Skip to content
2000
Volume 31, Issue 10
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

Cardiovascular Diseases (CVDs) are the leading cause of global morbidity and mortality, necessitating innovative approaches for both therapeutics and diagnostics. Nanoscience has emerged as a promising frontier in addressing the complexities of CVDs.

Objective

This study aims to explore the interaction of CVDs and Nanomedicine (NMs), focusing on applications in therapeutics and diagnostics.

Observations

In the realm of therapeutics, nanosized drug delivery systems exhibit unique advantages, such as enhanced drug bioavailability, targeted delivery, and controlled release. NMs platform, including liposomes, nanoparticles, and carriers, allows the precise drug targeting to the affected cardiovascular tissues with minimum adverse effects and maximum therapeutic efficacy. Moreover, Nanomaterial (NM) enables the integration of multifunctional components, such as therapeutic agents and target ligands, into a single system for comprehensive CVD management. Diagnostic fronts of NMs offer innovative solutions for early detection and monitoring of CVDs. Nanoparticles and nanosensors enable highly sensitive and specific detection of Cardiac biomarkers, providing valuable insights into a disease state, its progression, therapeutic outputs, . Further, nano-based technology imaging modalities offers high high-resolution imaging, aiding in the vascularization of cardiovascular structures and abnormalities. Nanotechnology-based imaging modalities offer high-resolution imaging and aid in the visualization of cardiovascular structures and abnormalities.

Conclusion

The cross-talk of CVDs and NMs holds tremendous potential for revolutionizing cardiovascular healthcare by providing targeted and efficient therapeutic interventions, as well as sensitive and early detection for the improvement of patient health if integrated with Artificial Intelligence (AI).

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128347223241021111914
2024-11-05
2025-04-02
Loading full text...

Full text loading...

References

  1. HøjstrupS. ThomsenJ.H. PrescottE. Disparities in cardiovascular disease and treatment in the Nordic countries.Lancet Reg. Health Eur.20233310069910.1016/j.lanepe.2023.10069937953994
    [Google Scholar]
  2. LamC.S.P. DochertyK.F. HoJ.E. McMurrayJ.J.V. MyhreP.L. OmlandT. Recent successes in heart failure treatment.Nat. Med.202329102424243710.1038/s41591‑023‑02567‑237814060
    [Google Scholar]
  3. SheikhR.A. NademM.S. AsarT.O. AlmujtabaM.A. NaqviS. Al-AbbasiF.A. AlmalkiN.A.R. KumarV. AnwarF. Zamzam water mitigates cardiac toxicity risk through modulation of GUT microbiota and the renin-angiotensin system.Curr. Pharm. Des.202430141115112710.2174/011381612830200124032104440938561612
    [Google Scholar]
  4. WangX. MaH. LiX. HeianzaY. MansonJ.E. FrancoO.H. QiL. Association of cardiovascular health with life expectancy free of cardiovascular disease, diabetes, cancer, and dementia in UK adults.JAMA Intern. Med.2023183434034910.1001/jamainternmed.2023.001536848126
    [Google Scholar]
  5. HeJ. GaoY. YangC. GuoY. LiuL. LuS. HeH. Navigating the landscape: Prospects and hurdles in targeting vascular smooth muscle cells for atherosclerosis diagnosis and therapy.J. Control. Release202436626128110.1016/j.jconrel.2023.12.04738161032
    [Google Scholar]
  6. BaruahC. Graphene-based nanomaterials.Boca Raton, FloridaCRC Press2024219232
    [Google Scholar]
  7. SansonettiM. Al SoodiB. ThumT. JungM. Macrophage-based therapeutic approaches for cardiovascular diseases.Basic Res. Cardiol.2024119113310.1007/s00395‑023‑01027‑938170281
    [Google Scholar]
  8. GuoC. LiuY. LiY. Adverse effects of amorphous silica nanoparticles: Focus on human cardiovascular health.J. Hazard. Mater.202140612462610.1016/j.jhazmat.2020.12462633296760
    [Google Scholar]
  9. MangioneM.C. WenJ. CaoD.J. Mechanistic target of rapamycin in regulating macrophage function in inflammatory cardiovascular diseases.J. Mol. Cell. Cardiol.202418611112410.1016/j.yjmcc.2023.10.01138039845
    [Google Scholar]
  10. KrumovK.D. LarsenK.S. GungovA.L. SchneiderJ.F. KemmelmeierM. KrumovaA.K. WidodoE. JuhaszM. GarvanovaM.Z. KumarS. RepaczkiR. LiuJ. Cross-cultural and gender differences as predictors of workaholic and perfectionist attitudes during the COVID-19 pandemic.Nanotechnol. Percept.2023191416710.4024/N15KR21A.ntp.19.01
    [Google Scholar]
  11. LiF. ShaoH. ZhouG. WangB. XuY. LiangW. ChenL. The recent applications of nanotechnology in the diagnosis and treatment of common cardiovascular diseases.Vascul. Pharmacol.202315210720010.1016/j.vph.2023.10720037500029
    [Google Scholar]
  12. FaghyM.A. YatesJ. HillsA.P. JayasingheS. da Luz GoulartC. ArenaR. LadduD. GururajR. VeluswamyS.K. DixitS. AshtonR.E.M. Cardiovascular disease prevention and management in the COVID-19 era and beyond: An international perspective.Prog. Cardiovasc. Dis.20237610211110.1016/j.pcad.2023.01.00436693488
