Skip to content
2000
Volume 26, Issue 2
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

Introduction

Caleosins are recognized as the key proteins found in Lipid Droplets (LDs) and are crucial for the creation, maintenance, and breakdown of LDs. Nevertheless, our understanding of caleosins remains limited within Theaceae, a prominent botanical family encompassing economically significant tea and oil tea species.

Methods

In this research, we conducted a comprehensive genome-wide exploration and examination of the caleosin family in Theaceae species with sequenced genomes. The gene number of was similar among Theaceae species. Segmental duplication was the main form of expansion in Shuchazao (SCZ), Huangdan (HD), Biyun (BY), Tieguanyin (TGY), Longjing (LJ), (Cla) and (CCH). Synteny analysis revealed one-to-more and more-to-one collinear relationships of caleosin genes among Theaceae species.

Results

Caleosins in Theaceae are categorized into either the H-family or the L-family, each exhibiting distinct motif structures and physicochemical properties. Expression analysis revealed an apparent flower-predominant expression pattern of genes in Theaceae species. In addition, most paralogous pairs displayed expression divergence.

Conclusion

This research enhanced our understanding of the lineage-specific evolution of genes in Theaceae, and is valuable for future functional analysis of this gene family in tea and oil-tea species.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037321073240828051039
2024-09-02
2025-01-22
Loading full text...

Full text loading...

