Skip to content
2000
image of Cancer Drug Targeting: Molecular Mechanism, Approaches, and Regulatory Framework

Abstract

Novel vaccine formulations called nano vaccines which use nanoparticles (NPs) as adjuvants or carriers, are being developed in place of conventional vaccines. The field of study on peptide-based nano vaccines is enlarging fast as a result of combining antigenic peptides with nano-transport systems. This paper explores advancements in anticancer nano vaccines, focusing on their mechanisms, challenges, and opportunities. It discusses peptide nano vaccines, personalized vaccines, cancer prevention strategies, clinical translation, and self-assembling multivalent nanovaccines. It also discusses nanocarriers' role in delivering tumor-associated antigens and immune-stimulatory adjuvants. In 2024, the American Cancer Society projects over 2 million new cancer cases in the United States, marking the first year this milestone has been surpassed. This equates to approximately 5,480 new cancer diagnoses daily. Additionally, over 611,000 cancer-related deaths are expected, which translates to more than 1,600 deaths per day. The National Centre for Health Statistics mentions the mortality data also shows the various types of cancer percentages. This guideline provides comprehensive recommendations for sponsors submitting a novel drug under Investigation use of curative cancer vaccinations, focusing on safety, effectiveness, dosage optimization, adjuvant use, patient group selection, immune response monitoring, biomarker evaluation, multi-antigen vaccine development, phase-specific difficulties, non-clinical testing, and legal frameworks, while also referencing relevant legal foundations and recommendations.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128364722250126172914
2025-02-14
2025-03-30
Loading full text...

Full text loading...

References

  1. Xu F. Yuan Y. Wang Y. Yin Q. Emerging peptide-based nanovaccines: From design synthesis to defense against cancer and infection. Biomed. Pharmacother. 2023 158 114117 10.1016/j.biopha.2022.114117 36528914
    [Google Scholar]
  2. Platten M. Bunse L. Wick A. Bunse T. Le Cornet L. Harting I. Sahm F. Sanghvi K. Tan C.L. Poschke I. Green E. Justesen S. Behrens G.A. Breckwoldt M.O. Freitag A. Rother L.M. Schmitt A. Schnell O. Hense J. Misch M. Krex D. Stevanovic S. Tabatabai G. Steinbach J.P. Bendszus M. von Deimling A. Schmitt M. Wick W. A vaccine targeting mutant IDH1 in newly diagnosed glioma. Nature 2021 592 7854 463 468 10.1038/s41586‑021‑03363‑z 33762734
    [Google Scholar]
  3. Suda M. Shimizu I. Katsuumi G. Yoshida Y. Hayashi Y. Ikegami R. Matsumoto N. Yoshida Y. Mikawa R. Katayama A. Wada J. Seki M. Suzuki Y. Iwama A. Nakagami H. Nagasawa A. Morishita R. Sugimoto M. Okuda S. Tsuchida M. Ozaki K. Nakanishi-Matsui M. Minamino T. Senolytic vaccination improves normal and pathological age-related phenotypes and increases lifespan in progeroid mice. Nat. Aging 2021 1 12 1117 1126 10.1038/s43587‑021‑00151‑2 37117524
    [Google Scholar]
  4. Yoshida S. Nakagami H. Hayashi H. Ikeda Y. Sun J. Tenma A. Tomioka H. Kawano T. Shimamura M. Morishita R. Rakugi H. The CD153 vaccine is a senotherapeutic option for preventing the accumulation of senescent T cells in mice. Nat. Commun. 2020 11 1 2482 10.1038/s41467‑020‑16347‑w 32424156
    [Google Scholar]
