Skip to content
2000
image of Network Pharmacology, Molecular Docking, Molecular Dynamics to Explore the Mechanism of Danggui Shaoyao Powder for Hepatic Encephalopathy

Abstract

Background

Patients with hepatic encephalopathy (HE) have many triggers and a high mortality rate. The protective effect of existing therapeutic drugs on the liver is weak. We found that Danggui Shaoyao Powder can improve the symptoms of HE and may have a better liver protection effect. And the mechanism of it is unclear.

Objective

The research explores the mechanism of Danggui Shaoyao Powder for the treatment of HE through network pharmacology, molecular docking and molecular dynamics.

Methods

Targets of Danggui Shaoyao Powder were screened from Traditional Chinese Medicine System Pharmacology Platform (TCMSP), SwissTargetPrediction, and Uniport. GeneCards was used to gain targets of HE. Further, core targets and ingredients were screened by protein-protein interaction network (PPI) and herbs-compounds-targets network. Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were completed to screen relative sites and signaling pathways. Molecular docking and dynamics were used to show the stability of ligand-receptor complexes.

Results

IL6, SRC and kaempferol, beta-sitosterol were screened as the top two core targets and ingredients. Dendrites, dendritic trees, and membrane sides were defined as the main sites of action. Core signaling pathways were screened such as: PI3K-Akt and MAPK. Molecular docking shows well-defined binding sites and the stability of the binding is demonstrated by molecular dynamics.

Conclusion

Through this study, Danggui Shaoyao Powder may act on IL6, SRC, and other targets through ingredients such as kaempferol and beat-sitosterol and regulate signaling pathways such as PI3K-Akt, MAPK and NF-κB to the treatment of HE.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128363445241218062155
2025-01-20
2025-04-02
Loading full text...

Full text loading...

References

  1. Huang D.Q. Terrault N.A. Tacke F. Gluud L.L. Arrese M. Bugianesi E. Loomba R. Global epidemiology of cirrhosis: Aetiology, trends and predictions. Nat. Rev. Gastroenterol. Hepatol. 2023 20 6 388 398 10.1038/s41575‑023‑00759‑2 36977794
    [Google Scholar]
  2. Tasnim S Hazam R Dave D Reversible decerebrate posture in hepatic encephalopathy: Case report and literature review. Cureus 2022 14 2 e21960 10.7759/cureus.219602
    [Google Scholar]
  3. Mansour S.Z. El-Marakby S.M. Moawed F.S.M. Ameliorative effects of rutin on hepatic encephalopathy-induced by thioacetamide or gamma irradiation. J. Photochem. Photobiol. B 2017 172 20 27 10.1016/j.jphotobiol.2017.05.005 28505498
    [Google Scholar]
  4. Vaquero J. Polson J. Chung C. Helenowski I. Schiodt F.V. Reisch J. Lee W.M. Blei A.T. Infection and the progression of hepatic encephalopathy in acute liver failure. Gastroenterology 2003 125 3 755 764 10.1016/S0016‑5085(03)01051‑5 12949721
    [Google Scholar]
  5. Klintman D. Li X. Santen S. Schramm R. Jeppsson B. Thorlacius H. p38 mitogen-activated protein kinase-dependent chemokine production, leukocyte recruitment, and hepatocellular apoptosis in endotoxemic liver injury. Ann. Surg. 2005 242 6 830 839 10.1097/01.sla.0000189132.86878.f7 16327493
