Skip to content
2000
image of Esketamine Regulates Mitophagy through ULK1/FUNDC1 Signaling Pathway to Improve LPS-induced Acute Respiratory Distress Syndrome

Abstract

Background

As a heterogeneous clinical syndrome, acute respiratory distress syndrome (ARDS) is caused by infection-associated inflammation with limited treatment options. Esketamine possesses anti-inflammatory properties, and it is effective in treating lung diseases.

Objective

This study aimed to unveil the efficacy and mechanism of esketamine in ARDS.

Methods

Lipopolysaccharide (LPS) is widely used to induce inflammatory response in lung injury. The mice model of ARDS in this study was established through the inhalation of LPS. Hematoxylin-eosin (H&E) staining was used to evaluate the pathological changes in the lung tissues of ARDS mice, and the histological index of lung damage was employed. Bicinchoninic acid (BCA) assay kits were utilized to assess the total proteins in bronchoalveolar lavage fluid (BALF), and a hemocytometer was used to count the number of total cells. The pulmonary vascular permeability was detected using Evans blue staining. Western blot was carried out to detect the expressions of tight junction proteins, and enzyme-linked immunosorbent assay (ELISA) detected the release of inflammatory cytokines in BALF and serum. Dihydroethidium (DHE) staining was used to detect reactive oxygen species (ROS) production, and the levels of myeloperoxidase (MPO) and oxidative stress markers were measured using corresponding assay kits. Apoptosis was assessed through terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) and Western blot. Immunostaining detected the FUN14 domain-containing 1 (FUNDC1) and light chain 3B (LC3B) in lung tissues, and the expressions of autophagy-related proteins were detected using Western blot.

Results

Our data showed that esketamine treatment alleviated LPS-stimulated lung damage, improved pulmonary vascular permeability, and inhibited inflammatory response, oxidative stress, and apoptosis in ARDS mice. Mechanically, esketamine activated mitophagy through UNC-52-like kinase 1 (ULK1)/FUNDC1 signaling pathway. These findings, for the first time, revealed the therapeutic potential of esketamine in treating ARDS.

Conclusion

Collectively, this study revealed the protective role of esketamine against lung injury, inflammation, oxidative stress, and apoptosis in mice with ARDS and revealed the reaction mechanism related to mitophagy.

© 2025 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128361112250221065359
2025-02-28
2025-03-30
The full text of this item is not currently available.