  5. Heitmann J.S. Bilich T. Tandler C. Nelde A. Maringer Y. Marconato M. Reusch J. Jäger S. Denk M. Richter M. Anton L. Weber L.M. Roerden M. Bauer J. Rieth J. Wacker M. Hörber S. Peter A. Meisner C. Fischer I. Löffler M.W. Karbach J. Jäger E. Klein R. Rammensee H.G. Salih H.R. Walz J.S. A COVID-19 peptide vaccine for the induction of SARS-CoV-2 T cell immunity. Nature 2022 601 7894 617 622 10.1038/s41586‑021‑04232‑5 34814158
    [Google Scholar]
  6. Dewangan H.K. Shah K. Sharma R. Sharma S. Kumar A. Khan M.I. Alghamdi A.A. Abbas M. Emerging trends on nanovaccine administration and functionalization strategies for immunization. J. Comput. Biophy. Chem. 2024 23 5 575 604 10.1142/S2737416524500066
    [Google Scholar]
  7. Kalita P. Padhi A.K. Zhang K.Y.J. Tripathi T. Design of a peptide-based subunit vaccine against novel coronavirus SARS-CoV-2. Microb. Pathog. 2020 145 104236 10.1016/j.micpath.2020.104236 32376359
    [Google Scholar]
  8. Bagwe P.V. Bagwe P.V. Ponugoti S.S. Joshi S.V. Peptide-based vaccines and therapeutics for COVID-19. Int. J. Pept. Res. Ther. 2022 28 3 94 10.1007/s10989‑022‑10397‑y 35463185
    [Google Scholar]
  9. Sharma A.N. Dewangan H.K. Upadhyay P.K. Comprehensive review on herbal medicine: Emphasis on current therapy and role of phytoconstituents for cancer treatment. Chem. Biodivers. 2024 21 3 e202301468 10.1002/cbdv.202301468 38206170
    [Google Scholar]
  10. Lakshmi Singh S. Vijayakumar M.R. Dewangan H.K. Lipid based aqueous core nanocapsules (ACNs) for encapsulating hydrophilic vinorelbine bitartrate: Preparation, optimization, characterization and in vitro safety assessment for intravenous administration. Curr. Drug Deliv. 2018 15 9 1284 1293 10.2174/1567201815666180716112457 30009708
    [Google Scholar]
  11. Woolf S.H. Chapman D.A. Sabo R.T. Zimmerman E.B. Excess deaths from COVID-19 and other causes in the US, March 1, 2020, to January 2, 2021. JAMA 2021 325 17 1786 1789 10.1001/jama.2021.5199 33797550
    [Google Scholar]
  12. National Cancer Institute. Surveillance, Epidemiology, and End Results (SEER) Program SEER* Stat Database.
  13. National Cancer Institute. Surveillance, epidemiology, and end results (SEER) program. Cancer Statistics, SEER Data & Software, Registry Operations. 2018 May 30.
  14. Dewangan H.K. Tomar S. Nanovaccine for transdermal delivery system. J. Drug Deliv. Sci. Technol. 2022 67 102988 10.1016/j.jddst.2021.102988
    [Google Scholar]
  15. Skwarczynski M. Toth I. Recent advances in peptide-based subunit nanovaccines. Nanomedicine (Lond.) 2014 9 17 2657 2669 10.2217/nnm.14.187 25529569
    [Google Scholar]
  16. Davis M.E. Chen Z. Shin D.M. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat. Rev. Drug Discov. 2008 7 9 771 782 10.1038/nrd2614 18758474
    [Google Scholar]
  17. Marwah H. Pant J. Yadav J. Shah K. Dewangan H.K. Biosensor detection of COVID-19 in lung cancer: Hedgehog and mucin signaling insights. Curr. Pharm. Des. 2023 29 43 3442 3457 10.2174/0113816128276948231204111531 38270161
    [Google Scholar]
  18. Dewangan H.K. Raghuvanshi A. Shah K. Emerging trends and future challenges of nanovaccine delivery via nasal route. Curr. Drug Targets 2023 24 3 261 273 10.2174/1389450124666221205162256 36475350
    [Google Scholar]
  19. Roldão A. Mellado M.C.M. Castilho L.R. Carrondo M.J.T. Alves P.M. Virus-like particles in vaccine development. Expert Rev. Vaccines 2010 9 10 1149 1176 10.1586/erv.10.115 20923267
    [Google Scholar]