    [Google Scholar]
  6. Corbalán R. Hernández-Viadel M. Llansola M. Montoliu C. Felipo V. Chronic hyperammonemia alters protein phosphorylation and glutamate receptor-associated signal transduction in brain. Neurochem. Int. 2002 41 2-3 103 108 10.1016/S0197‑0186(02)00030‑X 12020610
    [Google Scholar]
  7. Chen L. Zhang L. Hua H. Liu L. Mao Y. Wang R. Interactions between toll‐like receptors signaling pathway and gut microbiota in host homeostasis. Immun. Inflamm. Dis. 2024 12 7 e1356 10.1002/iid3.1356 39073297
    [Google Scholar]
  8. Hepatic encephalopathy in chronic liver disease: 2014 practice guideline by the European association for the study of the liver and the American association for the study of liver diseases. J. Hepatol. 2014 61 3 642 659 10.1016/j.jhep.2014.05.042 25015420
    [Google Scholar]
  9. Vilstrup H. Amodio P. Bajaj J. Cordoba J. Ferenci P. Mullen K.D. Weissenborn K. Wong P. Hepatic encephalopathy in chronic liver disease: 2014 Practice guideline by the American Association for the study of liver diseases and the European Association for the study of the liver. Hepatology 2014 60 2 715 735 10.1002/hep.27210 25042402
    [Google Scholar]
  10. Rahimi R.S. Brown K.A. Flamm S.L. Brown R.S. Jr Overt hepatic encephalopathy: Current pharmacologic treatments and improving clinical outcomes. Am. J. Med. 2021 134 11 1330 1338 10.1016/j.amjmed.2021.06.007 34242619
    [Google Scholar]
  11. Kurtz C.B. Millet Y.A. Puurunen M.K. Perreault M. Charbonneau M.R. Isabella V.M. Kotula J.W. Antipov E. Dagon Y. Denney W.S. Wagner D.A. West K.A. Degar A.J. Brennan A.M. Miller P.F. An engineered E. coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans. Sci. Transl. Med. 2019 11 475 eaau7975 10.1126/scitranslmed.aau7975 30651324
    [Google Scholar]
  12. Yupei L. Tingshuai W. Xiaoping L. Research progress of TCM improving neuroinflammation and prevent hepatic encephalopathy by regulating NF-κB signaling pathway. China J. Chin. Med. 2023 38 08 1606 1613
    [Google Scholar]
  13. Wan L. Jiang J.G. Protective effects of plant-derived flavonoids on hepatic injury. J. Funct. Foods 2018 44 283 291 10.1016/j.jff.2018.03.015
    [Google Scholar]
  14. Xu G.B. Xiao Y.H. Zhang Q.Y. Zhou M. Liao S.G. Hepatoprotective natural triterpenoids. Eur. J. Med. Chem. 2018 145 691 716 10.1016/j.ejmech.2018.01.011 29353722
    [Google Scholar]
  15. Li N. Yu Y. Cui X. Liu Q. Xiong H. High‐throughput UPLC‐Q‐TOF‐MS/MS coupled with multivariable data processing approach for the rapid screening and characterization of chemical constituents and potential bioactive compounds from Danggui Shaoyao San. Biomed. Chromatogr. 2022 36 9 e5420 10.1002/bmc.5420 35638160
    [Google Scholar]
  16. Wu Q. Chen Y. Gu Y. Fang S. Li W. Wang Q. Fang J. Cai C. Systems pharmacology-based approach to investigate the mechanisms of Danggui-Shaoyao-san prescription for treatment of Alzheimer’s disease. BMC Complement. Med. Ther. 2020 20 1 282 10.1186/s12906‑020‑03066‑4 32948180
    [Google Scholar]
  17. Liu T. Zhang L. Joo D. Sun S-C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017 2 1
    [Google Scholar]
