Skip to content
2000
image of Selection Criteria for Oils, Surfactants, and Co-Surfactants in Ocular Nanoemulsion Formulation: A Mini Review

Abstract

The ocular nanoemulsions (NE) are biphasic systems mainly composed of oil and water emulsified by surfactants/cosurfactants. The extensive surface area of ocular NE enhances corneal contact, leading to improved drug penetration and making it a preferable delivery system. They can also increase the solubility of drugs across the ocular barrier with improved residence time. Oils, surfactants, and co-surfactants used in formulating ocular NEs present a significant challenge in developing safe, stable, less irritant, more permeable, improved residence time, and highly bioavailable products. The choice of oil, surfactant, and co-surfactant significantly impacts the development of ocular Nano emulsions (NE) with desirable characteristics, such as small globule size, enhanced penetration, high drug content, and prolonged retention in the eye. This mini-review aims to contribute valuable insights into the selection criteria of oils, surfactants, and co-surfactants for ocular NE. Finally, the correlation between the properties of ocular NEs and the choice of oils, surfactants, and co-surfactants with emphasis on sterilization and stability aspects are considered in short.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128350573241202105210
2025-01-15
2025-04-09
Loading full text...

Full text loading...

References

  1. Steinmetz J.D. Bourne R.R.A. Briant P.S. Flaxman S.R. Taylor H.R.B. Jonas J.B. Abdoli A.A. Abrha W.A. Abualhasan A. Abu-Gharbieh E.G. Adal T.G. Afshin A. Ahmadieh H. Alemayehu W. Alemzadeh S.A.S. Alfaar A.S. Alipour V. Androudi S. Arabloo J. Arditi A.B. Aregawi B.B. Arrigo A. Ashbaugh C. Ashrafi E.D. Atnafu D.D. Bagli E.A. Baig A.A.W. Bärnighausen T.W. Battaglia Parodi M. Beheshti M.S. Bhagavathula A.S. Bhardwaj N. Bhardwaj P. Bhattacharyya K. Bijani A. Bikbov M. Bottone M. Braithwaite T.M. Bron A.M. Burugina Nagaraja S.A. Butt Z.A. Caetano dos Santos F.L.L. Carneiro V.L.J. Casson R.J. Cheng C-Y.J. Choi J-Y.J. Chu D-T. Cicinelli M.V.M. Coelho J.M.G. Congdon N.G.A. Couto R.A.A. Cromwell E.A.M. Dahlawi S.M. Dai X. Dana R. Dandona L. Dandona R.A. Del Monte M.A. Derbew Molla M. Dervenis N.A. Desta A.A.P. Deva J.P. Diaz D. Djalalinia S.E. Ehrlich J.R. Elayedath R.R. Elhabashy H.R.B. Ellwein L.B. Emamian M.H. Eskandarieh S. Farzadfar F.G. Fernandes A.G. Fischer F.S. Friedman D.S.M. Furtado J.M. Gaidhane S. Gazzard G. Gebremichael B. George R. Ghashghaee A. Gilani S.A. Golechha M. Hamidi S.R. Hammond B.R.R. Hartnett M.E.R.K. Hartono R.K. Hashi A.I. Hay S.I. Hayat K. Heidari G. Ho H.C. Holla R. Househ M.J. Huang J.J.E. Ibitoye S.E.M. Ilic I.M.D. Ilic M.D.D. Ingram A.D.N. Irvani S.S.N. Islam S.M.S. Itumalla R. Jayaram S.P. Jha R.P. Kahloun R. Kalhor R. Kandel H. Kasa A.S. Kavetskyy T.A. Kayode G.A.H. Kempen J.H. Khairallah M. Khalilov R.A. Khan E.A.C. Khanna R.C. Khatib M.N.A. Khoja T.A.E. Kim J.E. Kim Y.J. Kim G.R. Kisa S. Kisa A. Kosen S. Koyanagi A. Kucuk Bicer B. Kulkarni V.P. Kurmi O.P. Landires I.C. Lansingh V.C.L. Leasher J.L.E. LeGrand K.E. Leveziel N. Limburg H. Liu X. Madhava Kunjathur S. Maleki S. Manafi N. Mansouri K. McAlinden C.G. Meles G.G.M. Mersha A.M. Michalek I.M.R. Miller T.R. Misra S. Mohammad Y. Mohammadi S.F.A. Mohammed J.A.H. Mokdad A.H. Moni M.A.A. Montasir A.A.R. Morse A.R.F. Mulaw G.F.C. Naderi M. Naderifar H.S. Naidoo K.S. Naimzada M.D. Nangia V. Narasimha Swamy S.M. Naveed D.M. Negash H.L. Nguyen H.L. Nunez-Samudio V.A. Ogbo F.A. Ogundimu K.T. Olagunju A.T.E. Onwujekwe