  20. Rajni S.K. Shah K. Dewangan H.K. Delivery of nano-emulgel carrier: Optimization, evaluation and in vivo anti-inflammation estimations for osteoarthritis. Ther. Deliv. 2024 15 3 181 192 10.4155/tde‑2023‑0109 38356357
    [Google Scholar]
  21. Zhu G. Mei L. Vishwasrao H.D. Jacobson O. Wang Z. Liu Y. Yung B.C. Fu X. Jin A. Niu G. Wang Q. Zhang F. Shroff H. Chen X. Intertwining DNA-RNA nanocapsules loaded with tumor neoantigens as synergistic nanovaccines for cancer immunotherapy. Nat. Commun. 2017 8 1 1482 10.1038/s41467‑017‑01386‑7 29133898
    [Google Scholar]
  22. Das A. Ali N. Nanovaccine: An emerging strategy. Expert Rev. Vaccines 2021 20 10 1273 1290 10.1080/14760584.2021.1984890 34550859
    [Google Scholar]
  23. Raghuvanshi A. Shah K. Dewangan H.K. Ethosome as antigen delivery carrier: Optimisation, evaluation and induction of immunological response via nasal route against hepatitis B. J. Microencapsul. 2022 39 4 352 363 10.1080/02652048.2022.2084169 35635238
    [Google Scholar]
  24. Mellman I. Coukos G. Dranoff G. Cancer immunotherapy comes of age. Nature 2011 480 7378 480 489 10.1038/nature10673 22193102
    [Google Scholar]
  25. Alatrash G. Qiao N. Zhang M. Zope M. Perakis A.A. Sukhumalchandra P. Philips A.V. Garber H.R. Kerros C. St John L.S. Khouri M.R. Khong H. Clise-Dwyer K. Miller L.P. Wolpe S. Overwijk W.W. Molldrem J.J. Ma Q. Shpall E.J. Mittendorf E.A. Fucosylation enhances the efficacy of adoptively transferred antigen-specific cytotoxic T lymphocytes. Clin. Cancer Res. 2019 25 8 2610 2620 10.1158/1078‑0432.CCR‑18‑1527 30647079
    [Google Scholar]
  26. Dewangan H.K. Rational application of nanoadjuvant for mucosal vaccine delivery system. J. Immunol. Methods 2020 481-482 112791 10.1016/j.jim.2020.112791 32387695
    [Google Scholar]
  27. Van Der Bruggen P. Zhang Y. Chaux P. Stroobant V. Panichelli C. Schultz E.S. Chapiro J. Van den Eynde B.J. Brasseur F. Boon T. Tumor‐specific shared antigenic peptides recognized by human T cells. Immunol. Rev. 2002 188 1 51 64 10.1034/j.1600‑065X.2002.18806.x 12445281
    [Google Scholar]
  28. Dewangan H.K. Singh S. Mishra R. Dubey R.K. A review on application of nanoadjuvant as delivery system. International Journal of Applied Pharmaceutics 2020 12 4 24 33 10.22159/ijap.2020v12i4.36856
    [Google Scholar]
  29. Fang R.H. Hu C.M.J. Luk B.T. Gao W. Copp J.A. Tai Y. O’Connor D.E. Zhang L. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett. 2014 14 4 2181 2188 10.1021/nl500618u 24673373
    [Google Scholar]
  30. Dewangan H.K. Raghuvanshi A. Shah K. Emerging nanovaccine technology: Defense against infection by oral administration. Micro Nanosyst. 2023 15 1 46 54 10.2174/1876402914666220523105129
    [Google Scholar]
  31. Ma L. Diao L. Peng Z. Jia Y. Xie H. Li B. Ma J. Zhang M. Cheng L. Ding D. Zhang X. Chen H. Mo F. Jiang H. Xu G. Meng F. Zhong Z. Liu M. Immunotherapy and prevention of cancer by nanovaccines loaded with whole‐cell components of tumor tissues or cells. Adv. Mater. 2021 33 43 2104849 10.1002/adma.202104849 34536044
    [Google Scholar]
  32. Schijns V. Mechanisms of vaccine adjuvant activity: Initiation and regulation of immune responses by vaccine adjuvants. Vaccine 2003 21 9-10 829 831 10.1016/S0264‑410X(02)00527‑3 12547589
    [Google Scholar]
  33. Garg A. Dewangan H.K. Nanoparticles as adjuvants in vaccine delivery. Crit. Rev. Ther. Drug Carrier Syst. 2020 37 2 183 204 10.1615/CritRevTherDrugCarrierSyst.2020033273 32865905
    [Google Scholar]