  18. Yin J. Lu J. Lei P. He M. Huang S. Lv J. Zhu Y. Liu Z. Jiang M. Danggui-Shaoyao-San improves gut microbia dysbiosis and hepatic lipid homeostasis in fructose-fed rats. Front. Pharmacol. 2021 12 671708 10.3389/fphar.2021.671708 34326769
    [Google Scholar]
  19. Zhao Y. Zhao M. Wang Z. Zhao C. Zhang Y. Wang M. Danggui Shaoyao San: Chemical characterization and inhibition of oxidative stress and inflammation to treat CCl4-induced hepatic fibrosis. J. Ethnopharmacol. 2024 318 116870 10.1016/j.jep.2023.116870
    [Google Scholar]
  20. Wang C-Y. Xu F. Wang M-Y. Xuan Z.H. Hu S.Y. Zhou Y. Lu J. Study on intervention effect of Danggui Shaoyao San on rats with cirrhotic ascites. J. Chin materia medica. 2013 38 6 871 874 23717970
    [Google Scholar]
  21. Noor F. Asif M. Ashfaq U.A. Qasim M. Tahir ul Qamar M. Machine learning for synergistic network pharmacology: A comprehensive overview. Brief. Bioinform. 2023 24 3 bbad120 10.1093/bib/bbad120 37031957
    [Google Scholar]
  22. Liu Y. Li X. Chen C. Ding N. Ma S. Yang M. Exploration of compatibility rules and discovery of active ingredients in TCM formulas by network pharmacology. Chin. Herb. Med. 2024 16 4 572 588 10.1016/j.chmed.2023.09.008
    [Google Scholar]
  23. Ru J. Li P. Wang J. Zhou W. Li B. Huang C. Li P. Guo Z. Tao W. Yang Y. Xu X. Li Y. Wang Y. Yang L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014 6 1 13 10.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  24. Gfeller D. Grosdidier A. Wirth M. Daina A. Michielin O. Zoete V. Swiss target prediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Res. 2014 42 W1 W32 W38 10.1093/nar/gku293 24792161
    [Google Scholar]
  25. Safran M. Chalifa-Caspi V. Shmueli O. Olender T. Lapidot M. Rosen N. Shmoish M. Peter Y. Glusman G. Feldmesser E. Adato A. Peter I. Khen M. Atarot T. Groner Y. Lancet D. Human gene-centric databases at the Weizmann Institute of Science: GeneCards, UDB, CroW 21 and HORDE. Nucleic Acids Res. 2003 31 1 142 146 10.1093/nar/gkg050 12519968
    [Google Scholar]
  26. Safran M. Dalah I. Alexander J. Rosen N. Iny Stein T. Shmoish M. Nativ N. Bahir I. Doniger T. Krug H. Sirota-Madi A. Olender T. Golan Y. Stelzer G. Harel A. Lancet D. GeneCards version 3: The human gene integrator. Database (Oxford) 2010 2010 0 baq020 10.1093/database/baq020 20689021
    [Google Scholar]
  27. Szklarczyk D. Gable A.L. Nastou K.C. Lyon D. Kirsch R. Pyysalo S. Doncheva N.T. Legeay M. Fang T. Bork P. Jensen L.J. von Mering C. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021 49 D1 D605 D612 10.1093/nar/gkaa1074 33237311
    [Google Scholar]
  28. Doncheva N.T. Morris J.H. Gorodkin J. Jensen L.J. Cytoscape string app: Network analysis and visualization of proteomics data. J. Proteome Res. 2019 18 2 623 632 10.1021/acs.jproteome.8b00702 30450911
    [Google Scholar]
  29. Zhou Y. Zhou B. Pache L. Chang M. Khodabakhshi A.H. Tanaseichuk O. Benner C. Chanda S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019 10 1 1523 10.1038/s41467‑019‑09234‑6 30944313
    [Google Scholar]
  30. Yuan S. Chan H.C.S. Hu Z. Using PyMOL as a platform for computational drug design. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2017 7 2 e1298 10.1002/wcms.1298
    [Google Scholar]
  31. Fang C. Luo J. Fu S. The active mechanism of Caryophylliti Flos- Kaki Calyx on esophageal cancer based on network pharmacology and molecular docking. J. Tradit. Chin. Med. Sci. 2020 31 3 315 323