    [Google Scholar]
  13. WangH.-Y. LinW.-Y. ZhouC. YangZ.-A. KalpanaS. LebowitzM.S. Integrating artificial intelligence for advancing multiple cancer early detection via serum biomarkers: A narrative review.Cancers (Basel)202416586210.3390/cancers16050862
    [Google Scholar]
  14. WangX. LiR. ZhaoH. Enhancing angiogenesis: Innovative drug delivery systems to facilitate diabetic wound healing.Biomed. Pharmacother.202417011603510.1016/j.biopha.2023.11603538113622
    [Google Scholar]
  15. NikolovaG. LammertE. Interdependent development of blood vessels and organs.Cell Tissue Res.20033141334210.1007/s00441‑003‑0739‑812898210
    [Google Scholar]
  16. SchubertR. GaynullinaD. ShvetsovaA. TarasovaO.S. Myography of isolated blood vessels: Considerations for experimental design and combination with supplementary techniques.Front. Physiol.202314117674810.3389/fphys.2023.117674837168231
    [Google Scholar]
  17. JeonS. LeeY. OhS.R. JeongJ. LeeD.H. SoK.H. HwangN.S. Recent advances in endocrine organoids for therapeutic application.Adv. Drug Deliv. Rev.202319911495910.1016/j.addr.2023.11495937301512
    [Google Scholar]
  18. VakaR. RemortelS.V. LyV. DavisD.R. Extracellular vesicle therapy for non-ischemic heart failure: A systematic review of preclinical studies.Extracell. Vesicle2022110000910.1016/j.vesic.2022.100009
    [Google Scholar]
  19. TundisiL.L. AtaideJ.A. CostaJ.S.R. CoêlhoD.F. LiszbinskiR.B. LopesA.M. Oliveira-NascimentoL. de JesusM.B. JozalaA.F. EhrhardtC. MazzolaP.G. Nanotechnology as a tool to overcome macromolecules delivery issues.Colloids Surf. B Biointerfaces202322211304310.1016/j.colsurfb.2022.11304336455361
    [Google Scholar]
  20. HaleemA. JavaidM. SinghR.P. RabS. SumanR. Applications of nanotechnology in medical field: A brief review.Glob. Health J.202372707710.1016/j.glohj.2023.02.008
    [Google Scholar]
  21. WuQ. FuS. XiaoH. DuJ. ChengF. WanS. ZhuH. LiD. PengF. DingX. WangL. Advances in extracellular vesicle nanotechnology for precision theranostics.Adv. Sci. (Weinh.)2023103220481410.1002/advs.20220481436373730
    [Google Scholar]
  22. AgrawalN. Cutting-edge applications of nanomaterials in biomedical sciences.Pennsylvania, United StatesIGI Global202486111
    [Google Scholar]
  23. TangsiriM. HheidariA. LiaghatM. RazlansariM. EbrahimiN. AkbariA. VarnosfaderaniS.M.N. Maleki-SheikhabadiF. NorouziA. BakhtiyariM. ZalpoorH. Nabi-AfjadiM. RahdarA. Promising applications of nanotechnology in inhibiting chemo-resistance in solid tumors by targeting epithelial-mesenchymal transition (EMT).Biomed. Pharmacother.202417011597310.1016/j.biopha.2023.11597338064969
    [Google Scholar]
  24. PrakashM. ChandraprabhaM.N. Hari KrishnaR. SatishH. Girish KumarS. Iron oxide nanoparticles for inflammatory bowel disease: Recent advances in diagnosis and targeted drug therapy.Appl. Surf. Sci. Adv.20241910054010.1016/j.apsadv.2023.100540
    [Google Scholar]
  25. LiX. OuW. XieM. YangJ. LiQ. LiT. Nanomedicine-based therapeutics for myocardial ischemic/reperfusion injury.Adv. Healthc. Mater.20231220230016110.1002/adhm.20230016136971662
    [Google Scholar]
  26. KitsiosK. SharifiS. MahmoudiM. Nanomedicine technologies for diagnosis and treatment of breast cancer.ACS Pharmacol. Transl. Sci.20236567168210.1021/acsptsci.3c0004437200812
    [Google Scholar]
  27. EjidikeI.P. OgunleyeO. BamigboyeM.O. EjidikeO.M. AtaA. EzeM.O. ClaytonH.S. NwankwoV.U. FatokunJ.O. Role of nanotechnology in medicine: Opportunities and challenges. Biogenic nanomaterials for environmental sustainability: Principles, practices, and opportunities.ChamSpringer2024353375
    [Google Scholar]
  28. VoroneyR.P. Soil Microbiology, Ecology and Biochemistry.AmsterdamElsevier2024134010.1016/B978‑0‑12‑822941‑5.00002‑8
    [Google Scholar]
  29. PourahmadJ. SalamiM. ZareiM.H. Comparative toxic effect of bulk copper oxide (CuO) and CuO nanoparticles on human red blood cells.Biol. Trace Elem. Res.2023201114915510.1007/s12011‑022‑03149‑y35378668
    [Google Scholar]
  30. KimJ.M. SeongB.L. JungJ. Highly chromophoric dual-terminus labeling of an intrinsically disordered native eukaryotic protein of interest at nanoscale.Int. J. Biol. Macromol.202324512539610.1016/j.ijbiomac.2023.12539637348577
    [Google Scholar]
  31. MathurD. GalvanA.R. GreenC.M. LiuK. MedintzI.L. Uptake and stability of DNA nanostructures in cells: A cross-sectional overview of the current state of the art.Nanoscale20231562516252810.1039/D2NR05868E36722508
    [Google Scholar]
  32. ShankarM. KesavanS.S. BiswasK. Exploring the potentials of magnetic nanoscale material for different biomedical applications: A review.Bionanoscience20231341558158110.1007/s12668‑023‑01137‑7
    [Google Scholar]
  33. SeabergJ. CleggJ.R. BhattacharyaR. MukherjeeP. Self-therapeutic nanomaterials: Applications in biology and medicine.Mater. Today20236219022410.1016/j.mattod.2022.11.00736938366
    [Google Scholar]
  34. KawasakiE.S. PlayerA. Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer.Nanomedicine20051210110910.1016/j.nano.2005.03.00217292064