  34. Schwaninger R. Waelti E. Zajac P. Wetterwald A. Mueller D. Gimmi C.D. Virosomes as new carrier system for cancer vaccines. Cancer Immunol. Immunother. 2004 53 11 1005 1017 10.1007/s00262‑004‑0545‑5 15185010
    [Google Scholar]
  35. Dewangan H.K. Pandey T. Maurya L. Singh S. Rational design and evaluation of HBsAg polymeric nanoparticles as antigen delivery carriers. Int. J. Biol. Macromol. 2018 111 804 812 10.1016/j.ijbiomac.2018.01.073 29343454
    [Google Scholar]
  36. Gnjatic S. Sawhney N.B. Bhardwaj N. Toll-like receptor agonists: Are they good adjuvants? Cancer J. 2010 16 4 382 391 10.1097/PPO.0b013e3181eaca65 20693851
    [Google Scholar]
  37. Dewangan H.K. Singh S. Maurya L. Srivastava A. Hepatitis B. Antigen loaded biodegradable polymeric nanoparticles: Formulation optimization and in-vivo immunization fin BALB/c mice. Curr. Drug Deliv. 2018 15 8 1204 1215 10.2174/1567201815666180604110457 29866006
    [Google Scholar]
  38. Deepika D. Dewangan H.K. Maurya L. Singh S. Intranasal drug delivery of frovatriptan succinate loaded polymeric nanoparticles for brain targeting. J. Pharm. Sci. 2019 108 2 851 859 10.1016/j.xphs.2018.07.013 30053555
    [Google Scholar]
  39. Dewangan H.K. Pandey T. Singh S. Nanovaccine for immunotherapy and reduced hepatitis-B virus in humanized model. Artif Cells Nanomed Biotechnol. 2018 46 8 2033 2042 10.1080/21691401.2017.1408118 29179600
    [Google Scholar]
  40. Wilhelm M. Mueller L. Miller M.C. Link K. Holdenrieder S. Bertsch T. Kunzmann V. Stoetzer O.J. Suttmann I. Braess J. Birkmann J. Roessler M. Moritz B. Kraff S. Salamone S.J. Jaehde U. Prospective, multicenter study of 5-fluorouracil therapeutic drug monitoring in metastatic colorectal cancer treated in routine clinical practice. Clin. Colorectal Cancer 2016 15 4 381 388 10.1016/j.clcc.2016.04.001 27256667
    [Google Scholar]
  41. Vanshita Garg A. Dewangan H.K. Recent advances in drug design and delivery across biological barriers using computational models. Lett. Drug Des. Discov. 2022 19 10 865 876 10.2174/1570180819999220204110306
    [Google Scholar]
  42. Mishra A.K. Rani L. Singh R. Dewangan H.K. Sahoo P.K. Kumar V. Nanoinformatics and nanotechnology in anti-inflammatory therapy: A review. J. Drug Deliv. Sci. Technol. 2024 93 105446 10.1016/j.jddst.2024.105446
    [Google Scholar]
  43. Tomar S. Yadav R.K. Shah K. Dewangan H.K. A comprehensive review on carrier mediated nose to brain targeting: Emphasis on molecular targets, current trends, future prospects, and challenges. Int. J. Polym. Mater. 2022 73 2 91 103 10.1080/00914037.2022.2124255
    [Google Scholar]
  44. Manna I. Quattrone A. De Benedittis S. Vescio B. Iaccino E. Quattrone A. Exosomal miRNA as peripheral biomarkers in Parkinson’s disease and progressive supranuclear palsy: A pilot study. Parkinsonism Relat. Disord. 2021 93 77 84 10.1016/j.parkreldis.2021.11.020 34839044
    [Google Scholar]
  45. Wen Z.S. Xu Y.L. Zou X.T. Xu Z.R. Chitosan nanoparticles act as an adjuvant to promote both Th1 and Th2 immune responses induced by ovalbumin in mice. Mar. Drugs 2011 9 6 1038 1055 10.3390/md9061038 21747747
    [Google Scholar]
  46. Stieneker F. Kreuter J. Löwer J. High antibody titres in mice with polymethylmethacrylate nanoparticles as adjuvant for HIV vaccines. AIDS 1991 5 4 431 436 10.1097/00002030‑199104000‑00012 2059385
    [Google Scholar]
  47. Peng Y. Zhao Z. Liu T. Li X. Hu X. Wei X. Zhang X. Tan W. Smart human‐serum‐albumin–As2O3 nanodrug with self‐amplified folate receptor‐targeting ability for chronic myeloid leukemia treatment. Angew. Chem. Int. Ed. 2017 56 36 10845 10849 10.1002/anie.201701366 28686804