    [Google Scholar]
  32. Van Der Spoel D. Lindahl E. Hess B. Groenhof G. Mark A.E. Berendsen H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005 26 16 1701 1718 10.1002/jcc.20291 16211538
    [Google Scholar]
  33. Berendsen H.J.C. van der Spoel D. van Drunen R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 1995 91 1-3 43 56 10.1016/0010‑4655(95)00042‑E
    [Google Scholar]
  34. Lindahl E. Hess B. van der Spoel D. GROMACS 3.0: A package for molecular simulation and trajectory analysis. J. Mol. Model. 2001 7 8 306 317 10.1007/s008940100045
    [Google Scholar]
  35. Hess B. Kutzner C. van der Spoel D. Lindahl E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 2008 4 3 435 447 10.1021/ct700301q 26620784
    [Google Scholar]
  36. Pronk S. Páll S. Schulz R. Larsson P. Bjelkmar P. Apostolov R. Shirts M.R. Smith J.C. Kasson P.M. van der Spoel D. Hess B. Lindahl E. GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 2013 29 7 845 854 10.1093/bioinformatics/btt055 23407358
    [Google Scholar]
  37. Pall S Abraham MJ Kutzner C Hess B Lindahl E Tackling exascale software challenges in molecular dynamics simulations with GROMACS. Solving Software Challenges for Exascale: International Conference on Exascale Applications and Software, EASC 2014 Stockholm, Sweden, 2015, pp. 3-2 10.1007/978‑3‑319‑15976‑8_1
    [Google Scholar]
  38. Abraham M.J. Murtola T. Schulz R. Páll S. Smith J.C. Hess B. Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015 1-2 19 25 10.1016/j.softx.2015.06.001
    [Google Scholar]
  39. Kim S. Lee J. Jo S. Brooks C.L. III Lee H.S. Im W. CHARMM-GUI ligand reader and modeler for CHARMM force field generation of small molecules. J. Comput. Chem. 2017 38 21 1879 1886 10.1002/jcc.24829 28497616
    [Google Scholar]
  40. Miyamoto S. Kollman P.A. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 1992 13 8 952 962 10.1002/jcc.540130805
    [Google Scholar]
  41. Essmann U. Perera L. Berkowitz M.L. Darden T. Lee H. Pedersen L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995 103 19 8577 8593 10.1063/1.470117
    [Google Scholar]
  42. Hess B. Bekker H. Berendsen H.J.C. Fraaije J.G.E.M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997 18 12 1463 1472 10.1002/(SICI)1096‑987X(199709)18:12<1463::AID‑JCC4>3.0.CO;2‑H
    [Google Scholar]
  43. Lanka G. Begum D. Banerjee S. Adhikari N. P Y. Ghosh B. Pharmacophore-based virtual screening, 3D QSAR, Docking, ADMET, and MD simulation studies: An in silico perspective for the identification of new potential HDAC3 inhibitors. Comput. Biol. Med. 2023 166 107481 10.1016/j.compbiomed.2023.107481 37741229
    [Google Scholar]
  44. Banerjee S. Jana S. Jha T. Ghosh B. Adhikari N. An assessment of crucial structural contributors of HDAC6 inhibitors through fragment-based non-linear pattern recognition and molecular dynamics simulation approaches. Comput. Biol. Chem. 2024 110 108051 10.1016/j.compbiolchem.2024.108051 38520883
    [Google Scholar]
  45. Suvarna E. Setlur A.S. K C. M S. Niranjan V. Computational molecular perspectives on novel carbazole derivative as an anti-cancer molecule against CDK1 of breast and colorectal cancers via gene expression studies, novel two-way docking strategies, molecular mechanics and dynamics. Comput. Biol. Chem. 2024 108 107979 10.1016/j.compbiolchem.2023.107979 37989072