References

  1. Zhang D. Xu C. Zhang J. Zeng R. Qi Q. Xu J. Pan Y. Liu X. Shi S. Zhang J. Dong L. Plasma TNFRSF11B as a new predictive inflammatory marker of Sepsis–ARDS with endothelial dysfunction. J. Proteome Res. 2023 22 11 3640 3651 10.1021/acs.jproteome.3c00576 37851947
    [Google Scholar]
  2. Ware L.B. Matthay M.A. The acute respiratory distress syndrome. N. Engl. J. Med. 2000 342 18 1334 1349 10.1056/NEJM200005043421806 10793167
    [Google Scholar]
  3. Meyer N.J. Gattinoni L. Calfee C.S. Acute respiratory distress syndrome. Lancet 2021 398 10300 622 637 10.1016/S0140‑6736(21)00439‑6 34217425
    [Google Scholar]
  4. Liu C. Xiao K. Xie L. Advances in the regulation of macrophage polarization by mesenchymal stem cells and implications for ALI/ARDS treatment. Front. Immunol. 2022 13 928134 10.3389/fimmu.2022.928134 35880175
    [Google Scholar]
  5. Patanwala A.E. Martin J.R. Erstad B.L. Ketamine for analgosedation in the intensive care unit: A systematic review. J. Intensive. Care. Med. 2017 32 6 387 395 10.1177/0885066615620592 26647407
    [Google Scholar]
  6. Xu D. Sun X. Zhang Y. Chao L. Ketamine alleviates HMGB1-induced acute lung injury through TLR4 signaling pathway. Adv. Clin. Exp. Med. 2020 29 7 813 817 10.17219/acem/121936 32725973
    [Google Scholar]
  7. Wendel-Garcia P.D. Erlebach R. Hofmaenner D.A. Camen G. Schuepbach R.A. Jüngst C. Müllhaupt B. Bartussek J. Buehler P.K. Andermatt R. David S. Long-term ketamine infusion-induced cholestatic liver injury in COVID-19-associated acute respiratory distress syndrome. Crit. Care 2022 26 1 148 10.1186/s13054‑022‑04019‑8 35606831
    [Google Scholar]
  8. Trimmel H. Helbok R. Staudinger T. Jaksch W. Messerer B. Schöchl H. Likar R. S(+)-ketamine. Wien. Klin. Wochenschr. 2018 130 9-10 356 366 10.1007/s00508‑017‑1299‑3 29322377
    [Google Scholar]
  9. Qi D. Tang X. He J. Wang D. Zhao Y. Deng W. Deng X. Zhou G. Xia J. Zhong X. Pu S. Omentin protects against LPS-induced ARDS through suppressing pulmonary inflammation and promoting endothelial barrier via an Akt/eNOS-dependent mechanism. Cell Death Dis. 2016 7 9 e2360 10.1038/cddis.2016.265 27607575
    [Google Scholar]
  10. Çomaklı S. Küçükler S. Değirmençay Ş. Bolat İ. Özdemir S. Quinacrine, a PLA2 inhibitor, alleviates LPS-induced acute kidney injury in rats: Involvement of TLR4/NF-κB/TNF α-mediated signaling. Int. Immunopharmacol. 2024 126 111264 10.1016/j.intimp.2023.111264 38016342
    [Google Scholar]
  11. Xu X. Li W. Yu Z. Zhang L. Duo T. Zhao Y. Qin W. Yang W. Ma L. Berberine ameliorates dextran sulfate sodium-induced ulcerative colitis and inhibits the secretion of gut lysozyme via promoting autophagy. Metabolites 2022 12 8 676 10.3390/metabo12080676 35893243
    [Google Scholar]
  12. Fu Z. Wu X. Zheng F. Zhang Y. Activation of the AMPK-ULK1 pathway mediated protective autophagy by sevoflurane anesthesia restrains LPS-induced acute lung injury (ALI). Int. Immunopharmacol. 2022 108 108869 10.1016/j.intimp.2022.108869 35605434
    [Google Scholar]
  13. Deng R. Zhang H.L. Huang J.H. Cai R.Z. Wang Y. Chen Y.H. Hu B.X. Ye Z.P. Li Z.L. Mai J. Huang Y. Li X. Peng X.D. Feng G.K. Li J.D. Tang J. Zhu X.F. MAPK1/3 kinase-dependent ULK1 degradation attenuates mitophagy and promotes breast cancer bone metastasis. Autophagy 2021 17 10 3011 3029 10.1080/15548627.2020.1850609 33213267
    [Google Scholar]
  14. Wu W. Tian W. Hu Z. Chen G. Huang L. Li W. Zhang X. Xue P. Zhou C. Liu L. Zhu Y. Zhang X. Li L. Zhang L. Sui S. Zhao B. Feng D. ULK 1 translocates to mitochondria and phosphorylates FUNDC 1 to regulate mitophagy. EMBO Rep. 2014 15 5 566 575 10.1002/embr.201438501 24671035
    [Google Scholar]
  15. Wu Y. Zhang Y. Xie B. Zhang X. Wang G. Yuan S. Esketamine mitigates cognitive impairment following exposure to LPS by modulating the intestinal flora/subdiaphragmatic vagus nerve/spleen axis. Int. Immunopharmacol. 2024 126 111284 10.1016/j.intimp.2023.111284 38016344