    [Google Scholar]
  48. Taneichi M. Ishida H. Kajino K. Ogasawara K. Tanaka Y. Kasai M. Mori M. Nishida M. Yamamura H. Mizuguchi J. Uchida T. Antigen chemically coupled to the surface of liposomes are cross-presented to CD8+ T cells and induce potent antitumor immunity. J Immunol. 2006 177 4 2324 2330 10.4049/jimmunol.177.4.2324 16887993
    [Google Scholar]
  49. Rezvantalab S. Drude N.I. Moraveji M.K. Güvener N. Koons E.K. Shi Y. Lammers T. Kiessling F. PLGA-based nanoparticles in cancer treatment. Front. Pharmacol. 2018 9 1260 10.3389/fphar.2018.01260 30450050
    [Google Scholar]
  50. Li J. Ren H. Zhang Y. Metal-based nano-vaccines for cancer immunotherapy. Coord. Chem. Rev. 2022 455 214345 10.1016/j.ccr.2021.214345
    [Google Scholar]
  51. Dewangan H.K. The emerging role of nanosuspensions for drug delivery and stability. Curr. Nanomed. 2021 11 4 213 223 10.2174/2468187312666211222123307
    [Google Scholar]
  52. Azharuddin M. Zhu G.H. Sengupta A. Hinkula J. Slater N.K.H. Patra H.K. Nano toolbox in immune modulation and nanovaccines. Trends Biotechnol. 2022 40 10 1195 1212 10.1016/j.tibtech.2022.03.011 35450779
    [Google Scholar]
  53. Yadav D. Semwal B.C. Dewangan H.K. Grafting, characterization and enhancement of therapeutic activity of berberine loaded PEGylated PAMAM dendrimer for cancerous cell. J. Biomater. Sci. Polym. Ed. 2022 14 1 14 36469754
    [Google Scholar]
  54. Shen H. Zhang W. Abraham C. Cho J.H. Age and CD161 expression contribute to inter-individual variation in interleukin-23 response in CD8+ memory human T cells. PLoS One 2013 8 3 e57746 10.1371/journal.pone.0057746 23469228
    [Google Scholar]
  55. Shiven A. Alam A. Dewangan H.K. Shah K. Alam P. Kapoor D.N. Optimisation and in-vivo evaluation of extracted Karanjin loaded liposomal topical formulation for treatment of psoriasis in tape-stripped mouse model. J. Microencapsul. 2024 41 5 345 359 10.1080/02652048.2024.2354249 38780157
    [Google Scholar]
  56. Li M. Li S. Zhou H. Tang X. Wu Y. Jiang W. Tian Z. Zhou X. Yang X. Wang Y. Chemotaxis-driven delivery of nano-pathogenoids for complete eradication of tumors post-phototherapy. Nat. Commun. 2020 11 1 1126 10.1038/s41467‑020‑14963‑0 32111847
    [Google Scholar]
  57. Jia J. Zhang Y. Xin Y. Jiang C. Yan B. Zhai S. Interactions between nanoparticles and dendritic cells: From the perspective of cancer immunotherapy. Front. Oncol. 2018 8 404 10.3389/fonc.2018.00404 30319969
    [Google Scholar]
  58. Xu J. Lv J. Zhuang Q. Yang Z. Cao Z. Xu L. Pei P. Wang C. Wu H. Dong Z. Chao Y. Wang C. Yang K. Peng R. Cheng Y. Liu Z. A general strategy towards personalized nanovaccines based on fluoropolymers for post-surgical cancer immunotherapy. Nat. Nanotechnol. 2020 15 12 1043 1052 10.1038/s41565‑020‑00781‑4 33139933
    [Google Scholar]
  59. Ni Q. Zhang F. Liu Y. Wang Z. Yu G. Liang B. Niu G. Su T. Zhu G. Lu G. Zhang L. Chen X. A bi-adjuvant nanovaccine that potentiates immunogenicity of neoantigen for combination immunotherapy of colorectal cancer. Sci. Adv. 2020 6 12 eaaw6071 10.1126/sciadv.aaw6071 32206706
    [Google Scholar]
  60. Xiong X. Zhao J. Pan J. Liu C. Guo X. Zhou S. Personalized nanovaccine coated with calcinetin-expressed cancer cell membrane antigen for cancer immunotherapy. Nano Lett. 2021 21 19 8418 8425 10.1021/acs.nanolett.1c03004 34546061