    [Google Scholar]
  46. Singh A. Munshi S. Raghavan V. Effect of external electric field stress on gliadin protein conformation. Proteomes 2013 1 2 25 39 10.3390/proteomes1020025 28250397
    [Google Scholar]
  47. Srivastava H.K. Sastry G.N. Efficient estimation of MMGBSA-based BEs for DNA and aromatic furan amidino derivatives. J. Biomol. Struct. Dyn. 2013 31 5 522 537 10.1080/07391102.2012.703071 22877232
    [Google Scholar]
  48. Golyshev V.M. Pyshnyi D.V. Lomzov A.A. Calculation of energy for RNA/RNA and DNA/RNA duplex formation by molecular dynamics simulation. Mol. Biol. (Mosk.) 2021 55 6 1030 1044 34837707
    [Google Scholar]
  49. Jana S. Banerjee S. Baidya S.K. A combined ligand-based and structure-based <i>in silico</i> molecular modeling approach to pinpoint the key structural attributes of hydroxamate derivatives as promising meprin β inhibitors. J. Biomol. Struct. Dyn. 2023 38165455
    [Google Scholar]
  50. Baidya S.K. Banerjee S. Ghosh B. Jha T. Adhikari N. Pinpointing prime structural attributes of potential MMP-2 inhibitors comprising alkyl/arylsulfonyl pyrrolidine scaffold: A ligand-based molecular modelling approach validated by molecular dynamics simulation analysis. SAR QSAR Environ. Res. 2024 35 8 665 692 10.1080/1062936X.2024.2389822 39193767
    [Google Scholar]
  51. Papaleo E. Mereghetti P. Fantucci P. Grandori R. De Gioia L. Free-energy landscape, principal component analysis, and structural clustering to identify representative conformations from molecular dynamics simulations: The myoglobin case. J. Mol. Graph. Model. 2009 27 8 889 899 10.1016/j.jmgm.2009.01.006 19264523
    [Google Scholar]
  52. Raghavan S.S. Iqbal S. Ayyadurai N. Gunasekaran K. Insights in the structural understanding of amyloidogenicity and mutation-led conformational dynamics of amyloid beta (Aβ) through molecular dynamics simulations and principal component analysis. J. Biomol. Struct. Dyn. 2022 40 12 5577 5587 10.1080/07391102.2021.1871955 33438527
    [Google Scholar]
  53. Fan CZ Class of kNN-Type entropy estimators: Algorithm, convergence, and application to molecular modeling [Thesis] University of California San Diego 2021
    [Google Scholar]
  54. Baidya S.K. Banerjee S. Ghosh B. Jha T. Adhikari N. Assessing structural insights into in-house arylsulfonyl L-(+) glutamine MMP-2 inhibitors as promising anticancer agents through structure-based computational modelling approaches. SAR QSAR Environ. Res. 2023 34 10 805 830 10.1080/1062936X.2023.2261842 37850742
    [Google Scholar]
  55. Daina A. Michielin O. Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017 7 1 42717 10.1038/srep42717 28256516
    [Google Scholar]
  56. Banerjee P. Eckert A.O. Schrey A.K. Preissner R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018 46 W1 W257 W263 10.1093/nar/gky318 29718510
    [Google Scholar]
  57. Amin S. Adhikari N. Agrawal R. Jha T. Gayen S. Possible binding mode analysis of pyrazolo-triazole hybrids as potential anticancer agents through validated molecular docking and 3D-QSAR modeling approaches. Lett. Drug Des. Discov. 2017 14 5 515 527 10.2174/1570180813666160916153017
