.21037/atm‑20‑581133241003
    [Google Scholar]
  159. GaoH. WuH. Maslinic acid activates renal AMPK/SIRT1 signaling pathway and protects against diabetic nephropathy in mice.BMC Endocr. Disord.20222212510.1186/s12902‑022‑00935‑635042497
    [Google Scholar]
  160. HuangQ. ChenH. YinK. ShenY. LinK. GuoX. ZhangX. WangN. XinW. XuY. GuiD. Formononetin attenuates renal tubular injury and mitochondrial damage in diabetic nephropathy partly via regulating Sirt1/PGC-1α Pathway.Front. Pharmacol.20221390123410.3389/fphar.2022.90123435645821
    [Google Scholar]
  161. XueH. LiP. LuoY. WuC. LiuY. QinX. HuangX. SunC. Salidroside stimulates the Sirt1/PGC-1α axis and ameliorates diabetic nephropathy in mice.Phytomedicine20195424024710.1016/j.phymed.2018.10.03130668374
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037340795241202044932
Loading
/content/journals/cpps/10.2174/0113892037340795241202044932
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test