    [Google Scholar]
  61. Tang Y. Fan W. Chen G. Zhang M. Tang X. Wang H. Zhao P. Xu Q. Wu Z. Lin X. Huang Y. Recombinant cancer nanovaccine for targeting tumor-associated macrophage and remodeling tumor microenvironment. Nano Today 2021 40 101244 10.1016/j.nantod.2021.101244
    [Google Scholar]
  62. Yin Y. Li X. Ma H. Zhang J. Yu D. Zhao R. Yu S. Nie G. Wang H. In situ transforming RNA nanovaccines from polyethylenimine functionalized graphene oxide hydrogel for durable cancer immunotherapy. Nano Lett. 2021 21 5 2224 2231 10.1021/acs.nanolett.0c05039 33594887
    [Google Scholar]
  63. Sasada T. Noguchi M. Yamada A. Itoh K. Personalized peptide vaccination: A novel immunotherapeutic approach for advanced cancer. Hum. Vaccin. Immunother. 2012 8 9 1309 1313 10.4161/hv.20988 22894962
    [Google Scholar]
  64. Sharma N. Bhati A. Aggarwal S. Shah K. Dewangan H.K. PARP pioneers: Using BRCA1/2 mutation-targeted inhibition to revolutionize breast cancer treatment. Curr. Pharm. Des. 2024 31 10.2174/0113816128322894241004051814
    [Google Scholar]
  65. Marwah H. Dewangan H.K. Advancements in solid lipid nanoparticles and nanostructured lipid carriers for breast cancer therapy. Curr. Pharm. Des. 2024 30 37 2922 2936 10.2174/0113816128319233240725103706 39150028
    [Google Scholar]
  66. Sharma A.N. Upadhyay P.K. Dewangan H.K. Dual combination of resveratrol and pterostilbene aqueous core nanocapsules for integrated prostate cancer targeting. Ther. Deliv. 2024 15 9 685 698 10.1080/20415990.2024.2380239 39129676
    [Google Scholar]
  67. Sahin U. Derhovanessian E. Miller M. Kloke B.P. Simon P. Löwer M. Bukur V. Tadmor A.D. Luxemburger U. Schrörs B. Omokoko T. Vormehr M. Albrecht C. Paruzynski A. Kuhn A.N. Buck J. Heesch S. Schreeb K.H. Müller F. Ortseifer I. Vogler I. Godehardt E. Attig S. Rae R. Breitkreuz A. Tolliver C. Suchan M. Martic G. Hohberger A. Sorn P. Diekmann J. Ciesla J. Waksmann O. Brück A.K. Witt M. Zillgen M. Rothermel A. Kasemann B. Langer D. Bolte S. Diken M. Kreiter S. Nemecek R. Gebhardt C. Grabbe S. Höller C. Utikal J. Huber C. Loquai C. Türeci Ö. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 2017 547 7662 222 226 10.1038/nature23003 28678784
    [Google Scholar]
  68. Dubey R.K. Shukla S. Shah K. Dewangan H.K. A comprehensive review of self-assembly techniques used to fabricate as DNA origami, block copolymers, and colloidal nanostructures. Curr. Nanosci. 2024 20 1 14 10.2174/0115734137283662240129073747
    [Google Scholar]
  69. Pol S. Michel M.L. Therapeutic vaccination in chronic hepatitis B virus carriers. Expert Rev. Vaccines 2006 5 5 707 716 10.1586/14760584.5.5.707 17181443
    [Google Scholar]
  70. Finn O.J. Cancer vaccines: Between the idea and the reality. Nat. Rev. Immunol. 2003 3 8 630 641 10.1038/nri1150 12974478
    [Google Scholar]
  71. Sharma A.N. Upadhyay P.K. Dewangan H.K. Development, evaluation, pharmacokinetic and biodistribution estimation of resveratrol-loaded solid lipid nanoparticles for prostate cancer targeting. J. Microencapsul. 2022 39 6 563 574 10.1080/02652048.2022.2135785 36222429
    [Google Scholar]
  72. Center for Drug Evaluation, Research. FDA approval of new cancer treatment uses for marketed drug and biological products [Internet]. U.S. Food and Drug Administration. 2019 Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/fda-approval-new-cancer-treatment-uses-marketed-drug-and-biological-products [Cited 2024 Apr 12].