O.E. Otstavnov N.O. Owolabi M.O. Pakshir K. Panda-Jonas S. Parekh U. Park E-C. Pasovic M. Pawar S. Pesudovs K. Peto T.Q. Pham H.Q. Pinheiro M. Podder V. Rahimi-Movaghar V. Rahman M.H.U.Y. Ramulu P.Y. Rathi P. Rawaf S.L. Rawaf D.L. Rawal L. Reinig N.M. Renzaho A.M. Rezapour A.L. Robin A.L. Rossetti L. Sabour S. Safi S. Sahebkar A. Sahraian M.A.M. Samy A.M. Sathian B. Saya G.K. Saylan M.A. Shaheen A.A.A. Shaikh M.A.T. Shen T.T. Shibuya K.S. Shiferaw W.S. Shigematsu M. Shin J.I. Silva J.C. Silvester A.A. Singh J.A. Singhal D.S. Sitorus R.S. Skiadaresi E.Y. Skryabin V.Y.A. Skryabina A.A. Soheili A.B. Sorrie M.B.A.R.C. Sousa R.A.R.C.T. Sreeramareddy C.T. Stambolian D.G. Tadesse E.G. Tahhan N.I. Tareque M.I. Topouzis F.X. Tran B.X. Tsegaye G.K. Tsilimbaris M.K. Varma R. Virgili G. Vongpradith A.T. Vu G.T. Wang Y.X. Wang N.H. Weldemariam A.H.K. West S.K.G. Wondmeneh T.G.Y. Wong T.Y. Yaseri M. Yonemoto N. Yu C.S. Zastrozhin M.S. Zhang Z-J.R. Zimsen S.R. Resnikoff S. Vos T. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: An analysis for the Global Burden of Disease Study. Lancet Glob. Health 2021 9 2 e144 e160 10.1016/S2214‑109X(20)30489‑7 33275949
    [Google Scholar]
  2. Fricke T.R. Tahhan N. Resnikoff S. Papas E. Burnett A. Ho S.M. Naduvilath T. Naidoo K.S. Global prevalence of presbyopia and vision impairment from uncorrected presbyopia. Ophthalmology 2018 125 10 1492 1499 10.1016/j.ophtha.2018.04.013 29753495
    [Google Scholar]
  3. Khanna R.C. Cicinelli M.V. Marmamula S. Comprehensive eye care - Issues, challenges, and way forward. Indian J. Ophthalmol. 2020 68 2 316 323 10.4103/ijo.IJO_17_19 31957719
    [Google Scholar]
  4. Mostafa M. Al Fatease A. Alany R.G. Abdelkader H. Recent advances of ocular drug delivery systems: Prominence of ocular implants for chronic eye diseases. Pharmaceutics 2023 15 6 1746 10.3390/pharmaceutics15061746 37376194
    [Google Scholar]
  5. Solans C Izquierdo P Nolla J Azemar N Garcia-Celma MJ Nano-emulsions. Curr. Opin. Colloid Interface Sci 2005 10 3–4 102 110
    [Google Scholar]
  6. Asua J.M. Miniemulsion Polymerization. Oxford Progress in Polymer Science 2002 10.1016/S0079‑6700(02)00010‑2
    [Google Scholar]
  7. Singh M. Bharadwaj S. Lee K.E. Kang S.G. Therapeutic nanoemulsions in ophthalmic drug administration: Concept in formulations and characterization techniques for ocular drug delivery. J. Control. Release 2020 328 895 916 10.1016/j.jconrel.2020.10.025 33069743
    [Google Scholar]
  8. Dhahir R.K. Al-Nima A.M. Al-Bazzaz F. Nanoemulsions as ophthalmic drug delivery systems. Turk. J. Pharm. Sci. 2021 18 5 652 664 10.4274/tjps.galenos.2020.59319 34708428
    [Google Scholar]
  9. Gawin-Mikołajewicz A. Nartowski K.P. Dyba A.J. Gołkowska A.M. Malec K. Karolewicz B. Ophthalmic nanoemulsions: From composition to technological processes and quality control. Mol. Pharm. 2021 18 10 3719 3740 10.1021/acs.molpharmaceut.1c00650 34533317
    [Google Scholar]
  10. Gutiérrez J.M. González C. Maestro A. Solè I. Pey C.M. Nolla J. Nano-emulsions: New applications and optimization of their preparation. Curr. Opin. Colloid Interface Sci. 2008 13 4 245 251 10.1016/j.cocis.2008.01.005
    [Google Scholar]
  11. Järvinen K. Järvinen T. Urtti A. Ocular absorption following topical delivery. Adv. Drug Deliv. Rev. 1995 16 1 3 19 10.1016/0169‑409X(95)00010‑5
    [Google Scholar]
  12. Mehuys E. Delaey C. Christiaens T. Van Bortel L. Van Tongelen I. Remon J.P. Boussery K. Eye drop technique and patient-reported problems in a real-world population of eye drop users. Eye (Lond.) 2020 34 8 1392 1398 10.1038/s41433‑019‑0665‑y 31690823