    [Google Scholar]
  16. Zhou Y. Hao C. Li C. Huang X. Li X. Tang Y. Huang Y. Tang S. Liu W. Feng D. Xu J. Yue S. Xie H. Luo Z. Omentin-1 protects against bleomycin-induced acute lung injury. Mol. Immunol. 2018 103 96 105 10.1016/j.molimm.2018.09.007 30245266
    [Google Scholar]
  17. Zeng M. Sang W. Chen S. Chen R. Zhang H. Xue F. Li Z. Liu Y. Gong Y. Zhang H. Kong X. 4-PBA inhibits LPS-induced inflammation through regulating ER stress and autophagy in acute lung injury models. Toxicol. Lett. 2017 271 26 37 10.1016/j.toxlet.2017.02.023 28245985
    [Google Scholar]
  18. Ma X. Liu X. Feng J. Zhang D. Huang L. Li D. Yin L. Li L. Wang X.Z. Fraxin alleviates LPS-induced ARDS by downregulating inflammatory responses and oxidative damages and reducing pulmonary vascular permeability. Inflammation 2019 42 5 1901 1912 10.1007/s10753‑019‑01052‑8 31273573
    [Google Scholar]
  19. Aijaz S. Balda M.S. Matter K. Tight junctions: Molecular architecture and function. Int. Rev. Cytol. 2006 248 261 298 10.1016/S0074‑7696(06)48005‑0 16487793
    [Google Scholar]
  20. Jiang Y. Rosborough B.R. Chen J. Das S. Kitsios G.D. McVerry B.J. Mallampalli R.K. Lee J.S. Ray A. Chen W. Ray P. Single cell RNA sequencing identifies an early monocyte gene signature in acute respiratory distress syndrome. JCI Insight 2020 5 13 e135678 10.1172/jci.insight.135678 32554932
    [Google Scholar]
  21. Liu X. Zhang J. Xie W. The role of ferroptosis in acute lung injury. Mol. Cell. Biochem. 2022 477 5 1453 1461 10.1007/s11010‑021‑04327‑7 35166985
    [Google Scholar]
  22. He F. Gu L. Cai N. Ni J. Liu Y. Zhang Q. Wu C. The HMGB1-RAGE axis induces apoptosis in acute respiratory distress syndrome through PERK/eIF2α/ATF4-mediated endoplasmic reticulum stress. Inflamm. Res. 2022 71 10-11 1245 1260 10.1007/s00011‑022‑01613‑y 35871648
    [Google Scholar]
  23. Li T. Liu Y. Xu W. Dai X. Liu R. Gao Y. Chen Z. Li Y. Polydatin mediates parkin-dependent mitophagy and protects against mitochondria-dependent apoptosis in acute respiratory distress syndrome. Lab. Invest. 2019 99 6 819 829 10.1038/s41374‑019‑0191‑3 30808930
    [Google Scholar]
  24. Wang X. Ling G. Wei Y. Li W. Zhang Y. Tan N. Li W. Li H. Qiu Q. Wang W. Wang Y. Activation of ULK1 to trigger FUNDC1-mediated mitophagy in heart failure: Effect of Ginsenoside Rg3 intervention. Phytomedicine 2023 120 155042 10.1016/j.phymed.2023.155042 37659296
    [Google Scholar]
  25. Wu D. Zhang H. Li F. Liu S. Wang Y. Zhang Z. Wang J. Wu Q. Resveratrol alleviates acute lung injury in mice by promoting Pink1/Parkin-related mitophagy and inhibiting NLRP3 inflammasome activation. Biochim. Biophys. Acta, Gen. Subj. 2024 1868 7 130612 10.1016/j.bbagen.2024.130612 38626830
    [Google Scholar]
  26. Silva J.D. de Castro L.L. Braga C.L. Oliveira G.P. Trivelin S.A. Barbosa-Junior C.M. Morales M.M. dos Santos C.C. Weiss D.J. Lopes-Pacheco M. Cruz F.F. Rocco P.R.M. Mesenchymal stromal cells are more effective than their extracellular vesicles at reducing lung injury regardless of acute respiratory distress syndrome etiology. Stem Cells Int. 2019 2019 1 15 10.1155/2019/8262849 31531026
    [Google Scholar]
  27. Schuster D.P. The search for “objective” criteria of ARDS. Intensive Care Med. 2007 33 3 400 402 10.1007/s00134‑006‑0499‑5 17221188
    [Google Scholar]
  28. Wray C. Mao Y. Pan J. Chandrasena A. Piasta F. Frank J.A. Claudin-4 augments alveolar epithelial barrier function and is induced in acute lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 2009 297 2 L219 L227 10.1152/ajplung.00043.2009 19447895
    [Google Scholar]
  29. Herrero R. Prados L. Ferruelo A. Puig F. Pandolfi R. Guillamat-Prats R. Moreno L. Matute-Bello G. Artigas A. Esteban A. Lorente J.Á. Fas activation alters tight junction proteins in acute lung injury. Thorax 2019 74 1 69 82 10.1136/thoraxjnl‑2018‑211535 30385692