    [Google Scholar]
  35. SunoqrotS. HamedR. Abdel-HalimH. TarawnehO. Synergistic interplay of medicinal chemistry and formulation strategies in nanotechnology-From drug discovery to nanocarrier design and development.Curr. Top. Med. Chem.201717131451146810.2174/156802661666616122211165628017147
    [Google Scholar]
  36. TibbalsH.F. Medical nanotechnology and nanomedicine.Boca Raton, FloridaCRC Press201710.1201/b10151
    [Google Scholar]
  37. ClackK. SodaN. KasetsirikulS. MahmudunnabiR.G. NguyenN.T. ShiddikyM.J.A. Toward personalized nanomedicine: The critical evaluation of micro and nanodevices for cancer biomarker analysis in liquid biopsy.Small20231915220585610.1002/smll.20220585636631277
    [Google Scholar]
  38. KaushalM.A. Alzheimer’s Disease and Advanced Drug Delivery Strategies.AmsterdamElsevier202411513810.1016/B978‑0‑443‑13205‑6.00017‑0
    [Google Scholar]
  39. PrakashK. Gold Nanoparticles for Drug Delivery.AmsterdamElsevier202433010.1016/B978‑0‑443‑19061‑2.00014‑6
    [Google Scholar]
  40. KhanA. Nanomaterials in Healthcare.Boca Raton, FloridaCRC Press2024281296
    [Google Scholar]
  41. HamiltonS. KingstonB.R. Applying artificial intelligence and computational modeling to nanomedicine.Curr. Opin. Biotechnol.20248510304310.1016/j.copbio.2023.10304338091874
    [Google Scholar]
  42. RenJ. DeweyR.B.III RyndersA. EvanJ. EvanJ. LigozioS. HoK.S. SguignaP.V. GlanzmanR. HotchkinM.T. DeweyR.B.Jr GreenbergB.M. Correction: Evidence of brain target engagement in Parkinson’s disease and multiple sclerosis by the investigational nanomedicine, CNM- Au8, in the REPAIR phase 2 clinical trials.J. Nanobiotechnology20242211610.1186/s12951‑023‑02269‑438167088
    [Google Scholar]
  43. ShenX. PanD. GongQ. GuZ. LuoK. Enhancing drug penetration in solid tumors via nanomedicine: Evaluation models, strategies and perspectives.Bioact. Mater.20243244547210.1016/j.bioactmat.2023.10.01737965242
    [Google Scholar]
  44. Pérez-MedinaC. TeunissenA.J.P. KluzaE. MulderW.J.M. van der MeelR. Nuclear imaging approaches facilitating nanomedicine translation.Adv. Drug Deliv. Rev.2020154-15512314110.1016/j.addr.2020.07.01732721459
    [Google Scholar]
  45. JiaY. JiangY. HeY. ZhangW. ZouJ. MagarK.T. BoucettaH. TengC. HeW. Approved nanomedicine against diseases.Pharmaceutics202315377410.3390/pharmaceutics1503077436986635
    [Google Scholar]
  46. ArshadI. KanwalA. ZafarI. UnarA. MouadaH. RaziaI.T. ArifS. AhsanM. KamalM.A. RashidS. KhanK.A. SharmaR. Multifunctional role of nanoparticles for the diagnosis and therapeutics of cardiovascular diseases.Environ. Res.202424211779510.1016/j.envres.2023.11779538043894
    [Google Scholar]
  47. MitchellM.J. BillingsleyM.M. HaleyR.M. WechslerM.E. PeppasN.A. LangerR. Engineering precision nanoparticles for drug delivery.Nat. Rev. Drug Discov.202120210112410.1038/s41573‑020‑0090‑833277608
    [Google Scholar]
  48. DasB. FrancoJ.L. LoganN. BalasubramanianP. KimM.I. CaoC. Nanozymes in point-of-care diagnosis: An emerging futuristic approach for biosensing.Nano-Micro Lett.202113119310.1007/s40820‑021‑00717‑034515917
    [Google Scholar]
  49. LyuZ. YaoL. ChenW. KalutantirigeF.C. ChenQ. Electron microscopy studies of soft nanomaterials.Chem. Rev.202312374051414510.1021/acs.chemrev.2c0046136649190
    [Google Scholar]
  50. OstrowskiA. NordmeyerD. BorehamA. HolzhausenC. MundhenkL. GrafC. MeinkeM.C. VogtA. HadamS. LademannJ. RühlE. AlexievU. GruberA.D. Overview about the localization of nanoparticles in tissue and cellular context by different imaging techniques.Beilstein J. Nanotechnol.20156126328010.3762/bjnano.6.2525671170
    [Google Scholar]
  51. KaurG. KhannaB. YusufM. SharmaA. KhajuriaA. AlajangiH.K. JaiswalP.K. SachdevaM. BarnwalR.P. SinghG. A path of novelty from nanoparticles to nanobots: Theragnostic approach for targeting cancer therapy.Crit. Rev. Ther. Drug Carrier Syst.2024414138
    [Google Scholar]
  52. ShariatiL. EsmaeiliY. RahimmaneshI. BabolmoradS. ZiaeiG. HasanA. BoshtamM. MakvandiP. Advances in nanobased platforms for cardiovascular diseases: Early diagnosis, imaging, treatment, and tissue engineering.Environ. Res.2023238Pt 111693310.1016/j.envres.2023.11693337652218
    [Google Scholar]
  53. HanF. MengQ. XieE. LiK. HuJ. ChenQ. LiJ. HanF. Engineered biomimetic micro/nano- materials for tissue regeneration.Front. Bioeng. Biotechnol.202311120579210.3389/fbioe.2023.120579237469449
    [Google Scholar]
  54. MuneeswaranT. Applications of Multifunctional Nanomaterials.AmsterdamElsevier202361764910.1016/B978‑0‑12‑820557‑0.00029‑1
    [Google Scholar]
  55. SmithB.R. EdelmanE.R. Nanomedicines for cardiovascular disease.Nat. Cardiovasc. Res.20232435136710.1038/s44161‑023‑00232‑y39195953
    [Google Scholar]
  56. SapnaF.N.U. RaveenaF.N.U. ChandioM. BaiK. SayyarM. VarrassiG. KhatriM. KumarS. MohamadT. Advancements in heart failure management: A comprehensive narrative review of emerging therapies.Cureus20231510e4648610.7759/cureus.4648637927716