    [Google Scholar]
  13. Maulvi F.A. Shetty K.H. Desai D.T. Shah D.O. Willcox M.D.P. Recent advances in ophthalmic preparations: Ocular barriers, dosage forms and routes of administration. Int. J. Pharm. 2021 608 121105 10.1016/j.ijpharm.2021.121105 34537269
    [Google Scholar]
  14. Agarwal R. Iezhitsa I. Agarwal P. Abdul Nasir N.A. Razali N. Alyautdin R. Ismail N.M. Liposomes in topical ophthalmic drug delivery: An update. Drug Deliv. 2016 23 4 1075 1091 10.3109/10717544.2014.943336 25116511
    [Google Scholar]
  15. Shirasaki Y. Molecular design for enhancement of ocular penetration. J. Pharm. Sci. 2008 97 7 2462 2496 10.1002/jps.21200 17918725
    [Google Scholar]
  16. Xu J Xue Y Hu G Lin T Gou J Yin T A comprehensive review on contact lens for ophthalmic drug delivery. J Control Release 2018 281 97 118
    [Google Scholar]
  17. Ohashi Y. Dogru M. Tsubota K. Laboratory findings in tear fluid analysis. Clin. Chim. Acta 2006 369 1 17 28 10.1016/j.cca.2005.12.035 16516878
    [Google Scholar]
  18. Dickinson E. Adsorbed protein layers at fluid interfaces: Interactions, structure and surface rheology. Colloids Surf. B Biointerfaces 1999 15 2 161 176 10.1016/S0927‑7765(99)00042‑9
    [Google Scholar]
  19. Ozturk B. Argin S. Ozilgen M. McClements D.J. Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural biopolymers: Whey protein isolate and gum arabic. Food Chem. 2015 188 256 263 10.1016/j.foodchem.2015.05.005 26041190
    [Google Scholar]
  20. Shabaaz Begum JP. Antimicrobial nanoemulsion: A futuristic approach in antibacterial drug delivery system. J. Saudi Chem. Soc. 2024 2024 101896
    [Google Scholar]
  21. Kumar M. Bishnoi R.S. Shukla A.K. Jain C.P. Techniques for formulation of nanoemulsion drug delivery system: A review. Prev. Nutr. Food Sci. 2019 24 3 225 234 10.3746/pnf.2019.24.3.225 31608247
    [Google Scholar]
  22. Qadir A. Faiyazuddin M.D. Talib Hussain M.D. Alshammari T.M. Shakeel F. Critical steps and energetics involved in a successful development of a stable nanoemulsion. J. Mol. Liq. 2016 214 7 18 10.1016/j.molliq.2015.11.050
    [Google Scholar]
  23. Gonçalves A. Nikmaram N. Roohinejad S. Estevinho B.N. Rocha F. Greiner R. McClements D.J. Production, properties, and applications of solid self-emulsifying delivery systems (S-SEDS) in the food and pharmaceutical industries. Colloids Surf. A Physicochem. Eng. Asp. 2018 538 108 126 10.1016/j.colsurfa.2017.10.076
    [Google Scholar]
  24. Halnor V.V. Pande V.V. Borawake D.D. Nagare H.S. Nanoemulsion : A Novel Platform for Drug Delivery System Nanoemulsion : A Novel Platform for Drug Delivery System Classification of Nanoemulsions. J. Mater. Sci. Nanotechnol. 2018 2018
    [Google Scholar]
  25. Baranowski P. Karolewicz B. Gajda M. Pluta J. Ophthalmic drug dosage forms: Characterisation and research methods. Sci. World J. 2014 2014 1 14 10.1155/2014/861904 24772038
    [Google Scholar]
  26. Lallemand F. Daull P. Benita S. Buggage R. Garrigue J.S. Successfully improving ocular drug delivery using the cationic nanoemulsion, novasorb. J. Drug Deliv. 2012 2012 1 16 10.1155/2012/604204 22506123
    [Google Scholar]
  27. Lim C. Kim D. Sim T. Hoang N.H. Lee J.W. Lee E.S. Youn Y.S. Oh K.T. Preparation and characterization of a lutein loading nanoemulsion system for ophthalmic eye drops. J. Drug Deliv. Sci. Technol. 2016 36 168 174 10.1016/j.jddst.2016.10.009
    [Google Scholar]
  28. Durán-Lobato A. Ophthalmic wild olive (ACEBUCHE) oil nanoemulsions exert oculoprotective effects against oxidative stress induced by arterial hypertension. Int. J. Pharm. 2024