    [Google Scholar]
  30. Chai J. Long B. Liu X. Li Y. Han N. Zhao P. Chen W. Effects of sevoflurane on tight junction protein expression and PKC-α translocation after pulmonary ischemia–reperfusion injury. Exp. Mol. Med. 2015 47 6 e167 10.1038/emm.2015.27 26045255
    [Google Scholar]
  31. Guttman J.A. Samji F.N. Li Y. Vogl A.W. Finlay B.B. Evidence that tight junctions are disrupted due to intimate bacterial contact and not inflammation during attaching and effacing pathogen infection in vivo. Infect. Immun. 2006 74 11 6075 6084 10.1128/IAI.00721‑06 16954399
    [Google Scholar]
  32. Liu M. Gu C. Wang Y. Upregulation of the tight junction protein occludin: effects on ventilation-induced lung injury and mechanisms of action. BMC Pulm. Med. 2014 14 1 94 10.1186/1471‑2466‑14‑94 24884662
    [Google Scholar]
  33. Frantzeskaki F. Armaganidis A. Orfanos S.E. Immunothrombosis in acute respiratory distress syndrome: Cross talks between inflammation and coagulation. Respiration 2017 93 3 212 225 10.1159/000453002 27997925
    [Google Scholar]
  34. Reiss L.K. Schuppert A. Uhlig S. Inflammatory processes during acute respiratory distress syndrome: A complex system. Curr. Opin. Crit. Care 2018 24 1 1 9 10.1097/MCC.0000000000000472 29176329
    [Google Scholar]
  35. Chen P.J. Chen S.H. Chen Y.L. Wang Y.H. Lin C.Y. Chen C.H. Tsai Y.F. Hwang T.L. Ribociclib leverages phosphodiesterase 4 inhibition in the treatment of neutrophilic inflammation and acute respiratory distress syndrome. J. Adv. Res. 2024 62 229 243 10.1016/j.jare.2024.03.019 38548264
    [Google Scholar]
  36. Millar M.W. Fazal F. Rahman A. Therapeutic targeting of NF-κB in acute lung injury: A double-edged sword. Cells 2022 11 20 3317 10.3390/cells11203317 36291185
    [Google Scholar]
  37. Xiao S. Zhou Y. Wang Q. Yang D. Ketamine attenuates airway inflammation via inducing inflammatory cells apoptosis and activating Nrf2 pathway in a mixed-granulocytic murine asthma model. Drug Des. Devel. Ther. 2022 16 4411 4428 10.2147/DDDT.S391010 36597444
    [Google Scholar]
  38. Gonçalves C.L. Abelaira H.M. Rosa T. de Moura A.B. Veron D.C. Borba L.A. Botelho M.E.M. Goldim M.P. Garbossa L. Fileti M.E. Petronilho F. Ignácio Z.M. Quevedo J. Réus G.Z. Ketamine treatment protects against oxidative damage and the immunological response induced by electroconvulsive therapy. Pharmacol. Rep. 2021 73 2 525 535 10.1007/s43440‑020‑00200‑4 33393059
    [Google Scholar]
  39. Zhang H. Chen Z. Zhou J. Gu J. Wu H. Jiang Y. Gao S. Liao Y. Shen R. Miao C. Chen W. NAT10 regulates neutrophil pyroptosis in sepsis via acetylating ULK1 RNA and activating STING pathway. Commun. Biol. 2022 5 1 916 10.1038/s42003‑022‑03868‑x 36068299
    [Google Scholar]
  40. ULK1 Inhibition Restores Antigen Presentation in LKB1-Mutant Lung Cancer ULK1 inhibition restores antigen presentation in LKB1 -Mutant lung cancer. Cancer Discov. 2021 11 7 OF8 10.1158/2159‑8290.CD‑RW2021‑076 34049942
    [Google Scholar]
  41. D’Arcy M.S. Mitophagy in health and disease. Molecular mechanisms, regulatory pathways, and therapeutic implications. Apoptosis 2024 29 9-10 1415 1428 10.1007/s10495‑024‑01977‑y 38758472
    [Google Scholar]
  42. Green D.R. Levine B. To be or not to be? How selective autophagy and cell death govern cell fate. Cell 2014 157 1 65 75 10.1016/j.cell.2014.02.049 24679527
    [Google Scholar]
  43. Sharma A. Ahmad S. Ahmad T. Ali S. Syed M.A. Mitochondrial dynamics and mitophagy in lung disorders. Life Sci. 2021 284 119876 10.1016/j.lfs.2021.119876 34389405
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128361112250221065359
Loading
/content/journals/cpd/10.2174/0113816128361112250221065359
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test