    [Google Scholar]
  57. UccelloG. BonacchiG. RossiV.A. MontrasioG. BeltramiM. Myocarditis and chronic inflammatory cardiomyopathy, from acute inflammation to chronic inflammatory damage: An update on pathophysiology and diagnosis.J. Clin. Med.202313115010.3390/jcm1301015038202158
    [Google Scholar]
  58. QueenR. CrosierM. EleyL. KerwinJ. TurnerJ.E. YuJ. AlqahtaniA. DhanaseelanT. OvermanL. SoetjoadiH. BaldockR. CoxheadJ. BoczonadiV. LaudeA. CockellS.J. KaneM.A. LisgoS. HendersonD.J. Spatial transcriptomics reveals novel genes during the remodelling of the embryonic human arterial valves.PLoS Genet.20231911e101077710.1371/journal.pgen.101077738011284
    [Google Scholar]
  59. MonnetE. Pacemaker therapy. Small Animal Soft Tissue SurgeryNew York, United StatesWiley2023964980
    [Google Scholar]
  60. AzzamM. AwadA. AbugharbyehA. KahalehB. Myocarditis in connective tissue diseases: An often-overlooked clinical manifestation.Rheumatol. Int.202343111983199210.1007/s00296‑023‑05428‑w37587233
    [Google Scholar]
  61. FairweatherD. BeetlerD.J. Di FlorioD.N. MusigkN. HeideckerB. CooperL.T.Jr COVID-19, myocarditis and pericarditis.Circ. Res.2023132101302131910.1161/CIRCRESAHA.123.32187837167363
    [Google Scholar]
  62. AlqahtaniT.M.M. Ali AlghamdiM.A. Rafi BaigM. Al-AbbasiF.A. SheikhR.A. AlmalkiN.A.R. HejaziM.M. AlhayyaniS. AsarT.O. KumarV. AnwarF. Recent patterns and assessment of long-term complications following SARS-CoV-2 infection and vaccination in the context of diabetes prevalence among blood donors.Curr. Diabetes Rev.2024209e11012422552010.2174/011573399827439023111005080938415496
    [Google Scholar]
  63. BarhoumA. MeftahiA. Kashef SaberyM.S. Momeni HeraviM.E. AlemF. A review on carbon dots as innovative materials for advancing biomedical applications: Synthesis, opportunities, and challenges.J. Mater. Sci.20235834135311357910.1007/s10853‑023‑08797‑6
    [Google Scholar]
  64. ZhangY. Le FriecA. ZhangZ. MüllerC.A. DuT. DongM. LiuY. ChenM. Electroactive biomaterials synergizing with electrostimulation for cardiac tissue regeneration and function-monitoring.Mater. Today20237023727210.1016/j.mattod.2023.09.005
    [Google Scholar]
  65. WangY. WangZ. DongY. Collagen-based biomaterials for tissue engineering.ACS Biomater. Sci. Eng.2023931132115010.1021/acsbiomaterials.2c0073036800415
    [Google Scholar]
  66. SaeedS. Ud DinS.R. KhanS.U. GulR. KianiF.A. WahabA. ZhongM. Nanoparticle: A promising player in nanomedicine and its theranostic applications for the treatment of cardiovascular diseases.Curr. Probl. Cardiol.202348510159910.1016/j.cpcardiol.2023.10159936681209
    [Google Scholar]
  67. PretoriusD. SerpooshanV. ZhangJ. Nano-medicine in the cardiovascular system.Front. Pharmacol.20211264018210.3389/fphar.2021.64018233746761
    [Google Scholar]
  68. TetaliS.S.V. FrickerA.T.R. van DomburgY.A. RoyI. Intelligent biomaterials for cardiovascular applications.Curr. Opin. Biomed. Eng.20232810047410.1016/j.cobme.2023.100474
    [Google Scholar]
  69. WangJ. LiuY. LiuY. HuangH. RoyS. SongZ. GuoB. Recent advances in nanomedicines for imaging and therapy of myocardial ischemia-reperfusion injury.J. Control. Release202335356359010.1016/j.jconrel.2022.11.05736496052
    [Google Scholar]
  70. BrusiniR. TranN.L.L. CailleauC. DomergueV. NicolasV. DormontF. CaletS. CajotC. JouranA. Lepetre-MouelhiS. LaloyJ. CouvreurP. VarnaM. Assessment of squalene-adenosine nanoparticles in two rodent models of cardiac ischemia-reperfusion.Pharmaceutics2023157179010.3390/pharmaceutics1507179037513977
    [Google Scholar]
  71. RezvovaM.A. KlyshnikovK.Y. GritskevichA.A. OvcharenkoE.A. Polymeric heart valves will displace mechanical and tissue heart valves: A new era for the medical devices.Int. J. Mol. Sci.2023244396310.3390/ijms2404396336835389
    [Google Scholar]
  72. YuW. ZhuX. LiuJ. ZhouJ. Biofunctionalized decellularized tissue-engineered heart valve with mesoporous silica nanoparticles for controlled release of VEGF and RunX2-siRNA against calcification.Bioengineering (Basel)202310785910.3390/bioengineering1007085937508886
    [Google Scholar]
  73. BoseR.J.C. HaK. McCarthyJ.R. Bio-inspired nanomaterials as novel options for the treatment of cardiovascular disease.Drug Discov. Today20212651200121110.1016/j.drudis.2021.01.03533561512
    [Google Scholar]
  74. FangS. RiberS.S. HusseinK. AhlmannA.H. HarvaldE.B. KhanF. BeckH.C. WeileL.K.K. SørensenJ.A. SheikhS.P. RiberL.P. AndersenD.C. Decellularized human umbilical artery: Biocompatibility and in vivo functionality in sheep carotid bypass model.Mater. Sci. Eng. C202011211095510.1016/j.msec.2020.11095532409090
    [Google Scholar]
  75. BabuS. AlbertinoF. Omidinia AnarkoliA. De LaporteL. Controlling structure with injectable biomaterials to better mimic tissue heterogeneity and anisotropy.Adv. Healthc. Mater.20211011200222110.1002/adhm.20200222133951341
    [Google Scholar]