    [Google Scholar]
  29. Meshksar S. Hadipour Jahromy M. Qomi M. Sami N. Faali F. Formulation and evaluation of the effects of ophthalmic nanoemulsion of Nigella sativa seed extract on atropine-induced dry eye in mice. Phytomed. Plus 2024 4 2 100541 10.1016/j.phyplu.2024.100541
    [Google Scholar]
  30. Hanieh P.N. Bonaccorso A. Zingale E. Cimarelli S. Souto E.B. Rinaldi F. Marianecci C. Pignatello R. Carafa M. Almond oil O/W nanoemulsions: Potential application for ocular delivery. J. Drug Deliv. Sci. Technol. 2022 72 103424 10.1016/j.jddst.2022.103424
    [Google Scholar]
  31. Morsi N.M. Mohamed M.I. Refai H. El Sorogy H.M. Nanoemulsion as a novel ophthalmic delivery system for acetazolamide. Int. J. Pharm. Pharm. Sci. 2014
    [Google Scholar]
  32. Weng Y. Liu J. Jin S. Guo W. Liang X. Hu Z. Nanotechnology-based strategies for treatment of ocular disease. Acta Pharm. Sin. B 2017 7 3 281 291 10.1016/j.apsb.2016.09.001 28540165
    [Google Scholar]
  33. Hadipour Jahromy M. Qomi M. Fazelipour S. Sami N. Faali F. Karimi M. Adhami Moghadam F. Evaluation of curcumin-based ophthalmic nano-emulsion on atropine-induced dry eye in mice. Heliyon 2024 10 7 e29009 10.1016/j.heliyon.2024.e29009 38601632
    [Google Scholar]
  34. Zingale E. Bonaccorso A. D’Amico A.G. Lombardo R. D’Agata V. Rautio J. Pignatello R. Formulating resveratrol and melatonin Self-Nanoemulsifying Drug Delivery Systems (SNEDDS) for ocular administration using design of experiments. Pharmaceutics 2024 16 1 125 10.3390/pharmaceutics16010125 38258134
    [Google Scholar]
  35. Attia M.A. Eleraky N.E. Abdelazeem K. Safwat M.A. Prednisolone loaded-cationic nanoemulsion formulation for uveitis management. J. Drug Deliv. Sci. Technol. 2024 92 105406 10.1016/j.jddst.2024.105406
    [Google Scholar]
  36. Aboumanei M.H. Mahmoud A.F. Development of tamoxifen in situ gel nanoemulsion for ocular delivery in photoreceptor degeneration disorder: In vitro characterization, 131I-radiolabeling, and in vivo biodistribution studies. J Pharm 2023
    [Google Scholar]
  37. Tran V.N. Strnad O. Šuman J. Veverková T. Sukupová A. Cejnar P. Hynek R. Kronusová O. Šach J. Kaštánek P. Ruml T. Viktorová J. Cannabidiol nanoemulsion for eye treatment – Anti-inflammatory, wound healing activity and its bioavailability using in vitro human corneal substitute. Int. J. Pharm. 2023 643 123202 10.1016/j.ijpharm.2023.123202 37406946
    [Google Scholar]
  38. Gawin-Mikołajewicz A. Nawrot U. Malec K.H. Krajewska K. Nartowski K.P. Karolewicz B.L. The effect of high-pressure homogenization conditions on the physicochemical properties and stability of designed fluconazole-loaded ocular nanoemulsions. Pharmaceutics 2024 38276489
    [Google Scholar]
  39. Chávez-Hurtado P. Pesqueda-Pinedo L. Ceballos-Delgadillo H.A. Liñán-Segura A. Figueroa-Ponce H. Quintana-Hau J.D. Physicochemical characterization of a DMPC-based nanoemulsion for dry eye and compatibility test with soft contact lenses in vitro. Cont Lens Anterior Eye. 2022 45 2 101428 10.1016/j.clae.2021.02.014
    [Google Scholar]
  40. Choradiya B.R. Patil S.B. Design, development, and characterization of brinzolamide and brimonidine tartrate nanoemulsion for ophthalmic drug delivery. Thaiphesatchasan 2022 46 4 413 424 10.56808/3027‑7922.2623
    [Google Scholar]
  41. Zhang R. Yang J. Luo Q. Shi J. Xu H. Zhang J. Preparation and in vitro and in vivo evaluation of an isoliquiritigenin-loaded ophthalmic nanoemulsion for the treatment of corneal neovascularization. Drug Deliv. 2022 29 1 2217 2233 10.1080/10717544.2022.2096714 35815765
    [Google Scholar]
