Skip to content
2000
image of A Comparative Review on the Production of Factor VIII in Human and Non-human Hosts

Abstract

Hemophilia A (HA) is an inherited condition that is characterized by a lack of coagulation factor VIII (FVIII), which is needed for blood clotting. To produce recombinant factor VIII (rFVIII) for treatment, innovative methods are required. This study presents a thorough examination of the genetic engineering and biotechnological methods that are essential for the production of this complex process. Multiple host cells, such as animal, microbial, and human cell lines, are examined. Cultivating genetically modified cells enables the production of rFVIII, with further changes after protein synthesis, such as glycosylation, taking place in eukaryotic cells to guarantee correct folding. The extraction and purification of rFVIII require advanced methods, including affinity chromatography, to improve the purity of the protein. The purified protein undergoes rigorous quality control, which includes Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS- PAGE) analysis, to assess its identity, purity, and functioning. The scalability of this approach allows for the synthesis of significant amounts of rFVIII for therapeutic purposes. Optimization strategies include modifying B-domain-deleted (BDD) FVIII, including introns in FVIII complementary DNA (cDNA) sequences to boost synthesis and storage, and making changes to chaperone-binding areas to optimize protein release. Furthermore, the search for a modified form of FVIII that has a longer duration of action in the body shows potential for enhancing the effectiveness of synthetic FVIII and progressing the treatment of hemophilia A. Future research should focus on improving the treatment of hemophilia A by developing a variant of FVIII that has increased stability and reduced immunogenicity.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128327353241121050134
2025-01-10
2025-04-02
Loading full text...

Full text loading...

References

  1. Pipe S.W. The promise and challenges of bioengineered recombinant clotting factors. J. Thromb. Haemost. 2005 3 8 1692 1701 10.1111/j.1538‑7836.2005.01367.x 16102035
    [Google Scholar]
  2. Swiech K. Kamen A. Ansorge S. Durocher Y. Picanço-Castro V. Russo-Carbolante E.M.S. Neto M.S.A. Covas D.T. Transient transfection of serum-free suspension HEK 293 cell culture for efficient production of human rFVIII. BMC Biotechnol. 2011 11 1 114 10.1186/1472‑6750‑11‑114 22115125
    [Google Scholar]
  3. Saenko E. Ananyeva N. Moayeri M. Ramezani A. Hawley R. Development of improved factor VIII molecules and new gene transfer approaches for hemophilia A. Curr. Gene Ther. 2003 3 1 27 41 10.2174/1566523033347417 12553533
    [Google Scholar]
  4. Fuentes-Prior P. Fujikawa K. Pratt K.P. New insights into binding interfaces of coagulation factors V and VIII and their homologues lessons from high resolution crystal structures. Curr. Protein Pept. Sci. 2002 3 3 313 339 10.2174/1389203023380639 12188899
    [Google Scholar]
  5. Wolfe L.C. Hematologic Manifestations of Systemic Illness. Lanzkowsky's Manual of Pediatric Hematology and Oncology (Sixth Edition) San Diego Academic Press 2016 7 31 10.1016/B978‑0‑12‑801368‑7.00002‑8
    [Google Scholar]
  6. Sarrafzadeh M.H. Navarro J.M. The effect of oxygen on the sporulation, δ-endotoxin synthesis and toxicity of Bacillus thuringiensis H14. World J. Microbiol. Biotechnol. 2006 22 3 305 310 10.1007/s11274‑005‑9037‑9
    [Google Scholar]