  73. Ott P.A. Hu Z. Keskin D.B. Shukla S.A. Sun J. Bozym D.J. Zhang W. Luoma A. Giobbie-Hurder A. Peter L. Chen C. Olive O. Carter T.A. Li S. Lieb D.J. Eisenhaure T. Gjini E. Stevens J. Lane W.J. Javeri I. Nellaiappan K. Salazar A.M. Daley H. Seaman M. Buchbinder E.I. Yoon C.H. Harden M. Lennon N. Gabriel S. Rodig S.J. Barouch D.H. Aster J.C. Getz G. Wucherpfennig K. Neuberg D. Ritz J. Lander E.S. Fritsch E.F. Hacohen N. Wu C.J. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 2017 547 7662 217 221 10.1038/nature22991 28678778
    [Google Scholar]
  74. Keskin D.B. Anandappa A.J. Sun J. Tirosh I. Mathewson N.D. Li S. Oliveira G. Giobbie-Hurder A. Felt K. Gjini E. Shukla S.A. Hu Z. Li L. Le P.M. Allesøe R.L. Richman A.R. Kowalczyk M.S. Abdelrahman S. Geduldig J.E. Charbonneau S. Pelton K. Iorgulescu J.B. Elagina L. Zhang W. Olive O. McCluskey C. Olsen L.R. Stevens J. Lane W.J. Salazar A.M. Daley H. Wen P.Y. Chiocca E.A. Harden M. Lennon N.J. Gabriel S. Getz G. Lander E.S. Regev A. Ritz J. Neuberg D. Rodig S.J. Ligon K.L. Suvà M.L. Wucherpfennig K.W. Hacohen N. Fritsch E.F. Livak K.J. Ott P.A. Wu C.J. Reardon D.A. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature 2019 565 7738 234 239 10.1038/s41586‑018‑0792‑9 30568305
    [Google Scholar]
  75. Brunsvig P.F. Aamdal S. Gjertsen M.K. Kvalheim G. Markowski-Grimsrud C.J. Sve I. Telomerase peptide vaccination: A phase I/II study in patients with non-small cell lung cancer. Cancer Immunol. Immunother. 2011 60 6 809 818 10.1007/s00262‑011‑0994‑0 21365467
    [Google Scholar]
  76. Clifton G.T. Vreeland T.J. Hale D.F. Hickerson A.T. Litton J.K. Alatrash G. Results of a randomized phase IIb trial of the Folate Receptor Alpha (FRα) peptide vaccine TPIV200 in patients with ovarian cancer in first remission. Ann. Oncol. 2021 32 4 511 520 10.1016/j.annonc.2021.01.057
    [Google Scholar]
  77. Stelzer I. Koser F. Löffler M.W. Siebenhandl-Ehn S. Virgolini I. Brunner P. Immunological heterogeneity of colorectal cancer patients and its implications for peptide vaccine development. OncoImmunology 2020 9 1 1839796 10.1080/2162402X.2020.1839796
    [Google Scholar]
  78. Center for Drug Evaluation, Research. Clinical Trial Endpoints for the Approval of Cancer Drugs and Biologics [Internet]. U.S. Food and Drug Administration. 2021 Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/ [cited 2024 Apr 13].
  79. Guidance on IDE Policies and Procedures 1998 Available from: https://www.fda.gov/MedicalDevices/DevicesRegulationGuidanceDocument s/ucm080202.htm [cited 2024 Apr 12].
  80. Guidance for Industry: Gene Therapy Clinical Trials – Observing Subjects for Delayed Adverse Events (November 2006). 2006 Available from: https://www.fda.gov/media/72225/ [cited 2024 Apr 12].
  81. Guidance for Industry: Special Protocol Assessment ( May 2002). 2002 Available from: https://www.fda.gov/downloads/drug/GuidanceComplianceRegulatoryInformation/Guidances /ucm080571 [cited 2024 Apr 13].
  82. Lakshmi.   Singh S. Shah K. Dewangan H.K. Dual vinorelbine bitartrate and resveratrol loaded polymeric aqueous core nanocapsules for synergistic efficacy in breast cancer. J. Microencapsul. 2022 16 1 15
    [Google Scholar]
  83. Guideline on clinical evaluation of vaccines EMEA/CHMP/VWP/164653/05 Rev. 1 Committee for Medicinal Products for Human Use (CHMP) 16 January 2023.
/content/journals/cpd/10.2174/0113816128364722250126172914
Loading
/content/journals/cpd/10.2174/0113816128364722250126172914
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: peptide ; Nanovaccines ; nanoparticles ; cancer ; immune system
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test