  42. Yang J. Liang Z. Lu P. Song F. Zhang Z. Zhou T. Development of a luliconazole nanoemulsion as a prospective ophthalmic delivery system for the treatment of fungal keratitis: In vitro and in vivo evaluation. Pharmaceutics 2022 14 10 2052
    [Google Scholar]
  43. Mahmoudi A. Jaafari M.R. Malaekeh-Nikouei B. Preparation, characterization and preliminary in vivo safety evaluation of cationic nano-emulsions containing α-lipoic acid after ocular administration in NZW rabbits. Nanomed. J. 2023
    [Google Scholar]
  44. Griffin W.C. Calculation of HLB values of non-ionic surfactants. J. Soc. Cosmet. Chem. 1954
    [Google Scholar]
  45. Grant R.L. Yao C. Gabaldon D. Acosta D. Evaluation of surfactant cytotoxicity potential by primary cultures of ocular tissues: I. Characterization of rabbit corneal epithelial cells and initial injury and delayed toxicity studies. Toxicology 1992 76 2 153 176 10.1016/0300‑483X(92)90162‑8 1281345
    [Google Scholar]
  46. Sahoo R.K. Biswas N. Guha A. Sahoo N. Kuotsu K. Nonionic surfactant vesicles in ocular delivery: Innovative approaches and perspectives. BioMed Res. Int. 2014 2014 1 12 10.1155/2014/263604 24995280
    [Google Scholar]
  47. Kim T.W. Chung H. Kwon I.C. Sung H.C. Jeong S.Y. Optimization of lipid composition in cationic emulsion as in vitro and in vivo transfection agents. Pharm. Res. 2001 18 1 54 60 10.1023/A:1011074610100 11336353
    [Google Scholar]
  48. Hagigit T. Abdulrazik M. Orucov F. Valamanesh F. Lambert M. Lambert G. Behar-Cohen F. Benita S. Topical and intravitreous administration of cationic nanoemulsions to deliver antisense oligonucleotides directed towards VEGF KDR receptors to the eye. J. Control. Release 2010 145 3 297 305 10.1016/j.jconrel.2010.04.013 20420865
    [Google Scholar]
  49. Vogel F.R. Powell M.F. A compendium of vaccine adjuvants and excipients. Pharm. Biotechnol. 1995 6 141 228 10.1007/978‑1‑4615‑1823‑5_7 7551218
    [Google Scholar]
  50. Fuangswasdi A. Charoensaeng A. Sabatini D.A. Scamehorn J.F. Acosta E.J. Osathaphan K. Khaodhiar S. Mixtures of anionic and cationic surfactants with single and twin head groups: Adsorption and precipitation studies. J. Surfactants Deterg. 2006 9 1 21 28 10.1007/s11743‑006‑0370‑2
    [Google Scholar]
  51. Marsh R.J. Maurice D.M. The influence of non-ionic detergents and other surfactants on human corneal permeability. Exp. Eye Res. 1971 11 1 43 48 10.1016/S0014‑4835(71)80063‑5 5002159
    [Google Scholar]
  52. Kassem M.G.A. Ahmed A.M.M. Abdel-Rahman H.H. Moustafa A.H.E. Use of Span 80 and Tween 80 for blending gasoline and alcohol in spark ignition engines. Energy Rep. 2019 5 221 230 10.1016/j.egyr.2019.01.009
    [Google Scholar]
  53. Fernandes A.R. Sanchez-Lopez E. Santos T. Garcia M.L. Silva A.M. Souto E.B. Development and characterization of nanoemulsions for ophthalmic applications: Role of cationic surfactants. Materials (Basel) 2021 14 24 7541 10.3390/ma14247541 34947136
    [Google Scholar]
  54. Sarkar R. Pal A. Rakshit A. Saha B. Properties and applications of amphoteric surfactant: A concise review. J. Surfactants Deterg. 2021 24 5 709 730 10.1002/jsde.12542
    [Google Scholar]
  55. Schmidts T. Schlupp P. Gross A. Dobler D. Runkel F. Required HLB determination of some pharmaceutical oils in submicron emulsions. J. Dispers. Sci. Technol. 2012 33 6 816 820 10.1080/01932691.2011.584800
    [Google Scholar]
  56. Guo X. Rong Z. Ying X. Calculation of hydrophile–lipophile balance for polyethoxylated surfactants by group contribution method. J. Colloid Interface Sci. 2006 298 1 441 450 10.1016/j.jcis.2005.12.009 16414065