  7. Ishaque A. Thrift J. Murphy J.E. Konstantinov K. Over‐expression of Hsp70 in BHK‐21 cells engineered to produce recombinant factor VIII promotes resistance to apoptosis and enhances secretion. Biotechnol. Bioeng. 2007 97 1 144 155 10.1002/bit.21201 17054114
    [Google Scholar]
  8. Giangrande P.L.F. Safety and efficacy of KOGENATE ® Bayer in previously untreated patients (PUPs) and minimally treated patients (MTPs). Haemophilia 2002 8 Suppl. 2 19 22 10.1046/j.1351‑8216.2001.00133.x 11966848
    [Google Scholar]
  9. Brettler D.B. Forsberg A.D. Levine P.H. Louis M. Kasper C.K. Lusher J.M. The Use of Porcine Factor VIII Concentrate in the Treatment of Patients With Inhibitor Antibodies to Factor VIII A Multicenter US (Hyate : C) Experience study, the patient had to have a factor VIII inhibitor antibody and time of this treatment and thre. JAMA 1989 149 1381 1384 10.1001/archinte.1989.00390060103022
    [Google Scholar]
  10. Green D. Tuite G.F. Jr Declining platelet counts and platelet aggregation during porcine VIII: C infusions. Am. J. Med. 1989 86 2 222 224 10.1016/0002‑9343(89)90274‑X 2492401
    [Google Scholar]
  11. Hernández-Carvajal E. Arce-Solano S. Mena-Aguilar D. Fuentes-Prior P. Producción heteróloga y caracterización bioquímica del procoagulante humano Factor VIII para ensayos de cristalización de macromoléculas proteicas. Tecnol. Marcha 2017 29 4 78 10.18845/tm.v29i4.3039
    [Google Scholar]
  12. Hermans C. Mancuso M.E. Nolan B. Pasi K.J. Recombinant factor VIII Fc for the treatment of haemophilia A. Eur. J. Haematol. 2021 106 6 745 761 10.1111/ejh.13610 33650192
    [Google Scholar]
  13. Mazurkiewicz-Pisarek A. Płucienniczak G. Ciach T. Płucienniczak A. The factor VIII protein and its function. Acta Biochim. Pol. 2016 63 1 11 16 10.18388/abp.2015_1056 26824291
    [Google Scholar]
  14. Scandella BD. Mattingly M. Prescott R. A Recombinant Factor VIII A2 Domain Polypeptide Quantitatively Neutralizes Human Inhibitor Antibodies That Bind to A2. Blood 1993 82 6 1767 1775
    [Google Scholar]
  15. Burke R.L. Pachl C. Quiroga M. Rosenberg S. Haigwood N. Nordfang O. Ezban M. The functional domains of coagulation factor VIII:C. J. Biol. Chem. 1986 261 27 12574 12578 10.1016/S0021‑9258(18)67127‑3 3017981
    [Google Scholar]
  16. Toole J.J. Pittman D.D. Orr E.C. A large region (≃95 kDa) of human factor VIII is dispensable for in vitro procoagulant activity. Proc. Natl. Acad. Sci. USA 1986 83 5939 5942 10.1073/pnas.83.16.5939 3016730
    [Google Scholar]
  17. Blümel J. Schmidt I. Effenberger W. Seitz H. Willkommen H. Brackmann H.H. Löwer J. Eis-Hübinger A.M. Parvovirus B19 transmission by heat‐treated clotting factor concentrates. Transfusion 2002 42 11 1473 1481 10.1046/j.1537‑2995.2002.00221.x 12421221
    [Google Scholar]
  18. Yokozaki S. Fukuda Y. Nakano I. Katano Y. Toyoda H. Takamatsu J. Detection of TT virus DNA in plasma-derived clotting factor concentrates. Blood 1999 94 10 3617 10.1182/blood.V94.10.3617.422a38f_3617_3617 10610120
    [Google Scholar]
  19. Lee C.A. Kessler C.M. Varon D. Martinowitz U. Heim M. Evatt B.L. Prions and haemophilia: assessment of risk. Haemophilia 1998 4 4 628 633 10.1046/j.1365‑2516.1998.440628.x
    [Google Scholar]
  20. Kannicht C. Kohla G. Tiemeyer M. Walter O. Sandberg H. A new recombinant factor VIII: from genetics to clinical use. Drug Des. Devel. Ther. 2015 9 3817 3819 10.2147/DDDT.S85608 26229443
    [Google Scholar]
  21. Yekta A.A. Zomorodipour A. Khodabandeh M. Daliri M. Bacterial expression and purification of C1C2 domain of human factor VIII. Iran. J. Biotechnol. 2006 4 104 111