  76. RebuzziniP. CivelloC. FassinaL. ZuccottiM. GaragnaS. Functional and structural phenotyping of cardiomyocytes in the 3D organization of embryoid bodies exposed to arsenic trioxide.Sci. Rep.20211112311610.1038/s41598‑021‑02590‑834848780
    [Google Scholar]
  77. BluemkeD.A. MRI of nonischemic cardiomyopathy.AJR Am. J. Roentgenol.2010195493594010.2214/AJR.10.422220858821
    [Google Scholar]
  78. NguyenM.M. GianneschiN.C. ChristmanK.L. Developing injectable nanomaterials to repair the heart.Curr. Opin. Biotechnol.20153422523110.1016/j.copbio.2015.03.01625863496
    [Google Scholar]
  79. SamadianH. MalekiH. FathollahiA. SalehiM. GholizadehS. DerakhshankhahH. AllahyariZ. JaymandM. Naturally occurring biological macromolecules-based hydrogels: Potential biomaterials for peripheral nerve regeneration.Int. J. Biol. Macromol.202015479581710.1016/j.ijbiomac.2020.03.15532198035
    [Google Scholar]
  80. RoselliniE. CasconeM.G. GuidiL. SchubertD.W. RoetherJ.A. BoccacciniA.R. Mending a broken heart by biomimetic 3D printed natural biomaterial-based cardiac patches: A review.Front. Bioeng. Biotechnol.202311125473910.3389/fbioe.2023.125473938047285
    [Google Scholar]
  81. BodelónG. CostasC. Pérez-JusteJ. Pastoriza-SantosI. Liz- MarzánL.M. Gold nanoparticles for regulation of cell function and behavior.Nano Today201713406010.1016/j.nantod.2016.12.014
    [Google Scholar]
  82. AnfrayC. MaininiF. AndónF.T. Nanoparticles for immunotherapy.Front. Nanosci.202016265306
    [Google Scholar]
  83. BryniarskiK. PtakW. JayakumarA. PüllmannK. CaplanM.J. ChairoungduaA. LuJ. AdamsB.D. SikoraE. NazimekK. Antigen-specific, antibody-coated, exosome-like nanovesicles deliver suppressor T-cell microRNA-150 to effector T cells to inhibit contact sensitivity.J Allergy Clin. Immunol.201313211708110.1016/j.jaci.2013.04.048
    [Google Scholar]
  84. LiuM. López de Juan AbadB. ChengK. Cardiac fibrosis: Myofibroblast-mediated pathological regulation and drug delivery strategies.Adv. Drug Deliv. Rev.202117350451910.1016/j.addr.2021.03.02133831476
    [Google Scholar]
  85. PeshkovaI.O. SchaeferG. KoltsovaE.K. Atherosclerosis and aortic aneurysm - Is inflammation a common denominator?FEBS J.201628391636165210.1111/febs.1363426700480
    [Google Scholar]
  86. LiuR. LuoC. PangZ. ZhangJ. RuanS. WuM. WangL. SunT. LiN. HanL. ShiJ. HuangY. GuoW. PengS. ZhouW. GaoH. Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment.Chin. Chem. Lett.202334210751810.1016/j.cclet.2022.05.032
    [Google Scholar]
  87. VellayappanM.V. BalajiA. SubramanianA.P. JohnA.A. JaganathanS.K. MurugesanS. SupriyantoE. YusofM. Multifaceted prospects of nanocomposites for cardiovascular grafts and stents.Int. J. Nanomedicine2015102785280325897223
    [Google Scholar]
  88. NguyenA.B. IqbalO. BlockR.C. MousaS.A. Prevention and treatment of atherothrombosis: Potential impact of nanotechnology.Vascul. Pharmacol.202314810712710.1016/j.vph.2022.10712736375733
    [Google Scholar]
  89. IafiscoM. AlognaA. MiragoliM. CatalucciD. Cardiovascular nanomedicine: The route aheadNanomedicine2019141823912394
    [Google Scholar]
  90. LuY. ZengT. ZhangH. LiY. ZhuX. LiuH. SunB. JiC. LiT. HuangL. PengK. TangZ. TangL. Nano-immunotherapy for lung cancer.Nano TransMed202321e913001810.26599/NTM.2023.9130018
    [Google Scholar]
  91. DesaiN. HasanU. KJ. ManiR. ChauhanM. BasuS.M. GiriJ. Biomaterial-based platforms for modulating immune components against cancer and cancer stem cells.Acta Biomater.202316113610.1016/j.actbio.2023.03.00436907233
    [Google Scholar]
  92. RanasingheP. AddisonM.L. DearJ.W. WebbD.J. Small interfering RNA: Discovery, pharmacology and clinical development-An introductory review.Br. J. Pharmacol.2023180212697272010.1111/bph.1597236250252
    [Google Scholar]
  93. XuM. CuiY. WeiS. CongX. ChenY. TianS. YaoA. ChenW. WengL. Emerging nanomaterials targeting macrophage adapted to abnormal metabolism in cancer and atherosclerosis therapy (Review).Int. J. Mol. Med.202453212038063240
    [Google Scholar]
  94. RussellP. EsserL. HagemeyerC.E. VoelckerN.H. The potential impact of nanomedicine on COVID-19-induced thrombosis.Nat. Nanotechnol.2023181112210.1038/s41565‑022‑01270‑636536042
    [Google Scholar]
  95. LiX. PengX. ZoulikhaM. BoafoG.F. MagarK.T. JuY. HeW. Multifunctional nanoparticle-mediated combining therapy for human diseases.Signal Transduct. Target. Ther.202491110.1038/s41392‑023‑01668‑138161204
    [Google Scholar]
  96. LiH. ZhuL. ZhangY. YangL. WuW. YangD. Biomimetic nanotherapeutics for homotypic-targeting photothermal/chemotherapy of oral cancer.J. Control. Release2024366284310.1016/j.jconrel.2023.12.03938151121
    [Google Scholar]
  97. KhuranaA. AllawadhiP. KhuranaI. AllwadhiS. WeiskirchenR. BanothuA.K. ChhabraD. JoshiK. BharaniK.K. Role of nanotechnology behind the success of mRNA vaccines for COVID-19.Nano Today20213810114210.1016/j.nantod.2021.10114233815564
    [Google Scholar]
  98. IgicR. BehniaR. Pharmacological, immunological, and gene targeting of the renin-angiotensin system for treatment of cardiovascular disease.Curr. Pharm. Des.200713121199121410.2174/13816120778061887617504230