    [Google Scholar]
  58. Clark M. Cramer R.D. III Van Opdenbosch N. Validation of the general purpose tripos 5.2 force field. J. Comput. Chem. 1989 10 8 982 1012 10.1002/jcc.540100804
    [Google Scholar]
  59. Laskowski R.A. Swindells M.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 2011 51 10 2778 2786 10.1021/ci200227u 21919503
    [Google Scholar]
  60. Prašnikar E. Ljubič M. Perdih A. Borišek J. Machine learning heralding a new development phase in molecular dynamics simulations. Artif. Intell. Rev. 2024 57 4 102 10.1007/s10462‑024‑10731‑4
    [Google Scholar]
  61. Šponer J. Krepl M. Banáš P. Kührová P. Zgarbová M. Jurečka P. Havrila M. Otyepka M. How to understand atomistic molecular dynamics simulations of RNA and protein– RNA complexes? Wiley Interdiscip. Rev. RNA 2017 8 3 e1405 10.1002/wrna.1405 27863061
    [Google Scholar]
  62. Kollman P.A. Massova I. Reyes C. Kuhn B. Huo S. Chong L. Lee M. Lee T. Duan Y. Wang W. Donini O. Cieplak P. Srinivasan J. Case D.A. Cheatham T.E. III Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc. Chem. Res. 2000 33 12 889 897 10.1021/ar000033j 11123888
    [Google Scholar]
  63. Genheden S. Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov. 2015 10 5 449 461 10.1517/17460441.2015.1032936 25835573
    [Google Scholar]
  64. Tachibana T. Kitamura S. Kato M. Mitsui T. Shirasaka Y. Yamashita S. Sugiyama Y. Model analysis of the concentration-dependent permeability of P-gp substrates. Pharm. Res. 2010 27 3 442 446 10.1007/s11095‑009‑0026‑9 20135207
    [Google Scholar]
  65. Saha S. Buttari B. Profumo E. Saso L. Macrotyloma uniflorum extract counteracts oxidative imbalance induced in vitro by sodium oxalate in the rat kidney: In silico prediction of quercetin and kaempferol superiority among fitocomponents J. Biol. Regul. Homeost. Agents 2023 37 7 3929 3940
    [Google Scholar]
  66. Koukouritaki S.B. Manro J.R. Marsh S.A. Stevens J.C. Rettie A.E. McCarver D.G. Hines R.N. Developmental expression of human hepatic CYP2C9 and CYP2C19. J. Pharmacol. Exp. Ther. 2004 308 3 965 974 10.1124/jpet.103.060137 14634042
    [Google Scholar]
  67. Kibble H. Shawcross D.L. The assessment and management of cirrhotic patients with encephalopathy. United European Gastroenterol. J. 2024 12 2 187 193 10.1002/ueg2.12530 38180440
    [Google Scholar]
  68. Zhang C. Wei L. Wang J. Song W. Protective effects of modified Danggui Shaoyao San on con a-induced immunological liver injury in mice. Pharmacol. Clinic. Chin. Materia. Medica. 2019 35 6 11 15
    [Google Scholar]
  69. Kang S. Tanaka T. Narazaki M. Kishimoto T. Targeting interleukin-6 signaling in clinic. Immunity 2019 50 4 1007 1023 10.1016/j.immuni.2019.03.026 30995492
    [Google Scholar]
  70. Shriki A. Lanton T. Sonnenblick A. Levkovitch-Siany O. Eidelshtein D. Abramovitch R. Rosenberg N. Pappo O. Elgavish S. Nevo Y. Safadi R. Peled A. Rose-John S. Galun E. Axelrod J.H. Multiple roles of IL6 in hepatic injury, steatosis, and senescence aggregate to suppress tumorigenesis. Cancer Res. 2021 81 18 4766 4777 10.1158/0008‑5472.CAN‑21‑0321 34117031
    [Google Scholar]