    [Google Scholar]
  22. Choi S.J. Jang K.J. Lim J.A. Kim H.S. Human coagulation factor VIII domain-specific recombinant polypeptide expression. Blood Res. 2015 50 2 103 108 10.5045/br.2015.50.2.103 26157780
    [Google Scholar]
  23. Jacquemin M.G. Desqueper B.G. Benhida A. Vander Elst L. Hoylaerts M.F. Bakkus M. Thielemans K. Arnout J. Peerlinck K. Gilles J.G.G. Vermylen J. Saint-Remy J.M.R. Mechanism and kinetics of factor VIII inactivation: study with an IgG4 monoclonal antibody derived from a hemophilia A patient with inhibitor. Blood 1998 92 2 496 506 10.1182/blood.V92.2.496 9657749
    [Google Scholar]
  24. Orlova N.A. Kovnir S.V. Gabibov A.G. Vorobiev I.I. Stable high-level expression of factor VIII in Chinese hamster ovary cells in improved elongation factor-1 alpha-based system. BMC Biotechnol. 2017 17 1 33 10.1186/s12896‑017‑0353‑6 28340620
    [Google Scholar]
  25. Sandberg H. Lütkemeyer D. Kuprin S. Wrangel M. Almstedt A. Persson P. Ek V. Mikaelsson M. Mapping and partial characterization of proteases expressed by a CHO production cell line. Biotechnol. Bioeng. 2006 95 5 961 971 10.1002/bit.21057 16897737
    [Google Scholar]
  26. Mesgari-Shadi A. Sarrafzadeh M.H. Osmotic conditions could promote scFv antibody production in the Escherichia coli HB2151. Bioimpacts 2017 7 3 199 206 10.15171/bi.2017.23
    [Google Scholar]
  27. Haghi A.M. Nateghpour M. Edrissian G. Sepehrizadeh Z. Mohebali M. Khoramizade M.R. Sequence Analysis of Different Domains of Plasmodium vivax Apical Membrane Antigen (PvAMA-1 gene) Locus in Iran. Iran J Parasitol. 2012 7 1 26 31
    [Google Scholar]
  28. Kaufman R.J. Wasley L.C. Dorner A.J. Synthesis, processing, and secretion of recombinant human factor VIII expressed in mammalian cells. J. Biol. Chem. 1988 263 13 6352 6362 10.1016/S0021‑9258(18)68793‑9 3129422
    [Google Scholar]
  29. Cortes G.A. Moore M.J. El-Nakeep S. Physiology, Von Willebrand Factor. StatPearls. Treasure Island, FL StatPearls Publishing 2023
    [Google Scholar]
  30. Boedeker B.G.D. Production processes of licensed recombinant factor VIII preparations. Semin Thromb Hemost. 2001 27 4 385 94 10.1055/s‑2001‑16891
    [Google Scholar]
  31. Boedeker B.G.D. The manufacturing of the recombinant factor VIII, Kogenate. Transfus. Med. Rev. 1992 6 4 256 260 10.1016/S0887‑7963(92)70177‑1 1421825
    [Google Scholar]
  32. Spier R.E. Griffiths J.B. Berthold W. Production of recombinant factor VIII from perfusion cultures: I. Large scale fermentation. Animal Cell Technology: Products of Today, Prospects of Tomorrow Elsevier: Oxford, England 2013
    [Google Scholar]
  33. Plantier J.L. Rodriguez M.H. Enjolras N. Attali O. Négrier C. A factor VIII minigene comprising the truncated intron I of factor IX highly improves the in vitro production of factor VIII. Thromb. Haemost. 2001 86 8 596 603 10.1055/s‑0037‑1616092 11522009
    [Google Scholar]
  34. Spencer H.T. Denning G. Gautney R.E. Dropulic B. Roy A.J. Baranyi L. Gangadharan B. Parker E.T. Lollar P. Doering C.B. Lentiviral vector platform for production of bioengineered recombinant coagulation factor VIII. Mol. Ther. 2011 19 2 302 309 10.1038/mt.2010.239 21081907
    [Google Scholar]
  35. Doering C.B. Healey J.F. Parker E.T. Barrow R.T. Lollar P. Identification of porcine coagulation factor VIII domains responsible for high level expression via enhanced secretion. J. Biol. Chem. 2004 279 8 6546 6552 10.1074/jbc.M312451200 14660593
    [Google Scholar]