    [Google Scholar]
  99. ErdoganE. BajajR. LanskyA. MathurA. BaumbachA. BourantasC.V. Intravascular imaging for guiding in-stent restenosis and stent thrombosis therapy.J. Am. Heart Assoc.20221122e02649210.1161/JAHA.122.02649236326067
    [Google Scholar]
  100. San ValentinE.M.D. BarcenaA.J.R. KlusmanC. MartinB. MelanconM.P. Nano-embedded medical devices and delivery systems in interventional radiology.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2023151e184110.1002/wnan.184135946543
    [Google Scholar]
  101. ParkC. ParkS. KimJ. HanA. AhnS. MinS.K. JaeH.J. ChungJ.W. LeeJ.H. JungH.D. KimH-E. JangT-S. Enhanced endothelial cell activity induced by incorporation of nano-thick tantalum layer in artificial vascular grafts.Appl. Surf. Sci.202050814480110.1016/j.apsusc.2019.144801
    [Google Scholar]
  102. West-LivingstonL. LimJ.W. LeeS.J. Translational tissue-engineered vascular grafts: From bench to bedside.Biomaterials202330212232210.1016/j.biomaterials.2023.12232237713761
    [Google Scholar]
  103. IbrahimH.M. KlingnerA. A review on electrospun polymeric nanofibers: Production parameters and potential applications.Polym. Test.20209010664710.1016/j.polymertesting.2020.106647
    [Google Scholar]
  104. GhoshA. OrasughJ.T. RayS.S. ChattopadhyayD. Integration of 3D printing–coelectrospinning: Concept shifting in biomedical applications.ACS Omega2023831280022802510.1021/acsomega.3c0392037576662
    [Google Scholar]
  105. YangD.L. FarazF. WangJ.X. RadacsiN. Combination of 3D printing and electrospinning techniques for biofabrication.Adv. Mater. Technol.202277210130910.1002/admt.202101309
    [Google Scholar]
  106. NaskarS. DasS.K. SharmaS. KuotsuK. A review on designing poly (lactic-co-glycolic acid) nanoparticles as drug delivery systems.Pharm. Nanotechnol.202191365010.2174/221173850866620121410301033319695
    [Google Scholar]
  107. BhattacharyaS. PariharV.K. PrajapatiB.G. Unveiling the therapeutic potential of cabozantinib-loaded poly D,L-lactic-co-glycolic acid and polysarcosine nanoparticles in inducing apoptosis and cytotoxicity in human HepG2 hepatocellular carcinoma cell lines and in vivo anti-tumor activity in SCID female mice.Front. Oncol.202313112585710.3389/fonc.2023.112585736874145
    [Google Scholar]
  108. TenchovR. SassoJ.M. WangX. LiawW.S. ChenC.A. ZhouQ.A. Exosomes- nature’s lipid nanoparticles, a rising star in drug delivery and diagnostics.ACS Nano20221611178021784610.1021/acsnano.2c0877436354238
    [Google Scholar]
  109. Amirzadeh gougheriK. AhmadiA. AhmadabadiM.G. BabajaniA. YazdanpanahG. BahramiS. HassaniM. NiknejadH. Exosomal Cargo: Pro-angiogeneic, anti-inflammatory, and regenerative effects in ischemic and non-ischemic heart diseases – A comprehensive review.Biomed. Pharmacother.202316811580110.1016/j.biopha.2023.11580137918257
    [Google Scholar]
  110. ChenG. WangM. RuanZ. ZhuL. TangC. Mesenchymal stem cell-derived exosomal miR-143-3p suppresses myocardial ischemia-reperfusion injury by regulating autophagy.Life Sci.202128011974210.1016/j.lfs.2021.11974234166712
    [Google Scholar]
  111. RaikarA.S. PriyaS. BhilegaonkarS.P. SomnacheS.N. KalaskarD.M. Surface engineering of bioactive coatings for improved stent hemocompatibility: A comprehensive review.Materials (Basel)20231621694010.3390/ma1621694037959540
    [Google Scholar]
  112. ChenX. ZhuL. LiuJ. LuY. PanL. XiaoJ. Greasing wheels of cell-free therapies for cardiovascular diseases: Integrated devices of exosomes/exosome-like nanovectors with bioinspired materials.Extracell. Vesicle2022110001010.1016/j.vesic.2022.100010
    [Google Scholar]
  113. MartinJ.D. CabralH. StylianopoulosT. JainR.K. Improving cancer immunotherapy using nanomedicines: Progress, opportunities and challenges.Nat. Rev. Clin. Oncol.202017425126610.1038/s41571‑019‑0308‑z32034288
    [Google Scholar]
  114. KaoT.W. HuangC.C. Inflammatory burden and immunomodulative therapeutics of cardiovascular diseases.Int. J. Mol. Sci.202223280410.3390/ijms2302080435054989
    [Google Scholar]
  115. AndreottiF. MaggioniA.P. CampeggiA. IervolinoA. ScambiaG. MassettiM. Anti-inflammatory therapy in ischaemic heart disease: From canakinumab to colchicine.Eur. Heart J. Suppl.202123Suppl. EE13E1810.1093/eurheartj/suab08434650351
    [Google Scholar]
  116. LuoG. ZhangJ. SunY. WangY. WangH. ChengB. ShuQ. FangX. Nanoplatforms for sepsis management: Rapid detection/warning, pathogen elimination and restoring immune homeostasis.Nano-Micro Lett.20211318810.1007/s40820‑021‑00598‑333717630
    [Google Scholar]
  117. LiuJ. WanM. LyonC.J. HuT.Y. Nanomedicine therapies modulating macrophage dysfunction: A potential strategy to attenuate cytokine storms in severe infections.Theranostics202010219591960010.7150/thno.4798232863947
    [Google Scholar]
  118. VukovićB. CvetićŽ. BendeljaK. BarbirR. MilićM. DobroševićB. ŠerićV. Vinković VrčekI. In vitro study on the immunomodulatory effects of differently functionalized silver nanoparticles on human peripheral blood mononuclear cells.J. Biol. Inorg. Chem.202126781783110.1007/s00775‑021‑01898‑034476609