  71. Chou C.C. Hua K.T. Chen M.W. Wu C.J. Hsu C.H. Wang J.T. Hsiao M. Wei L.H. Discovery and characterization of a monoclonal antibody targeting a conformational epitope of IL-6/IL-6Rα to inhibit IL-6/ IL-6Rα /gp130 hexameric signaling complex formation. MAbs 2022 14 1 2029675 10.1080/19420862.2022.2029675 35133941
    [Google Scholar]
  72. Casella G. Garzetti L. Gatta A.T. Finardi A. Maiorino C. Ruffini F. Martino G. Muzio L. Furlan R. IL4 induces IL6-producing M2 macrophages associated to inhibition of neuroinflammation in vitro and in vivo. J. Neuroinflammation 2016 13 1 139 10.1186/s12974‑016‑0596‑5 27266518
    [Google Scholar]
  73. Chesworth R. Gamage R. Ullah F. Sonego S. Millington C. Fernandez A. Liang H. Karl T. Münch G. Niedermayer G. Gyengesi E. Spatial memory and microglia activation in a mouse model of chronic neuroinflammation and the anti-inflammatory effects of apigenin. Front. Neurosci. 2021 15 699329 10.3389/fnins.2021.699329 34393713
    [Google Scholar]
  74. Sancho-Alonso M. Arenas Y.M. Izquierdo-Altarejos P. Martinez-Garcia M. Llansola M. Felipo V. Enhanced activation of the S1PR2-IL-1β-Src-BDNF-TrkB pathway mediates neuroinflammation in the hippocampus and cognitive impairment in hyperammonemic rats. Int. J. Mol. Sci. 2023 24 24 17251 10.3390/ijms242417251 38139078
    [Google Scholar]
  75. Jia G. Wang R. Yue Y. Dai H. Activation of protein kinase cδ contributes to the induction of Src/EGF receptor/ERK signaling in ammonia-treated astrocytes. J. Mol. Neurosci. 2020 70 7 1110 1119 10.1007/s12031‑020‑01517‑8 32125625
    [Google Scholar]
  76. Huang Y. Wang Z.L. He Y. Ye L.M. Guo W.Q. Zhang J.J. Jiawei Taohe Chengqi decoction attenuates hepatic fibrosis by preventing activation of HSCs through regulating Src/ERK/Smad3 signal pathway. J. Ethnopharmacol. 2023 305 116059 10.1016/j.jep.2022.116059 36549368
    [Google Scholar]
  77. Brown R.B. Dysregulated phosphate metabolism in autism spectrum disorder: Associations and insights for future research. Expert Rev. Mol. Med. 2023 25 e20 10.1017/erm.2023.15 37309057
    [Google Scholar]
  78. Chu E. Mychasiuk R. Hibbs M.L. Semple B.D. Dysregulated phosphoinositide 3-kinase signaling in microglia: Shaping chronic neuroinflammation. J. Neuroinflammation 2021 18 1 276 10.1186/s12974‑021‑02325‑6 34838047
    [Google Scholar]
  79. Yang Y. Jia X. Qu M. Yang X. Fang Y. Ying X. Zhang M. Wei J. Pan Y. Exploring the potential of treating chronic liver disease targeting the PI3K/Akt pathway and polarization mechanism of macrophages. Heliyon 2023 9 6 e17116 10.1016/j.heliyon.2023.e17116 37484431
    [Google Scholar]
  80. Min J. Zheng H. Xia H. Tian X. Liang M. Zhang J. Huang W. Ruxolitinib attenuates microglial inflammatory response by inhibiting NF-κB/MAPK signaling pathway. Eur. J. Pharmacol. 2024 968 176403 10.1016/j.ejphar.2024.176403 38354846
    [Google Scholar]
  81. Shu M. Huang D. Hung Z. Hu X. Zhang S. Inhibition of MAPK and NF-κB signaling pathways alleviate carbon tetrachloride (CCl4)-induced liver fibrosis in Toll-like receptor 5 (TLR5) deficiency mice. Biochem. Biophys. Res. Commun. 2016 471 1 233 239 10.1016/j.bbrc.2016.01.119 26845355
    [Google Scholar]
  82. Arenas Y.M. López-Gramaje A. Montoliu C. Llansola M. Felipo V. Increased levels and activation of the IL-17 receptor in microglia contribute to enhanced neuroinflammation in cerebellum of hyperammonemic rats. Biol. Res. 2024 57 1 18 10.1186/s40659‑024‑00504‑2 38671534