  36. Parker E.T. Healey J.F. Barrow R.T. Craddock H.N. Lollar P. Reduction of the inhibitory antibody response to human factor VIII in hemophilia A mice by mutagenesis of the A2 domain B-cell epitope. Blood 2004 104 3 704 710 10.1182/blood‑2003‑11‑3891 15073030
    [Google Scholar]
  37. Healey J.F. Parker E.T. Barrow R.T. Langley T.J. Church W.R. Lollar P. The comparative immunogenicity of human and porcine factor VIII in haemophilia A mice. Thromb. Haemost. 2009 102 7 35 41 10.1160/TH08‑12‑0818 19572065
    [Google Scholar]
  38. Shintani M. Sanchez Z.K. Kimbara K. Genomics of microbial plasmids: classification and identification based on replication and transfer systems and host taxonomy. Front. Microbiol. 2015 6 242 10.3389/fmicb.2015.00242 25873913
    [Google Scholar]
  39. Pace C.N. Vajdos F. Fee L. Grimsley G. Gray T. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 1995 4 11 2411 2423 10.1002/pro.5560041120 8563639
    [Google Scholar]
  40. Orlova N.A. Kovnir S.V. Vorobiev I.I. Yuriev A.S. Gabibov A.G. Vorobiev A.I. Stable expression of recombinant factor VIII in CHO cells using methotrexate-driven transgene amplification. Acta Nat. (Engl. Ed.) 2012 4 1 93 100 10.32607/20758251‑2012‑4‑1‑93‑100 22708069
    [Google Scholar]
  41. Orlova N.A. Kovnir S.V. Hodak J.A. Vorobiev I.I. Gabibov A.G. Skryabin K.G. Improved elongation factor-1 alpha-based vectors for stable high-level expression of heterologous proteins in Chinese hamster ovary cells. BMC Biotechnol. 2014 14 1 56 10.1186/1472‑6750‑14‑56 24929670
    [Google Scholar]
  42. Gregory T.R. Nicol J.A. Tamm H. Kullman B. Kullman K. Leitch I.J. Eukaryotic genome size databases. Nucleic Acids Res. 2007 35 D332 8 10.1093/nar/gkl828
    [Google Scholar]
  43. Lai T. Yang Y. Ng SK. Advances in Mammalian cell line development technologies for recombinant protein production. Pharmaceuticals 2013 6 5 579 603
    [Google Scholar]
  44. Bashar S. Jeong H.J. Bacterial Production of Recombinant Coagulation Factor VIII Domains. Medicina (Kaunas) 2023 59 4 694 10.3390/medicina59040694 37109652
    [Google Scholar]
  45. Bosques C.J. Collins B.E. Meador J.W. III Sarvaiya H. Murphy J.L. DelloRusso G. Bulik D.A. Hsu I.H. Washburn N. Sipsey S.F. Myette J.R. Raman R. Shriver Z. Sasisekharan R. Venkataraman G. Chinese hamster ovary cells can produce galactose-α-1,3-galactose antigens on proteins. Nat. Biotechnol. 2010 28 11 1153 1156 10.1038/nbt1110‑1153 21057479
    [Google Scholar]
  46. Dietmair S. Hodson M.P. Quek L-E. Timmins N.E. Gray P. Nielsen L.K. A multi-omics analysis of recombinant protein production in Hek293 cells. PLoS One. 2012 7 8 e43394 10.1371/journal.pone.0043394
    [Google Scholar]
  47. Ghaderi D. Zhang M. Hurtado-Ziola N. Varki A. Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation. Biotechnol. Genet. Eng. Rev. 2012 28 1 147 176 10.5661/bger‑28‑147 22616486
    [Google Scholar]
  48. Wurm F.M. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat. Biotechnol. 2004 22 11 1393 1398 10.1038/nbt1026 15529164
    [Google Scholar]
  49. Butler M. Spearman M. The choice of mammalian cell host and possibilities for glycosylation engineering. Curr. Opin. Biotechnol. 2014 30 107 112 10.1016/j.copbio.2014.06.010 25005678
    [Google Scholar]
  50. Barnes L.M. Bentley C.M. Dickson A.J. Advances in animal cell recombinant protein production: GS-NS0 expression system. Cytotechnology 2000 32 2 109 123 10.1023/A:1008170710003 19002973
    [Google Scholar]