    [Google Scholar]
  57. Almeida F. Corrêa M. Zaera A.M. Garrigues T. Isaac V. Influence of different surfactants on development of nanoemulsion containing fixed oil from an Amazon palm species. Colloids Surf. A Physicochem. Eng. Asp. 2022 643 128721 10.1016/j.colsurfa.2022.128721
    [Google Scholar]
  58. Santos J. Alfaro-Rodríguez M.C. Vega L. Muñoz J. Relationship between HLB number and predominant destabilization process in microfluidized nanoemulsions formulated with lemon essential oil. Appl. Sci. 2023 13 8 5208 10.3390/app13085208
    [Google Scholar]
  59. Kommuru T.R. Gurley B. Khan M.A. Reddy I.K. Self-emulsifying drug delivery systems (SEDDS) of coenzyme Q10: formulation development and bioavailability assessment. Int. J. Pharm. 2001 212 2 233 246 10.1016/S0378‑5173(00)00614‑1 11165081
    [Google Scholar]
  60. Hait S.K. Moulik S.P. Determination of critical micelle concentration (CMC) of nonionic surfactants by donor‐acceptor interaction with lodine and correlation of CMC with hydrophile‐lipophile balance and other parameters of the surfactants. J. Surfactants Deterg. 2001 4 3 303 309 10.1007/s11743‑001‑0184‑2
    [Google Scholar]
  61. Xu H. Li P.X. Ma K. Thomas R.K. Penfold J. Lu J.R. Limitations in the application of the Gibbs equation to anionic surfactants at the air/water surface: Sodium dodecylsulfate and sodium dodecylmonooxyethylenesulfate above and below the CMC. Langmuir 2013 29 30 9335 9351 10.1021/la401835d 23819862
    [Google Scholar]
  62. McClements D.J. Rao J. Food-grade nanoemulsions: Formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit. Rev. Food Sci. Nutr. 2011 51 4 285 330 10.1080/10408398.2011.559558 21432697
    [Google Scholar]
  63. Wani T.A. Masoodi F.A. Jafari S.M. McClements D.J. Chapter 19 - Safety of Nanoemulsions and Their Regulatory Status. Nanoemulsions- Formulation, Applications, and Characterization 2018 613 628 10.1016/B978‑0‑12‑811838‑2.00019‑9
    [Google Scholar]
  64. Jafari S.M. Katouzian I. Akhavan S. 15 - Safety and regulatory issues of nanocapsules. Nanoencapsulation Technologies for the Food and Nutraceutical Industries Academic Press 2017 545 590 10.1016/B978‑0‑12‑809436‑5.00015‑X
    [Google Scholar]
  65. Shafiq S. Shakeel F. Talegaonkar S. Ahmad F.J. Khar R.K. Ali M. Development and bioavailability assessment of ramipril nanoemulsion formulation. Eur. J. Pharm. Biopharm. 2007 66 2 227 243 10.1016/j.ejpb.2006.10.014 17127045
    [Google Scholar]
  66. Dautzenberq H. Surfactant solutions. New methods of investigation. Hg. von RAOUL ZANA. ISBN 0-8247-7623-2. New York/Basel: Marcel Dekker, Inc. XII, 479 S., geb US $99.75. Acta Polymerica 1988 39 8 470
    [Google Scholar]
  67. Zhang J. Liu Z. Tao C. Lin X. Zhang M. Zeng L. Chen X. Song H. Cationic nanoemulsions with prolonged retention time as promising carriers for ophthalmic delivery of tacrolimus. Eur. J. Pharm. Sci. 2020 144 105229 10.1016/j.ejps.2020.105229 31958581
    [Google Scholar]
  68. Handa M. Ujjwal R.R. Vasdev N. Flora S.J.S. Shukla R. Optimization of surfactant and cosurfactant-aided pine oil nanoemulsions by isothermal low-energy methods for anticholinesterase activity. ACS Omega 2021 6 1 559 568 10.1021/acsomega.0c05033 33458508
    [Google Scholar]
  69. Box K Comer J. Using measured pKa, LogP and solubility to investigate supersaturation and predict BCS class. Curr Drug Metab. 2008
    [Google Scholar]
  70. Alany R.G. Rades T. Agatonovic-Kustrin S. Davies N.M. Tucker I.G. Effects of alcohols and diols on the phase behaviour of quaternary systems. Int. J. Pharm. 2000 196 2 141 145 10.1016/S0378‑5173(99)00408‑1 10699705