    [Google Scholar]
  119. ZhuY. MaJ. ShenR. LinJ. LiS. LuX. StelzelJ.L. KongJ. ChengL. VuongI. YaoZ-C. WeiC. KorinetzN.M. TohW.H. ChoyJ. ReynoldsR.A. ShearsM.J. ChoW.J. LivingstonN.K. HowardG.P. HuY. TzengS.Y. ZackD.J. GreenJ.J. ZhengL. DoloffJ.C. SchneckJ.P. ReddyS.K. MurphyS.C. MaoH-Q. Screening for lipid nanoparticles that modulate the immune activity of helper T cells towards enhanced antitumour activity.Nat. Biomed. Eng.20238554456010.1038/s41551‑023‑01131‑038082180
    [Google Scholar]
  120. KaramiZ. MehrzadJ. AkramiM. HosseinkhaniS. Anti-inflammation-based treatment of atherosclerosis using Gliclazide-loaded biomimetic nanoghosts.Sci. Rep.20231311388010.1038/s41598‑023‑41136‑y37620556
    [Google Scholar]
  121. LiL. LiuS. TanJ. WeiL. WuD. GaoS. WengY. ChenJ. Recent advance in treatment of atherosclerosis: Key targets and plaque-positioned delivery strategies.J. Tissue Eng.20221350910.1177/2041731422108850935356091
    [Google Scholar]
  122. ZhangY. YeJ. Hosseini-NassabN. FloresA. KalashnikovaI. PaluriS.L. LotfiM. LeeperN.J. SmithB.R. Macrophage-targeted single walled carbon nanotubes stimulate phagocytosis via pH-dependent drug release.Nano Res.202114376276910.1007/s12274‑020‑3111‑3
    [Google Scholar]
  123. YeW. JiaY. RenH. XieY. YuM. ChenY. Regulation of antigen-specific immunotherapy with nanomaterials.Adv. NanoBiomed Res.2023312230006810.1002/anbr.202300068
    [Google Scholar]
  124. Al-AnsariD.E. MohamedN.A. MareiI. ZekriA. KamenoY. DaviesR.P. LickissP.D. RahmanM.M. Abou-SalehH. Internalization of metal–organic framework nanoparticles in human vascular cells: Implications for cardiovascular disease therapy.Nanomaterials (Basel)2020106102810.3390/nano1006102832471187
    [Google Scholar]
  125. WangT.Y. Kendrick-WilliamsL.L. ChoyM.Y. GilmoreK.A. BonnardT. PearceH.A. LawL.S. CarmichaelI. CodyS.H. AltK. HagemeyerC.E. HarthE. Collagen-targeted theranostic nanosponges for delivery of the matrix metalloproteinase 14 inhibitor naphthofluorescein.Chem. Mater.20203293707371410.1021/acs.chemmater.9b02840
    [Google Scholar]
  126. DuX. SuX. ZhangW. YiS. ZhangG. JiangS. LiH. LiS. XiaF. Progress, opportunities, and challenges of troponin analysis in the early diagnosis of cardiovascular diseases.Anal. Chem.202294144246310.1021/acs.analchem.1c0447634843218
    [Google Scholar]
  127. LetchumananI. ArshadM.K.M. GopinathS.C.B. Nanodiagnostic attainments and clinical perspectives on C-reactive protein: Cardiovascular disease risks assessment.Curr. Med. Chem.2021285986100210.2174/092986732766620012309264831971105
    [Google Scholar]
  128. ZhangP. MengJ. LiY. YangC. HouY. TangW. McHughK.J. JingL. Nanotechnology-enhanced immunotherapy for metastatic cancer.Innovation (Camb.)20212410017410.1016/j.xinn.2021.10017434766099
    [Google Scholar]
  129. SabirF. BaraniM. MukhtarM. RahdarA. CucchiariniM. ZafarM.N. BehlT. BungauS. Nanodiagnosis and nanotreatment of cardiovascular diseases: An overview.Chemosensors (Basel)2021946710.3390/chemosensors9040067
    [Google Scholar]
  130. De Silva IndrasekaraA.S. Design criteria to fabricate plasmonic gold nanomaterials for surface-enhanced Raman scattering (SERS)-based biosensing.J. Appl. Phys.20211292323110210.1063/5.0051795
    [Google Scholar]
  131. MaQ. MaH. XuF. WangX. SunW. Microfluidics in cardiovascular disease research: State of the art and future outlook.Microsyst. Nanoeng.2021711910.1038/s41378‑021‑00245‑234567733
    [Google Scholar]
  132. TabishT.A. HayatH. AbbasA. NarayanR.J. Graphene quantum dots-based electrochemical biosensing platform for early detection of acute myocardial infarction.Biosensors (Basel)20221227710.3390/bios1202007735200338
    [Google Scholar]
  133. DharaK. MahapatraD.R. Review on electrochemical sensing strategies for C-reactive protein and cardiac troponin I detection.Microchem. J.202015610485710.1016/j.microc.2020.104857
    [Google Scholar]
  134. KangH. JeongS. KohY. Geun ChaM. YangJ.K. KyeongS. KimJ. KwakS.Y. ChangH.J. LeeH. JeongC. KimJ.H. JunB.H. KimY.K. Hong JeongD. LeeY.S. Direct identification of on-bead peptides using surface-enhanced Raman spectroscopic barcoding system for high-throughput bioanalysis.Sci. Rep.2015511014410.1038/srep1014426017924
    [Google Scholar]
  135. MendesB.B. ConniotJ. AvitalA. YaoD. JiangX. ZhouX. Sharf-PaukerN. XiaoY. AdirO. LiangH. ShiJ. SchroederA. CondeJ. Nanodelivery of nucleic acids.Nat. Rev. Methods Primers2022212410.1038/s43586‑022‑00104‑y35480987
    [Google Scholar]
  136. FoserS. MaieseK. DigumarthyS.R. Puig-ButilleJ.A. RebhanC. Looking to the future of early detection in cancer: Liquid biopsies, imaging, and artificial intelligence.Clin. Chem.2024701273210.1093/clinchem/hvad19638175601
    [Google Scholar]