  51. Guidelines for assuring the quality of pharmaceutical and biological products prepared by recombinant DNA technology, Annex 3, TRS No 814. 2013 Available from: https://www.who.int/publications/m/item/annex3-who-trs-814
  52. Paleyanda R.K. Velander W.H. Lee T.K. Scandella D.H. Gwazdauskas F.C. Knight J.W. Hoyer L.W. Drohan W.N. Lubon H. Transgenic pigs produce functional human factor VIII in milk. Nat. Biotechnol. 1997 15 10 971 975 10.1038/nbt1097‑971 9335047
    [Google Scholar]
  53. Niemann H. Kues W.A. Application of transgenesis in livestock for agriculture and biomedicine. Anim. Reprod. Sci. 2003 79 3-4 291 317 10.1016/S0378‑4320(03)00169‑6 14643109
    [Google Scholar]
  54. Jänne J. Hyttinen J.M. Peura T. Tolvanen M. Alhonen L. Halmekytö M. Transgenic animals as bioproducers of therapeutic proteins. Ann. Med. 1992 24 4 273 280 10.3109/07853899209149954 1389089
    [Google Scholar]
  55. Bösze Z. Baranyi M. Bruce C. Whitelaw A. Producing recombinant human milk proteins in the milk of livestock species. Adv Exp Med Biol. 2008 606 357 395
    [Google Scholar]
  56. Murray J.D. Mohamad-Fauzi N. Cooper C.A. Maga E.A. Current status of transgenic animal research for human health applications. Acta Sci. Vet. 2010 38 s627 s632
    [Google Scholar]
  57. Keefer C.L. Production of bioproducts through the use of transgenic animal models. Anim. Reprod. Sci. 2004 82-83 5 12 10.1016/j.anireprosci.2004.04.010 15271439
    [Google Scholar]
  58. Brink M.F. Bishop M.D. Pieper F.R. Developing efficient strategies for the generation of transgenic cattle which produce biopharmaceuticals in milk. Theriogenology 2000 53 1 139 148 10.1016/S0093‑691X(99)00247‑2 10735069
    [Google Scholar]
  59. van Berkel P.H.C. Welling M.M. Geerts M. van Veen H.A. Ravensbergen B. Salaheddine M. Pauwels E.K.J. Pieper F. Nuijens J.H. Nibbering P.H. Large scale production of recombinant human lactoferrin in the milk of transgenic cows. Nat. Biotechnol. 2002 20 5 484 487 10.1038/nbt0502‑484 11981562
    [Google Scholar]
  60. Casademunt E. Martinelle K. Jernberg M. Winge S. Tiemeyer M. Biesert L. Knaub S. Walter O. Schröder C. The first recombinant human coagulation factor VIII of human origin: human cell line and manufacturing characteristics. Eur. J. Haematol. 2012 89 2 165 176 10.1111/j.1600‑0609.2012.01804.x 22690791
    [Google Scholar]
  61. Björkman S. Folkesson A. Jönsson S. Pharmacokinetics and dose requirements of factor VIII over the age range 3–74 years. Eur. J. Clin. Pharmacol. 2009 65 10 989 998 10.1007/s00228‑009‑0676‑x 19557401
    [Google Scholar]
  62. Tiede A. Half‐life extended factor VIII for the treatment of hemophilia A. J. Thromb. Haemost. 2015 13 Suppl. 1 S176 S179 10.1111/jth.12929 26149020
    [Google Scholar]
  63. Graf L. Extended half-life factor VIII and factor IX preparations. Transfusion Medicine and Hemotherapy. S. Karger AG Basel, Switzerland 2018 45 86 91
    [Google Scholar]
  64. Powell J.S. Josephson N.C. Quon D. Ragni M.V. Cheng G. Li E. Safety and prolonged activity of recombinant factor VIII Fc fusion protein in hemophilia A patients. Blood, The Journal of the American Society of Hematology. American Society of Hematology Washington, DC 2012 119 3031 3037
    [Google Scholar]
  65. Mahlangu J. Powell J.S. Ragni M.V. Chowdary P. Josephson N.C. Pabinger I. Phase 3 study of recombinant factor VIII Fc fusion protein in severe hemophilia A. Blood, The Journal of the American Society of Hematology. American Society of Hematology Washington, DC 2014 123 317 325
    [Google Scholar]