References

  1. GuzhaA. WhiteheadP. IschebeckT. ChapmanK.D. Lipid droplets: Packing hydrophobic molecules within the aqueous cytoplasm.Annu. Rev. Plant Biol.202374119522310.1146/annurev‑arplant‑070122‑02175236413579
    [Google Scholar]
  2. LundquistP.K. ShivaiahK.K. Espinoza-CorralR. Lipid droplets throughout the evolutionary tree.Prog. Lipid Res.20207810102910.1016/j.plipres.2020.10102932348789
    [Google Scholar]
  3. TzenJ. CaoY. LaurentP. RatnayakeC. HuangA. Lipids, proteins, and structure of seed oil bodies from diverse species.Plant Physiol.1993101126727610.1104/pp.101.1.26712231682
    [Google Scholar]
  4. HuangA. Oleosins and oil bodies in seeds and other organs.Plant Physiol.199611041055106110.1104/pp.110.4.10558934621
    [Google Scholar]
  5. FrandsenG.I. MundyJ. TzenJ.T.C. Oil bodies and their associated proteins, oleosin and caleosin.Physiol. Plant.2001112330130710.1034/j.1399‑3054.2001.1120301.x11473685
    [Google Scholar]
  6. HuangM.D. HuangA.H.C. Bioinformatics reveal five lineages of oleosins and the mechanism of lineage evolution related to structure/function from green algae to seed plants.Plant Physiol.2015169145347010.1104/pp.15.0063426232488
    [Google Scholar]
  7. HuangA.H.C. Plant lipid droplets and their associated proteins: Potential for rapid advances.Plant Physiol.201817631894191810.1104/pp.17.0167729269574
    [Google Scholar]
  8. HananoA. BurcklenM. FlenetM. IvancichA. LouwagieM. GarinJ. BléeE. Plant seed peroxygenase is an original heme-oxygenase with an EF-hand calcium binding motif.J. Biol. Chem.200628144331403315110.1074/jbc.M60539520016956885
    [Google Scholar]
  9. CharuchindaP. Waditee-SirisatthaR. KageyamaH. YamadaD. SirisatthaS. TanakaY. MahakhantA. TakabeT. Caleosin from Chlorella vulgaris TISTR 8580 is salt-induced and heme- containing protein.Biosci. Biotechnol. Biochem.20157971119112410.1080/09168451.2015.101048025703935
    [Google Scholar]
  10. LinL.J. TaiS.S.K. PengC.C. TzenJ.T.C. Steroleosin, a sterol-binding dehydrogenase in seed oil bodies.Plant Physiol.200212841200121110.1104/pp.01098211950969
    [Google Scholar]
  11. Yamaguchi-ShinozakiK. KoizumiM. UraoS. ShinozakiK. Molecular cloning and characterization of 9 cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana: SequenceAnalysis of one cDNA clone that encodes a putative transmembrane channel protein.Plant Cell Physiol.199233321722410.1093/oxfordjournals.pcp.a078243
    [Google Scholar]
  12. BléeE. BoachonB. BurcklenM. Le GuédardM. HananoA. HeintzD. EhltingJ. HerrfurthC. FeussnerI. BessouleJ.J. The reductase activity of the Arabidopsis caleosin responsive to dessication20 mediates gibberellin-dependent flowering time, abscisic acid sensitivity, and tolerance to oxidative stress.Plant Physiol.2014166110912410.1104/pp.114.24531625056921
    [Google Scholar]
  13. HananoA. AlmousallyI. ShabanM. BleeE. A Caleosin-Like protein with peroxygenase activity mediates Aspergillus flavus development, aflatoxin accumulation, and seed infection.Appl. Environ. Microbiol.201581186129614410.1128/AEM.00867‑1526116672
    [Google Scholar]
  14. NæstedH. FrandsenG.I. JauhG.Y. Hernandez-PinzonI. NielsenH.B. MurphyD.J. RogersJ.C. MundyJ. Caleosins: Ca2+-binding proteins associated with lipid bodies.Plant Mol. Biol.200044446347610.1023/A:102656441191811197322
    [Google Scholar]
  15. PurkrtovaZ. Le BonC. KralovaB. RopersM.H. AntonM. ChardotT. Caleosin of Arabidopsis thaliana: Effect of calcium on functional and structural properties.J. Agric. Food Chem.20085623112171122410.1021/jf802305b19012406
    [Google Scholar]
  16. SongW. QinY. ZhuY. YinG. WuN. LiY. HuY. Delineation of plant caleosin residues critical for functional divergence, positive selection and coevolution.BMC Evol. Biol.201414112410.1186/1471‑2148‑14‑12424913827
