Skip to content
2000
image of A Review Unveiling the Ferroptosis-Regulated Cell Signalling Pathways in Breast Cancer to Elucidate Potent Targets for Cancer Management

Abstract

Recent research suggests that targeting ferroptosis exhibits promise as a potent treatment approach for breast carcinoma. Specific subtypes of tumor cells exhibit heightened vulnerability to ferroptosis-inducing chemicals, which selectively trigger tumor stem cells' demise, enhance tumor cells' sensitivity to chemotherapeutic drugs, and eliminate cancerous cells. Ferroptosis plays a dual role in breast cancer progression, emerging as both a stimulating and inhibitory component. Ferroptosis is effective in treating cancer cells (mesenchymal breast), identified by their ability to undergo Epithelial-mesenchymal Transition (EMT) and their resistance to conventional therapies. Pharmaceutical drugs that hinder the activity of enzymes known as kinases, which are involved in the AKT/mTOR/PI3K signaling pathway, have shown significant potential in the treatment of breast carcinoma. This review investigates the molecular mechanisms of different signaling pathways implicated in ferroptosis in breast carcinoma, with specific emphasis on metastasis, invasion, and proliferation. Our study contributes to understanding a potentially important target that could be used in developing therapeutic strategies for breast cancer treatment.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128343266241230045019
2025-01-31
2025-04-25
Loading full text...

Full text loading...