  137. TawfikO.W. SubramanianJ. CaughronS. ManaP. EwingE. AboudaraM. BorsaJ. SchaferL. SaetteleT. JonnalagaddaS. Challenges in pathology specimen processing in the new era of precision medicine.Arch. Pathol. Lab. Med.2022146560361010.5858/arpa.2021‑0089‑OA34424953
    [Google Scholar]
  138. YuJ.H. SteinbergI. DavisR.M. MalkovskiyA.V. ZlitniA. RadzyminskiR.K. JungK.O. ChungD.T. CuretL.D. D’SouzaA.L. ChangE. RosenbergJ. CampbellJ. FrostigH. ParkS. PratxG. LevinC. GambhirS.S. Noninvasive and highly multiplexed five-color tumor imaging of multicore near-infrared resonant surface-enhanced Raman nanoparticles in vivo.ACS Nano20211512199561996910.1021/acsnano.1c0747034797988
    [Google Scholar]
  139. GuoJ. ZhaoZ. ShangZ.F. TangZ. ZhuH. ZhangK. Exploration.New York, United StatesWiley Online Library2023Vol. 320220119
    [Google Scholar]
  140. SetiaA. MehataA.K. PriyaV. PawdeD.M. JainD. MahtoS.K. MuthuM.S. Current advances in nanotheranostics for molecular imaging and therapy of cardiovascular disorders.Mol. Pharm.202320104922494110.1021/acs.molpharmaceut.3c0058237699355
    [Google Scholar]
  141. HanX. XuK. TaratulaO. FarsadK. Applications of nanoparticles in biomedical imaging.Nanoscale201911379981910.1039/C8NR07769J30603750
    [Google Scholar]
  142. MeolaA. RaoJ. ChaudharyN. SongG. ZhengX. ChangS.D. Magnetic particle imaging in neurosurgery.World Neurosurg.201912526127010.1016/j.wneu.2019.01.18030738942
    [Google Scholar]
  143. SeguchiM. AytekinA. LenzT. NicolP. KlostermanG.R. BeeleA. SabicE. UtschL. AlyaqoobA. GorpasD. NtziachristosV. JafferF.A. RauschendorferP. JonerM. Intravascular molecular imaging: Translating pathophysiology of atherosclerosis into human disease conditions.Eur. Heart J. Cardiovasc. Imaging2022241e1e1610.1093/ehjci/jeac16336002376
    [Google Scholar]
  144. ChengC. ZhangJ. LiX. XueF. CaoL. MengL. SuiW. ZhangM. ZhaoY. XiB. YuX. XuF. YangJ. ZhangY. ZhangC. NPRC deletion mitigated atherosclerosis by inhibiting oxidative stress, inflammation and apoptosis in ApoE knockout mice.Signal Transduct. Target. Ther.20238129010.1038/s41392‑023‑01560‑y37553374
    [Google Scholar]
  145. ZhangX. CenturionF. MisraA. PatelS. GuZ. Molecularly targeted nanomedicine enabled by inorganic nanoparticles for atherosclerosis diagnosis and treatment.Adv. Drug Deliv. Rev.202319411470910.1016/j.addr.2023.11470936690300
    [Google Scholar]
  146. SammartinoA.M. FalcoR. DreraA. DondiF. BelliniP. BertagnaF. VizzardiE. “Vascular inflammation and cardiovascular disease: Review about the role of PET imaging”.Int. J. Cardiovasc. Imaging202239243344010.1007/s10554‑022‑02730‑936255543
    [Google Scholar]
  147. ChenX. LiuC. Deep-learning-based methods of attenuation correction for SPECT and PET.J. Nucl. Cardiol.20233051859187810.1007/s12350‑022‑03007‑335680755
    [Google Scholar]
  148. AmraeeA. KhoeiS. MahdaviS.R. TohidkiaM.R. TarighatniaA. DarvishL. Hosseini TeshniziS. AghanejadA. Ultrasmall iron oxide nanoparticles and gadolinium-based contrast agents in magnetic resonance imaging: A systematic review and meta-analysis.Clin. Transl. Imaging2022111839310.1007/s40336‑022‑00528‑2
    [Google Scholar]
  149. ChengJ. HuangH. ChenY. WuR. Nanomedicine for diagnosis and treatment of atherosclerosis.Adv. Sci. (Weinh.)20231036230429410.1002/advs.20230429437897322
    [Google Scholar]
  150. LiuT. LuY. ZhanR. QianW. LuoG. Nanomaterials and nanomaterials-based drug delivery to promote cutaneous wound healing.Adv. Drug Deliv. Rev.202319311467010.1016/j.addr.2022.11467036538990
    [Google Scholar]
  151. GuoJ. WangH. LiY. ZhuS. HuH. GuZ. Nanotechnology in coronary heart disease.Acta Biomater.2023171376710.1016/j.actbio.2023.09.01137714246
    [Google Scholar]
  152. WestH.W. DangasK. AntoniadesC. Advances in clinical imaging of vascular inflammation.JACC Basic Transl. Sci.20249571073210.1016/j.jacbts.2023.10.00738984055
    [Google Scholar]
  153. YanW. LiY. ZouY. ZhuR. WuT. SunX. YuanW. LangT. YinQ. LiY. Breaking tumor immunosuppressive network by regulating multiple nodes with triadic drug delivery nanoparticles.ACS Nano20231718178261784410.1021/acsnano.3c0338737690028
    [Google Scholar]
  154. MaoK. WangJ. XieQ. YangY.G. ShenS. SunT. WangJ. Cationic nanoparticles-based approaches for immune tolerance induction in vivo.J. Control. Release202436642544710.1016/j.jconrel.2023.12.04438154540
    [Google Scholar]
  155. ChenX. ChenH. ZhuL. ZengM. WangT. SuC. VulugundamG. GokulnathP. LiG. WangX. YaoJ. LiJ. CretoiuD. ChenZ. BeiY. Nanoparticle–patch system for localized, effective, and sustained miRNA administration into infarcted myocardium to alleviate myocardial ischemia–reperfusion injury.ACS Nano20241830acsnano.3c0881110.1021/acsnano.3c0881139020456
    [Google Scholar]
  156. MotlaghN.V. Cell membrane surface-engineered nanoparticles: Biomimetic nanomaterials for biomedical applications.Washington, D.C.ACS Publications202419321610.1021/bk‑2024‑1464.ch009
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128347223241021111914
Loading
/content/journals/cpd/10.2174/0113816128347223241021111914
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test