    [Google Scholar]
  17. HananoA. BléeE. MurphyD.J. Caleosin/peroxygenases: multifunctional proteins in plants.Ann. Bot. (Lond.)2023131338740910.1093/aob/mcad00136656070
    [Google Scholar]
  18. PasaribuB. ChungT. ChenC.S. JiangP.L. TzenJ.T.C. Identification of steroleosin in oil bodies of pine megagametophytes.Plant Physiol. Biochem.201610117318110.1016/j.plaphy.2016.02.00826897709
    [Google Scholar]
  19. QinZ. WangT. ZhaoY. MaC. ShaoQ. Molecular machinery of lipid droplet degradation and turnover in plants.Int. J. Mol. Sci.202324221603910.3390/ijms24221603938003229
    [Google Scholar]
  20. FrandsenG. Müller-UriF. NielsenM. MundyJ. SkriverK. Novel plant Ca2+-binding protein expressed in response to abscisic acid and osmotic stress.J. Biol. Chem.1996271134334810.1074/jbc.271.1.3438550584
    [Google Scholar]
  21. LiuM.S. ChienC.T. LinT.P. Constitutive components and induced gene expression are involved in the desiccation tolerance of Selaginella tamariscina.Plant Cell Physiol.200849465366310.1093/pcp/pcn04018326542
    [Google Scholar]
  22. AubertY. VileD. PerventM. AldonD. RantyB. SimonneauT. VavasseurA. GalaudJ.P. RD20, a stress-inducible caleosin, participates in stomatal control, transpiration and drought tolerance in Arabidopsis thaliana.Plant Cell Physiol.201051121975198710.1093/pcp/pcq15520952421
    [Google Scholar]
  23. HananoA. BessouleJ.J. HeitzT. BléeE. Involvement of the caleosin/peroxygenase RD20 in the control of cell death during Arabidopsis responses to pathogens.Plant Signal. Behav.2015104e99157410.4161/15592324.2014.99157425830533
    [Google Scholar]
  24. ShamA. MoustafaK. Al-AmeriS. Al-AzzawiA. IratniR. AbuQamarS. Identification of Arabidopsis candidate genes in response to biotic and abiotic stresses using comparative microarrays.PLoS One2015105e012566610.1371/journal.pone.012566625933420
    [Google Scholar]
  25. HananoA. AlmousallyI. ShabanM. RahmanF. BleeE. MurphyD.J. Biochemical, transcriptional, and bioinformatic analysis of lipid droplets from seeds of date palm (Phoenix dactylifera L.) and their use as potent sequestration agents against the toxic pollutant, 2,3,7,8-tetrachlorinated dibenzo-p-dioxin.Front. Plant Sci.2016783610.3389/fpls.2016.0083627375673
    [Google Scholar]
  26. PasaribuB. LinI.P. ChenC.S. LuC.Y. JiangP.L. Nutrient limitation in Auxenochlorella protothecoides induces qualitative changes of fatty acid and expression of caleosin as a membrane protein associated with oil bodies.Biotechnol. Lett.201436117518010.1007/s10529‑013‑1332‑124078127
    [Google Scholar]
  27. FroissardM. D’andréaS. BoulardC. ChardotT. Heterologous expression of AtClo1, a plant oil body protein, induces lipid accumulation in yeast.FEMS Yeast Res.20099342843810.1111/j.1567‑1364.2009.00483.x19220478
    [Google Scholar]
  28. ZienkiewiczK. CastroA.J. AlchéJ.D. ZienkiewiczA. SuárezC. Rodríguez-GarcíaM.I. Identification and localization of a caleosin in olive (Olea europaea L.) pollen during in vitro germination.J. Exp. Bot.20106151537154610.1093/jxb/erq02220164143
    [Google Scholar]
  29. ZienkiewiczK. ZienkiewiczA. Rodríguez-GarcíaM.I. CastroA.J. Characterization of a caleosin expressed during olive (Olea europaea L.) pollen ontogeny.BMC Plant Biol.201111112210.1186/1471‑2229‑11‑12221884593
    [Google Scholar]
  30. HambergM. HambergG. Peroxygenase-catalyzed fatty acid epoxidation in cereal seeds (sequential oxidation of linoleic acid into 9(S),12(S),13(S)-trihydroxy-10(E)-octadecenoic acid).Plant Physiol.1996110380781510.1104/pp.110.3.80712226220
    [Google Scholar]
  31. BléeE. FlenetM. BoachonB. FauconnierM.L. A non-canonical caleosin from A. rabidopsis efficiently epoxidizes physiological unsaturated fatty acids with complete stereoselectivity.FEBS J.2012279203981399510.1111/j.1742‑4658.2012.08757.x22913587