  66. McCue J. Kshirsagar R. Selvitelli K. Lu Q. Zhang M. Mei B. Peters R. Pierce G.F. Dumont J. Raso S. Reichert H. Manufacturing process used to produce long-acting recombinant factor VIII Fc fusion protein. Biologicals 2015 43 4 213 219 10.1016/j.biologicals.2015.05.012 26094124
    [Google Scholar]
  67. Morris C. Lee Y.S. Yoon S. Adventitious agent detection methods in bio-pharmaceutical applications with a focus on viruses, bacteria, and mycoplasma. Curr. Opin. Biotechnol. 2021 71 105 114 10.1016/j.copbio.2021.06.027 34325176
    [Google Scholar]
  68. Picanço V. Heinz S. Bott D. Behrmann M. Covas D.T. Seifried E. Tonn T. Recombinant expression of coagulation factor VIII in hepatic and non-hepatic cell lines stably transduced with third generation lentiviral vectors comprising the minimal factor VIII promoter. Cytotherapy 2007 9 8 785 794 10.1080/14653240701656053 17917890
    [Google Scholar]
  69. Shahani T. Covens K. Lavend’homme R. Jazouli N. Sokal E. Peerlinck K. Jacquemin M. Human liver sinusoidal endothelial cells but not hepatocytes contain factor VIII. J. Thromb. Haemost. 2014 12 1 36 42 10.1111/jth.12412 24118899
    [Google Scholar]
  70. da Rosa N.G. Swiech K. Picanço-Castro V. de Sousa Russo-Carbolante E.M. Neto M.A.S. de Castilho-Fernandes A. Faça V.M. Fontes A.M. Covas D.T. SK-HEP cells and lentiviral vector for production of human recombinant factor VIII. Biotechnol. Lett. 2012 34 8 1435 1443 10.1007/s10529‑012‑0925‑4 22488441
    [Google Scholar]
  71. Daianne Maciely Carvalho Fantacini and Virgı’nia Picanc¸ o-Castro. Production of Recombinant Factor VIII in Human Cell Lines. 2018 1674 63 74 10.1007/978‑1‑4939‑7312‑5
    [Google Scholar]
  72. Kenet G. Chen Y.C. Lowe G. Percy C. Tran H. von Drygalski A. Trossaërt M. Reding M. Oldenburg J. Mingot-Castellano M.E. Park Y.S. Peyvandi F. Ozelo M.C. Mahlangu J. Quinn J. Huang M. Reddy D.B. Kim B. Real-world rates of bleeding, factor viii use, and quality of life in individuals with severe haemophilia a receiving prophylaxis in a prospective, noninterventional study. J. Clin. Med. 2021 10 24 5959 10.3390/jcm10245959 34945255
    [Google Scholar]
  73. Swiech K. Picanço-Castro V. Covas D.T. Production of recombinant coagulation factors: Are humans the best host cells? Bioengineered 2017 8 5 462 470 10.1080/21655979.2017.1279767 28277160
    [Google Scholar]
  74. Callaghan M.U. Negrier C. Paz-Priel I. Chang T. Chebon S. Lehle M. Mahlangu J. Young G. Kruse-Jarres R. Mancuso M.E. Niggli M. Howard M. Bienz N.S. Shima M. Jiménez-Yuste V. Schmitt C. Asikanius E. Levy G.G. Pipe S.W. Oldenburg J. Long-term outcomes with emicizumab prophylaxis for hemophilia A with or without FVIII inhibitors from the HAVEN 1-4 studies. Blood 2021 137 16 2231 2242 10.1182/blood.2020009217 33512413
    [Google Scholar]
  75. Paz-Priel I. Chang T. Asikanius E. Chebon S. Emrich T. Fernandez E. Kuebler P. Schmitt C. Immunogenicity of Emicizumab in People with Hemophilia A (PwHA): Results from the HAVEN 1-4 Studies. Blood 2018 132 Suppl. 1 633 10.1182/blood‑2018‑99‑118492
    [Google Scholar]
  76. Parnes A. Mahlangu J.N. Pipe S.W. Paz-Priel I. Lehle M. Trask P.C. Jiménez-Yuste V. Patient preference for emicizumab versus prior factor therapy in people with haemophilia A: Results from the HAVEN 3 and HAVEN 4 studies. Haemophilia 2021 27 6 e772 e775 10.1111/hae.14421 34623725
    [Google Scholar]
  77. Jimenez-Yuste V. Shima M. Fukutake K. Lehle M. Chebon S. Retout S. Portron A. Levy G.G. Emicizumab Subcutaneous Dosing Every 4 Weeks for the Management of Hemophilia A: Preliminary Data from the Pharmacokinetic Run-in Cohort of a Multicenter, Open-Label, Phase 3 Study (HAVEN 4). Blood 2017 130 Suppl. 1 86 10.1182/blood.V130.Suppl_1.86.86