    [Google Scholar]
  71. Wakisaka S. Nakanishi M. Gohtani S. Phase behavior and formation of o/w nano-emulsion in vegetable oil/ mixture of polyglycerol polyricinoleate and polyglycerin fatty acid ester/water systems. J. Oleo Sci. 2014 63 3 229 237 10.5650/jos.ess13139 24521844
    [Google Scholar]
  72. Ledet G. Pamujula S. Walker V. Simon S. Graves R. Mandal T.K. Development and in vitro evaluation of a nanoemulsion for transcutaneous delivery. Drug Dev. Ind. Pharm. 2014 40 3 370 379 10.3109/03639045.2012.763137 23600657
    [Google Scholar]
  73. Mazonde P. Khamanga S.M.M. Walker R.B. Design, optimization, manufacture and characterization of efavirenz-loaded flaxseed oil nanoemulsions. Pharmaceutics 2020 12 9 797 10.3390/pharmaceutics12090797 32842501
    [Google Scholar]
  74. Smail S.S. Ghareeb M.M. Omer H.K. Al-Kinani A.A. Alany R.G. Studies on surfactants, cosurfactants, and oils for prospective use in formulation of ketorolac tromethamine ophthalmic nanoemulsions. Pharmaceutics 2021 13 4 467 10.3390/pharmaceutics13040467 33808316
    [Google Scholar]
  75. Algahtani MS Ahmad MZ Ahmad J Investigation of factors influencing formation of nanoemulsion by spontaneous emulsification: Impact on droplet size, polydispersity index, and stability. Bioengineering 2022
    [Google Scholar]
  76. Sarheed O. Dibi M. Ramesh K.V.R.N.S. Studies on the effect of oil and surfactant on the formation of alginate-based O/W lidocaine nanocarriers using nanoemulsion template. Pharmaceutics 2020 12 12 1223 10.3390/pharmaceutics12121223 33348692
    [Google Scholar]
  77. Onaizi S.A. Effect of oil/water ratio on rheological behavior, droplet size, zeta potential, long-term stability, and acid-induced demulsification of crude oil/water nanoemulsions. J Pet Sci Eng. 2022 209 109857 10.1016/j.petrol.2021.109857
    [Google Scholar]
  78. Goswami A.S. Rawat R. Pillai P. Saw R.K. Joshi D. Mandal A. Formulation and characterization of nanoemulsions stabilized by nonionic surfactant and their application in enhanced oil recovery. Pet Sci Technol 2023
    [Google Scholar]
  79. Sharma S. Shukla P. Misra A. Mishra P.R. Chapter 8 - Interfacial and colloidal properties of emulsified systems: Pharmaceutical and biological perspective. Colloid and Interface Science in Pharmaceutical Research and Development 2014 149 172
    [Google Scholar]
  80. Kanoujia J. Kushwaha P.S. Saraf S.A. Evaluation of gatifloxacin pluronic micelles and development of its formulation for ocular delivery. Drug Deliv. Transl. Res. 2014 4 4 334 343 10.1007/s13346‑014‑0194‑y 25787066
    [Google Scholar]
  81. Malik M.R. Al-Harbi F.F. Nawaz A. Amin A. Farid A. Mohaini M.A. Alsalman A.J. Hawaj M.A.A. Alhashem Y.N. Formulation and characterization of chitosan-decorated multiple nanoemulsion for topical delivery in vitro and ex vivo. Molecules 2022 27 10 3183 10.3390/molecules27103183 35630660
    [Google Scholar]
  82. Polychniatou V. Tzia C. Study of formulation and stability of co-surfactant free water-in-olive oil nano- and submicron emulsions with food grade non-ionic surfactants. JAOCS. J. Am. Oil Chem. Soc. 2014 91 1 79 88 10.1007/s11746‑013‑2356‑3
    [Google Scholar]
  83. Weerapol Y. Limmatvapirat S. Nunthanid J. Sriamornsak P. Self-nanoemulsifying drug delivery system of nifedipine: impact of hydrophilic-lipophilic balance and molecular structure of mixed surfactants. AAPS PharmSciTech 2014 15 2 456 464 10.1208/s12249‑014‑0078‑y 24452500
    [Google Scholar]
  84. Warisnoicharoen W. Lansley A.B. Lawrence M.J. Nonionic oil-in-water microemulsions: the effect of oil type on phase behaviour. Int. J. Pharm. 2000 198 1 7 27 10.1016/S0378‑5173(99)00406‑8 10722947