    [Google Scholar]
  32. FuchsC SchwabW Epoxidation, hydroxylation and aromatization is catalyzed by a peroxygenase from Solanum lycopersicum.J. Mol. Catal. B Enzym.201396526010.1016/j.molcatb.2013.07.001
    [Google Scholar]
  33. MiklaszewskaM. ZienkiewiczK. Klugier-BorowskaE. RygielskiM. FeussnerI. ZienkiewiczA. CALEOSIN 1 interaction with autophagy-related protein 8 facilitates lipid droplet microautophagy in seedlings.Plant Physiol.202319342361238010.1093/plphys/kiad47137619984
    [Google Scholar]
  34. KimY.Y. JungK.W. YooK.S. JeungJ.U. ShinJ.S. A stress-responsive caleosin-like protein, AtCLO4, acts as a negative regulator of ABA responses in Arabidopsis.Plant Cell Physiol.201152587488410.1093/pcp/pcr03921471120
    [Google Scholar]
  35. BrunettiS.C. ArseneaultM.K.M. GulickP.J. The caleosin CLO7 and its role in the heterotrimeric G-protein signalling network.J. Plant Physiol.202227915384110.1016/j.jplph.2022.15384136334585
    [Google Scholar]
  36. TranA.D. ChoK. HanO. Rice peroxygenase catalyzes lipoxygenase-dependent regiospecific epoxidation of lipid peroxides in the response to abiotic stressors.Bioorg. Chem.202313110628510.1016/j.bioorg.2022.10628536450198
    [Google Scholar]
  37. RoseJ.P. KleistT.J. LöfstrandS.D. DrewB.T. SchönenbergerJ. SytsmaK.J. Phylogeny, historical biogeography, and diversification of angiosperm order Ericales suggest ancient Neotropical and East Asian connections.Mol. Phylogenet. Evol.2018122597910.1016/j.ympev.2018.01.01429410353
    [Google Scholar]
  38. ZhangZ.B. XiongT. ChenJ.H. YeF. CaoJ.J. ChenY.R. ZhaoZ.W. LuoT. Understanding the origin and evolution of tea (Camellia sinensis [L.]): Genomic advances in tea.J. Mol. Evol.202391215616810.1007/s00239‑023‑10099‑z36859501
    [Google Scholar]
  39. DrewL. The growth of tea.Nature20195667742S2S410.1038/d41586‑019‑00395‑430728512
    [Google Scholar]
  40. GongW. XiaoS. WangL. LiaoZ. ChangY. MoW. HuG. LiW. ZhaoG. ZhuH. Chromosome-level genome of Camellia lanceoleosa provides a valuable resource for understanding genome evolution and self-incompatibility.The Plant J.: For Cell Mol. Biol.20221103881898
    [Google Scholar]
  41. LinP. WangK. WangY. HuZ. YanC. HuangH. MaX. CaoY. LongW. LiuW. LiX. FanZ. LiJ. YeN. RenH. YaoX. YinH. The genome of oil-Camellia and population genomics analysis provide insights into seed oil domestication.Genome Biol.20222311410.1186/s13059‑021‑02599‑235012630
    [Google Scholar]
  42. HeM. QinC.X. WangX. DingN.Z. Plant unsaturated fatty acids: Biosynthesis and regulation.Front. Plant Sci.20201139010.3389/fpls.2020.0039032425958
    [Google Scholar]
  43. WangY. SunD. ChenH. QianL. XuP. Fatty acid composition and antioxidant activity of tea (Camellia sinensis L.) seed oil extracted by optimized supercritical carbon dioxide.Int. J. Mol. Sci.201112117708771910.3390/ijms1211770822174626
    [Google Scholar]
  44. WangX. ZengQ. del Mar ContrerasM. WangL. Profiling and quantification of phenolic compounds in Camellia seed oils: Natural tea polyphenols in vegetable oil.Food Res. Int.201710218419410.1016/j.foodres.2017.09.08929195939
    [Google Scholar]
  45. XiaE.H. ZhangH.B. ShengJ. LiK. ZhangQ.J. KimC. ZhangY. LiuY. ZhuT. LiW. HuangH. TongY. NanH. ShiC. ShiC. JiangJ.J. MaoS.Y. JiaoJ.Y. ZhangD. ZhaoY. ZhaoY.J. ZhangL.P. LiuY.L. LiuB.Y. YuY. ShaoS.F. NiD.J. EichlerE.E. GaoL.Z. The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis.Mol. Plant201710686687710.1016/j.molp.2017.04.00228473262
    [Google Scholar]
  46. ChenJ.D. ZhengC. MaJ.Q. JiangC.K. ErcisliS. YaoM.Z. ChenL. The chromosome-scale genome reveals the evolution and diversification after the recent tetraploidization event in tea plant.Hortic. Res.2020716310.1038/s41438‑020‑0288‑232377354
    [Google Scholar]
