Skip to content
2000
Volume 19, Issue 25
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Fuel sensors such as glucose, insulin or leptin, are known to be directly involved in the regulation of fertility at each level of the hypothalamic-pituitary-gonadal axis. The discovery of the peroxisome proliferator-activated receptor (PPAR) family of transcription factors has revealed the link between lipid/glucose availability and long-term metabolic adaptation. By binding to specific regions of DNA in heterodimers with the retinoid X receptors (RXRs), the members of the PPAR family (α, β/δ, γ) are able to regulate the gene expressions of several key regulators of energy homeostasis including several glucose regulators (glucose transporters, insulin receptor, substrate insulin receptor, etc), and also metabolic and endocrine pathways like lipogenesis, steroidogenesis, ovulation, oocyte maturation, maintenance of the corpus luteum, nitric oxide system, several proteases and plasminogen activator among others. All the three PPAR isoforms are expressed in different tissues of the female reproductive tract and regulate gametogenesis, ovulation, corpus luteum regression and the implantation process among others. The present review discusses the mechanisms involved in PPAR activation focusing on endogenous and synthetic ligands of PPAR not only in physiological but also in pathological conditions (such as polycystic ovary syndrome, pathologies of implantation process, chronic anovulation, etc).

Loading

Article metrics loading...

/content/journals/cpd/10.2174/1381612811319250010
2013-08-01
2025-05-04
Loading full text...

Full text loading...

/content/journals/cpd/10.2174/1381612811319250010
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test