    [Google Scholar]
  85. Jurišić Dukovski B. Ljubica J. Kocbek P. Safundžić Kučuk M. Krtalić I. Hafner A. Pepić I. Lovrić J. Towards the development of a biorelevant in vitro method for the prediction of nanoemulsion stability on the ocular surface. Int. J. Pharm. 2023 633 122622 10.1016/j.ijpharm.2023.122622 36669582
    [Google Scholar]
  86. Mehrandish S Mirzaeei S. Design of novel nanoemulsion formulations for topical ocular delivery of itraconazole: Development, characterization and in vitro bioassay. Adv Pharm Bull 2022
    [Google Scholar]
  87. Laxmi M. Development and characterization of nanoemulsion as carrier for the enhancement of bioavailability of artemether. Artif. Cells Nanomed. Biotechnol. 2015
    [Google Scholar]
  88. Gurpreet K. Singh S.K. Review of nanoemulsion formulation and characterization techniques. Indian J. Pharm. Sci. 2018 10.4172/pharmaceutical‑sciences.1000422
    [Google Scholar]
  89. Sari T.P. Mann B. Kumar R. Singh R.R.B. Sharma R. Bhardwaj M. Athira S. Preparation and characterization of nanoemulsion encapsulating curcumin. Food Hydrocoll. 2015 43 540 546 10.1016/j.foodhyd.2014.07.011
    [Google Scholar]
  90. Zielińska A. Soles B.B. Lopes A.R. Vaz B.F. Rodrigues C.M. Alves T.F.R. Klensporf-Pawlik D. Durazzo A. Lucarini M. Severino P. Santini A. Chaud M.V. Souto E.B. Nanopharmaceuticals for eye administration: Sterilization, depyrogenation and clinical applications. Biology 2020 9 10 336 10.3390/biology9100336 33066555
    [Google Scholar]
  91. Choradiya B.R. Patil S.B. A comprehensive review on nanoemulsion as an ophthalmic drug delivery system. J. Mol. Liq. 2021 339 116751 10.1016/j.molliq.2021.116751
    [Google Scholar]
  92. Cavalli R. Caputo O. Carlotti M.E. Trotta M. Scarnecchia C. Gasco M.R. Sterilization and freeze-drying of drug-free and drug-loaded solid lipid nanoparticles. Int. J. Pharm. 1997 148 1 47 54 10.1016/S0378‑5173(96)04822‑3
    [Google Scholar]
  93. Mahboobian M.M. Mohammadi M. Mansouri Z. Development of thermosensitive in situ gel nanoemulsions for ocular delivery of acyclovir. J. Drug Deliv. Sci. Technol. 2020 55 101400 10.1016/j.jddst.2019.101400
    [Google Scholar]
  94. Abbas M.N. Khan S.A. Sadozai S.K. Khalil I.A. Anter A. Fouly M.E. Osman A.H. Kazi M. Nanoparticles loaded thermoresponsive in situ gel for ocular antibiotic delivery against bacterial keratitis. Polymers (Basel) 2022 14 6 1135 10.3390/polym14061135 35335465
    [Google Scholar]
  95. Youssef A.A.A. Thakkar R. Senapati S. Joshi P.H. Dudhipala N. Majumdar S. Design of topical moxifloxacin mucoadhesive nanoemulsion for the management of ocular bacterial infections. Pharmaceutics 2022 14 6 1246 10.3390/pharmaceutics14061246 35745818
    [Google Scholar]
  96. Silva B. São Braz B. Delgado E. Gonçalves L. Colloidal nanosystems with mucoadhesive properties designed for ocular topical delivery. Int. J. Pharm. 2021 606 120873 10.1016/j.ijpharm.2021.120873 34246741
    [Google Scholar]
  97. Tang B. Wang Q. Zhang G. Zhang A. Zhu L. Zhao R. Gu H. Meng J. Zhang J. Fang G. OCTN2- and ATB0,+-targeted nanoemulsions for improving ocular drug delivery. J. Nanobiotechnology 2024 22 1 130 10.1186/s12951‑024‑02402‑x 38532399
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128350573241202105210
Loading
/content/journals/cpd/10.2174/0113816128350573241202105210
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: co-surfactants ; oils ; Nano emulsion ; surfactants ; ocular delivery
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test