    [Google Scholar]
  78. Pipe S.W. Collins P. Dhalluin C. Kenet G. Schmitt C. Buri M. Jiménez-Yuste V. Peyvandi F. Young G. Oldenburg J. Mancuso M.E. Kiialainen A. Chang T. Lehle M. Fijnvandraat K. Emicizumab prophylaxis for the treatment of infants with severe hemophilia A without factor VIII inhibitors: results from the interim analysis of the HAVEN 7 study. Blood. Blood 2022 140 Suppl. 1 457 459 10.1182/blood‑2022‑157264
    [Google Scholar]
  79. Pipe S. Collins P. Dhalluin C. Kenet G. Schmitt C. Buri M. Jiménez-Yuste V. Peyvandi F. Young G. Oldenburg J. Mancuso M.E. Kavakli K. Kiialainen A. Chang T. Lehle M. Niggli M. Fijnvandraat K. Emicizumab prophylaxis in infants with severe hemophilia A without factor VIII inhibitors: results from the primary analysis of the HAVEN 7 study. Blood 2023 142 Suppl. 1 505 10.1182/blood‑2023‑177963
    [Google Scholar]
  80. Pipe S.W. Collins P. Dhalluin C. Kenet G. Schmitt C. Buri M. Jiménez-Yuste V. Peyvandi F. Young G. Oldenburg J. Mancuso M.E. Kavakli K. Kiialainen A. Deb S. Niggli M. Chang T. Lehle M. Fijnvandraat K. Emicizumab prophylaxis in infants with hemophilia A (HAVEN 7): primary analysis of a phase 3b open-label trial. Blood 2024 143 14 1355 1364 10.1182/blood.2023021832 38127586
    [Google Scholar]
  81. Oldenburg J. Pipe S.W. Collins P. Dhalluin C. Kenet G. Schmitt C. Emicizumab Prophylaxis for the Treatment of Infants with Severe Haemophilia A without Factor VIII Inhibitors: Primary Analysis of the HAVEN 7 Study. Hamostaseologie 2024 44 T-07
    [Google Scholar]
  82. Zhou M. Hu Z. Zhang C. Wu L. Li Z. Liang D. Gene therapy for hemophilia A: where we stand. Current Gene Therapy. Bentham Science Publishers 2020 20 2 142 151 32767930
    [Google Scholar]
  83. Miesbach W. Klamroth R. Oldenburg J. Tiede A. Gene therapy for hemophilia—opportunities and risks. Deutsches Ärzteblatt International. Deutscher Arzte-Verlag GmbH 2022 119 887
    [Google Scholar]
  84. Nathwani A.C. Gene therapy for hemophilia. Hematology (Am. Soc. Hematol. Educ. Program) 2022 2022 1 569 578 10.1182/hematology.2022000388 36485127
    [Google Scholar]
  85. Ozelo M.C. Mahlangu J. Pasi K.J. Giermasz A. Leavitt A.D. Laffan M. Valoctocogene roxaparvovec gene therapy for hemophilia A. New England Journal of Medicine. Mass Medical Soc 2022 386 1013 1025
    [Google Scholar]
  86. Visweshwar N. Harrington T.J. Leavitt A.D. Konkle B.A. Giermasz A. Stine K. Rupon J. Di Russo G. Tseng L-J. de los Angeles Resa M. Ganne F. Agathon D. Plonski F. Rouy D. Cockroft B.M. Fang A. Arkin S. Updated results of the Alta study, a phase 1/2 study of giroctocogene fitelparvovec (PF-07055480/SB-525) gene therapy in adults with severe hemophilia A. Blood 2021 138 Suppl. 1 564 10.1182/blood‑2021‑148651
    [Google Scholar]
  87. Pipe S.W. Sheehan J.P. Coppens M. Eichler H. Linardi C. Wiegmann S. Hay C.R.M. Lissitchkov T. First-in-human dose-finding study of AAVhu37 vector-based gene therapy: BAY 2599023 has stable and sustained expression of FVIII over 2 years. Blood 2021 138 Suppl. 1 3971 10.1182/blood‑2021‑148661
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128327353241121050134
Loading
/content/journals/cpd/10.2174/0113816128327353241121050134
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: hemophilia A ; genetic engineering ; E. coli ; Recombinant FVIII ; mammalian cells
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test