  47. WangX. FengH. ChangY. MaC. WangL. HaoX. LiA. ChengH. WangL. CuiP. JinJ. WangX. WeiK. AiC. ZhaoS. WuZ. LiY. LiuB. WangG.D. ChenL. RuanJ. YangY. Population sequencing enhances understanding of tea plant evolution.Nat. Commun.2020111444710.1038/s41467‑020‑18228‑832895382
    [Google Scholar]
  48. XiaE. TongW. HouY. AnY. ChenL. WuQ. LiuY. YuJ. LiF. LiR. LiP. ZhaoH. GeR. HuangJ. MallanoA.I. ZhangY. LiuS. DengW. SongC. ZhangZ. ZhaoJ. WeiS. ZhangZ. XiaT. WeiC. WanX. The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into its genome evolution and adaptation.Mol. Plant20201371013102610.1016/j.molp.2020.04.01032353625
    [Google Scholar]
  49. ZhangQ.J. LiW. LiK. NanH. ShiC. ZhangY. DaiZ.Y. LinY.L. YangX.L. TongY. ZhangD. LuC. FengL.Y. WangC.F. LiuX.X. HuangJ.A. JiangW.K. WangX.H. ZhangX.C. EichlerE.E. LiuZ.H. GaoL.Z. The chromosome-level reference genome of tea tree unveils recent bursts of non-autonomous LTR retrotransposons in driving genome size evolution.Mol. Plant202013793593810.1016/j.molp.2020.04.00932353626
    [Google Scholar]
  50. ZhangW. ZhangY. QiuH. GuoY. WanH. ZhangX. ScossaF. AlseekhS. ZhangQ. WangP. XuL. SchmidtM.H.W. JiaX. LiD. ZhuA. GuoF. ChenW. NiD. UsadelB. FernieA.R. WenW. Genome assembly of wild tea tree DASZ reveals pedigree and selection history of tea varieties.Nat. Commun.2020111371910.1038/s41467‑020‑17498‑632709943
    [Google Scholar]
  51. ZhangX. ChenS. ShiL. GongD. ZhangS. ZhaoQ. ZhanD. VasseurL. WangY. YuJ. LiaoZ. XuX. QiR. WangW. MaY. WangP. YeN. MaD. ShiY. WangH. MaX. KongX. LinJ. WeiL. MaY. LiR. HuG. HeH. ZhangL. MingR. WangG. TangH. YouM. Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia sinensis.Nat. Genet.20215381250125910.1038/s41588‑021‑00895‑y34267370
    [Google Scholar]
  52. ShenT. HuangB. XuM. ZhouP. NiZ. GongC. WenQ. CaoF. XuL.A. The reference genome of Camellia chekiangoleosa provides insights into Camellia evolution and tea oil biosynthesis.Hortic. Res.20229uhab08310.1093/hr/uhab08335039868
    [Google Scholar]
  53. XiaE.H. TongW. WuQ. WeiS. ZhaoJ. ZhangZ.Z. WeiC.L. WanX.C. Tea plant genomics: achievements, challenges and perspectives.Hortic. Res.202071710.1038/s41438‑019‑0225‑431908810
    [Google Scholar]
  54. ChenJ.C.F. TsaiC.C.Y. TzenJ.T.C. Cloning and secondary structure analysis of caleosin, a unique calcium-binding protein in oil bodies of plant seeds.Plant Cell Physiol.199940101079108610.1093/oxfordjournals.pcp.a02949010589521
    [Google Scholar]
  55. Ruiz-SolaM.Á. Rodríguez-ConcepciónM. Carotenoid biosynthesis in Arabidopsis: a colorful pathway.Arabidopsis Book201210e015810.1199/tab.015822582030
    [Google Scholar]
  56. ShenY. LiuM. WangL. LiZ. TaylorD.C. LiZ. ZhangM. Identification, duplication, evolution and expression analyses of caleosins in Brassica plants and Arabidopsis subspecies.Mol. Genet. Genomics2016291297198810.1007/s00438‑015‑1156‑x26786939
    [Google Scholar]
  57. RahmanF. HassanM. RosliR. AlmousallyI. HananoA. MurphyD.J. Evolutionary and genomic analysis of the caleosin/peroxygenase (CLO/PXG) gene/protein families in the Viridiplantae.PLoS One2018135e019666910.1371/journal.pone.019666929771926
    [Google Scholar]
  58. RahmanF. HassanM. HananoA. FitzpatrickD.A. McCarthyC.G.P. MurphyD.J. Evolutionary, structural and functional analysis of the caleosin/peroxygenase gene family in the Fungi.BMC Genomics201819197610.1186/s12864‑018‑5334‑130593269
    [Google Scholar]
  59. AdamsK.L. Evolution of duplicate gene expression in polyploid and hybrid plants.J. Hered.200798213614110.1093/jhered/esl06117208934
    [Google Scholar]
  60. JingP KongD JiL KongL WangY PengL XieG OsClo5 functions as a transcriptional co-repressor by interacting with OsDi19-5 to negatively affect salt stress tolerance in rice seedlings.The Plant Journal: For Cell and Molecular Biology20211053800815
    [Google Scholar]