    [Google Scholar]
  83. Shawcross D.L. Wright G.A.K. Stadlbauer V. Hodges S.J. Davies N.A. Wheeler-Jones C. Pitsillides A.A. Jalan R. Ammonia impairs neutrophil phagocytic function in liver disease. Hepatology 2008 48 4 1202 1212 10.1002/hep.22474 18697192
    [Google Scholar]
  84. Arenas Y.M. Felipo V. Sustained Hyperammonemia activates NF-κB in purkinje neurons through activation of the TrkB-PI3K-AKT pathway by microglia-derived BDNF in a rat model of minimal hepatic encephalopathy. Mol. Neurobiol. 2023 60 6 3071 3085 10.1007/s12035‑023‑03264‑4 36790604
    [Google Scholar]
  85. Nezhad Salari A.M. Rasoulizadeh Z. Shabgah A.G. Vakili-Ghartavol R. Sargazi G. Gholizadeh Navashenaq J. Exploring the mechanisms of kaempferol in neuroprotection: Implications for neurological disorders. Cell Biochem. Funct. 2024 42 2 e3964 10.1002/cbf.3964 38439154
    [Google Scholar]
  86. Lee C. Yoon S. Moon J.O. Kaempferol suppresses carbon tetrachloride-induced liver damage in rats via the MAPKs/NF-κB and AMPK/Nrf2 signaling pathways. Int. J. Mol. Sci. 2023 24 8 6900 10.3390/ijms24086900
    [Google Scholar]
  87. Campbell J.S. Argast G.M. Yuen S.Y. Hayes B. Fausto N. Inactivation of p38 MAPK during liver regeneration. Int. J. Biochem. Cell Biol. 2011 43 2 180 188 10.1016/j.biocel.2010.08.002 20708092
    [Google Scholar]
  88. Rajendran P. Ammar R.B. Al-Saeedi F.J. Mohamed M.E. ElNaggar M.A. Al-Ramadan S.Y. Bekhet G.M. Soliman A.M. Kaempferol inhibits zearalenone-induced oxidative stress and apoptosis via the PI3K/Akt-mediated Nrf2 signaling pathway: In vitro and in vivo studies. Int. J. Mol. Sci. 2020 22 1 217 10.3390/ijms22010217 33379332
    [Google Scholar]
  89. Liu Z. Yao X. Sun B. Jiang W. Liao C. Dai X. Chen Y. Chen J. Ding R. Pretreatment with kaempferol attenuates microglia-mediate neuroinflammation by inhibiting MAPKs–NF–κB signaling pathway and pyroptosis after secondary spinal cord injury. Free Radic. Biol. Med. 2021 168 142 154 10.1016/j.freeradbiomed.2021.03.037 33823244
    [Google Scholar]
  90. Miszczuk E. Bajguz A. Kiraga Ł. Crowley K. Chłopecka M. Phytosterols and the digestive system: A review study from insights into their potential health benefits and safety. Pharmaceuticals 2024 17 5 557 10.3390/ph17050557 38794127
    [Google Scholar]
  91. Zheng Y. Zhao J. Chang S. Zhuang Z. Waimei S. Li X. Chen Z. Jing B. Zhang D. Zhao G. β-Sitosterol alleviates neuropathic pain by affect microglia polarization through inhibiting TLR4/NF-κB signaling pathway. J. Neuroimmune Pharmacol. 2023 18 4 690 703 10.1007/s11481‑023‑10091‑w 38041701
    [Google Scholar]
  92. El-Shoura E.A.M. Abdelzaher L.A. Mahmoud N.I. Farghaly O.A. Sabry M. Girgis Shahataa M. Salem E.A. Saad H.M. Elhussieny O. Kozman M.R. Atwa A.M. Combined sulforaphane and β-sitosterol mitigate olanzapine-induced metabolic disorders in rats: Insights on FOXO, PI3K/AKT, JAK/STAT3, and MAPK signaling pathways. Int. Immunopharmacol. 2024 140 112904 10.1016/j.intimp.2024.112904
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128363445241218062155
Loading
/content/journals/cpd/10.2174/0113816128363445241218062155
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test