  61. Marchler-BauerA. DerbyshireM.K. GonzalesN.R. LuS. ChitsazF. GeerL.Y. GeerR.C. HeJ. GwadzM. HurwitzD.I. LanczyckiC.J. LuF. MarchlerG.H. SongJ.S. ThankiN. WangZ. YamashitaR.A. ZhangD. ZhengC. BryantS.H. CDD: NCBI’s conserved domain database.Nucleic Acids Res.201543D1D222D22610.1093/nar/gku122125414356
    [Google Scholar]
  62. FinnR.D. CoggillP. EberhardtR.Y. EddyS.R. MistryJ. MitchellA.L. PotterS.C. PuntaM. QureshiM. Sangrador-VegasA. SalazarG.A. TateJ. BatemanA. The Pfam protein families database: towards a more sustainable future.Nucleic Acids Res.201644D1D279D28510.1093/nar/gkv134426673716
    [Google Scholar]
  63. LetunicI. DoerksT. BorkP. SMART 7: recent updates to the protein domain annotation resource.Nucleic Acids Res.201240D1D302D30510.1093/nar/gkr93122053084
    [Google Scholar]
  64. KatohK. StandleyD.M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability.Mol. Biol. Evol.201330477278010.1093/molbev/mst01023329690
    [Google Scholar]
  65. MinhB.Q. SchmidtH.A. ChernomorO. SchrempfD. WoodhamsM.D. von HaeselerA. LanfearR. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era.Mol. Biol. Evol.20203751530153410.1093/molbev/msaa01532011700
    [Google Scholar]
  66. RonquistF. HuelsenbeckJ.P. MrBayes 3: Bayesian phylogenetic inference under mixed models.Bioinformatics200319121572157410.1093/bioinformatics/btg18012912839
    [Google Scholar]
  67. HuB. JinJ. GuoA.Y. ZhangH. LuoJ. GaoG. GSDS 2.0: an upgraded gene feature visualization server.Bioinformatics20153181296129710.1093/bioinformatics/btu81725504850
    [Google Scholar]
  68. BaileyT.L. BodenM. BuskeF.A. FrithM. GrantC.E. ClementiL. RenJ. LiW.W. NobleW.S. Noble WS: MEME SUITE: Tools for motif discovery and searching.Nucleic Acids Res200937Web Server issueW202810.1093/nar/gkp335
    [Google Scholar]
  69. KrzywinskiM. ScheinJ. Birolİ. ConnorsJ. GascoyneR. HorsmanD. JonesS.J. MarraM.A. Circos: An information aesthetic for comparative genomics.Genome Res.20091991639164510.1101/gr.092759.10919541911
    [Google Scholar]
  70. WangY. TangH. DeBarryJ.D. TanX. LiJ. WangX. LeeT. JinH. MarlerB. GuoH. KissingerJ.C. PatersonA.H. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity.Nucleic Acids Res.2012407e4910.1093/nar/gkr129322217600
    [Google Scholar]
  71. ChenC. ChenH. ZhangY. ThomasH.R. FrankM.H. HeY. XiaR. TBtools: An integrative toolkit developed for interactive analyses of big biological data.Mol. Plant20201381194120210.1016/j.molp.2020.06.00932585190
    [Google Scholar]
  72. LescotM. DéhaisP. ThijsG. MarchalK. MoreauY. Van de PeerY. RouzéP. RombautsS. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences.Nucleic Acids Res.200230132532710.1093/nar/30.1.32511752327
    [Google Scholar]
  73. XiaE.H. LiF.D. TongW. LiP.H. WuQ. ZhaoH.J. GeR.H. LiR.P. LiY.Y. ZhangZ.Z. WeiC.L. WanX.C. Tea Plant Information Archive: a comprehensive genomics and bioinformatics platform for tea plant.Plant Biotechnol. J.201917101938195310.1111/pbi.1311130913342
    [Google Scholar]
  74. Adams, K.L. Evolution of duplicate gene expression in polyploid and hybrid plants. J. Hered., 2007, 98(2), 136-141.
  75. Jing, P.; Kong, D.; Ji, L.; Kong, L.; Wang, Y.; Peng, L.; Xie, G. OsClo5 functions as a transcriptional co-repressor by interacting with OsDi19-5 to negatively affect salt stress tolerance in rice seedlings. The Plant J., 2021, 105(3), 800-815.
/content/journals/cpps/10.2174/0113892037321073240828051039
Loading
/content/journals/cpps/10.2174/0113892037321073240828051039
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s web site along with the published article.


  • Article Type:
    Research Article
Keyword(s): caleosin; collinear relationship; Evolution; expansion; phylogenetic analysis; theaceae
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test