References

  1. Sharma G. N. Dave R. Various types and management of breast cancer: an overview. J. Adv. Pharm. Technol. Res. 2019 1 2 109 126
    [Google Scholar]
  2. Waks A.G. Winer E.P. Breast cancer treatment: a review. JAMA 2019 321 3 288 300 10.1001/jama.2018.19323 30667505
    [Google Scholar]
  3. Trayes K.P. Cokenakes S.E.H. Breast cancer treatment. Am. Fam. Physician 2021 104 2 171 178 34383430
    [Google Scholar]
  4. Hong R. Xu B. Breast cancer: an up-to-date review and future perspectives. Cancer Commun. (Lond.) 2022 42 10 913 936 10.1002/cac2.12358 36074908
    [Google Scholar]
  5. Smolarz B. Nowak A.Z. Romanowicz H. Breast cancer—epidemiology, classification, pathogenesis and treatment. Cancers 2022 14 10 2569 10.3390/cancers14102569 35626173
    [Google Scholar]
  6. Madu C.O. Wang S. Madu C.O. Lu Y. Angiogenesis in breast cancer progression, diagnosis, and treatment. J. Cancer 2020 11 15 4474 4494 10.7150/jca.44313 32489466
    [Google Scholar]
  7. Andonegui-Elguera M.A. Alfaro-Mora Y. Cáceres-Gutiérrez R. Caro-Sánchez C.H.S. Herrera L.A. Díaz-Chávez J. An overview of vasculogenic mimicry in breast cancer. Front. Oncol. 2020 10 220 10.3389/fonc.2020.00220 32175277
    [Google Scholar]
  8. Morales-Guadarrama G. García-Becerra R. Méndez-Pérez E.A. García-Quiroz J. Avila E. Díaz L. Vasculogenic mimicry in breast cancer: clinical relevance and drivers. Cells 2021 10 7 1758 10.3390/cells10071758 34359928
    [Google Scholar]
  9. Franco P.I.R. Neto J.R.C. de Menezes L.B. Machado J.R. Miguel M.P. Revisiting the hallmarks of cancer: A new look at long noncoding RNAs in breast cancer. Pathol. Res. Pract. 2023 243 154381 10.1016/j.prp.2023.154381 36857948
    [Google Scholar]
  10. Park M. Kim D. Ko S. Kim A. Mo K. Yoon H. Breast cancer metastasis: mechanisms and therapeutic implications. Int. J. Mol. Sci. 2022 23 12 6806 10.3390/ijms23126806 35743249
    [Google Scholar]
  11. Kim M.Y. Breast cancer metastasis. Translational Research in Breast Cancer. Singapore Springer Singapore 2021 183 204 10.1007/978‑981‑32‑9620‑6_9
    [Google Scholar]
  12. Chen X. Zeh H.J. Kang R. Kroemer G. Tang D. Cell death in pancreatic cancer: from pathogenesis to therapy. Nat. Rev. Gastroenterol. Hepatol. 2021 18 11 804 823 10.1038/s41575‑021‑00486‑6 34331036
    [Google Scholar]
  13. Koual M. Tomkiewicz C. Cano-Sancho G. Antignac J.P. Bats A.S. Coumoul X. Environmental chemicals, breast cancer progression and drug resistance. Environ. Health 2020 19 1 117 10.1186/s12940‑020‑00670‑2 33203443
    [Google Scholar]
  14. Barzaman K. Karami J. Zarei Z. Hosseinzadeh A. Kazemi M.H. Moradi-Kalbolandi S. Safari E. Farahmand L. Breast cancer: Biology, biomarkers, and treatments. Int. Immunopharmacol. 2020 84 106535 10.1016/j.intimp.2020.106535 32361569
    [Google Scholar]
  15. Laborda-Illanes A. Sanchez-Alcoholado L. Dominguez-Recio M.E. Jimenez-Rodriguez B. Lavado R. Comino-Méndez I. Alba E. Queipo-Ortuño M.I. Breast and gut microbiota action mechanisms in breast cancer pathogenesis and treatment. Cancers (Basel) 2020 12 9 2465 10.3390/cancers12092465 32878124
    [Google Scholar]
  16. Corchado-Cobos R. García-Sancha N. Mendiburu-Eliçabe M. Gómez-Vecino A. Jiménez-Navas A. Pérez-Baena M.J. Holgado-Madruga M. Mao J.H. Cañueto J. Castillo-Lluva S. Pérez-Losada J. Pathophysiological integration of metabolic reprogramming in breast cancer. Cancers (Basel) 2022 14 2 322 10.3390/cancers14020322 35053485
    [Google Scholar]
  17. Salemme V. Centonze G. Cavallo F. Defilippi P. Conti L. The crosstalk between tumor cells and the immune microenvironment in breast cancer: implications for immunotherapy. Front. Oncol. 2021 11 610303 10.3389/fonc.2021.610303 33777750
    [Google Scholar]
  18. Lüönd F. Tiede S. Christofori G. Breast cancer as an example of tumour heterogeneity and tumour cell plasticity during malignant progression. Br. J. Cancer 2021 125 2 164 175 10.1038/s41416‑021‑01328‑7 33824479
    [Google Scholar]
  19. Li Z. Chen L. Chen C. Zhou Y. Hu D. Yang J. Chen Y. Zhuo W. Mao M. Zhang X. Xu L. Wang L. Zhou J. Targeting ferroptosis in breast cancer. Biomark. Res. 2020 8 1 58 10.1186/s40364‑020‑00230‑3 33292585
    [Google Scholar]
  20. Fu B. Lou Y. Wu P. Lu X. Xu C. Emerging role of necroptosis, pyroptosis, and ferroptosis in breast cancer: New dawn for overcoming therapy resistance. Neoplasia 2024 55 101017 10.1016/j.neo.2024.101017 38878618
    [Google Scholar]
  21. Liu J. Hong M. Li Y. Chen D. Wu Y. Hu Y. Programmed cell death tunes tumor immunity. Front. Immunol. 2022 13 847345 10.3389/fimmu.2022.847345 35432318
    [Google Scholar]
  22. Ajoolabady A. Tang D. Kroemer G. Ren J. Ferroptosis in hepatocellular carcinoma: mechanisms and targeted therapy. Br. J. Cancer 2023 128 2 190 205 10.1038/s41416‑022‑01998‑x 36229582
    [Google Scholar]
  23. Wu Z.H. Tang Y. Yu H. Li H.D. The role of ferroptosis in breast cancer patients: a comprehensive analysis. Cell Death Discov. 2021 7 1 93 10.1038/s41420‑021‑00473‑5 33947836
    [Google Scholar]
  24. Lin H.Y. Ho H.W. Chang Y.H. Wei C.J. Chu P.Y. The evolving role of ferroptosis in breast cancer: translational implications present and future. Cancers (Basel) 2021 13 18 4576 10.3390/cancers13184576 34572802
    [Google Scholar]
  25. Khan M.M. Yalamarty S.S.K. Rajmalani B.A. Filipczak N. Torchilin V.P. Recent strategies to overcome breast cancer resistance. Crit. Rev. Oncol. Hematol. 2024 197 104351 10.1016/j.critrevonc.2024.104351 38615873
    [Google Scholar]
  26. Naeem M. Iqbal M.O. Khan H. Ahmed M.M. Farooq M. Aadil M.M. Jamaludin M.I. Hazafa A. Tsai W.C. A review of twenty years of research on the regulation of signaling pathways by natural products in breast cancer. Molecules 2022 27 11 3412 10.3390/molecules27113412 35684353
    [Google Scholar]
  27. Zhao X. Wang X. Pang Y. Phytochemicals targeting ferroptosis: therapeutic opportunities and prospects for treating breast cancer. Pharmaceuticals (Basel) 2022 15 11 1360 10.3390/ph15111360 36355532
    [Google Scholar]
  28. Xie Y. Wang B. Zhao Y. Tao Z. Wang Y. Chen G. Hu X. Mammary adipocytes protect triple-negative breast cancer cells from ferroptosis. J. Hematol. Oncol. 2022 15 1 72 10.1186/s13045‑022‑01297‑1 35659320
    [Google Scholar]
  29. Li J. Cao F. Yin H. Huang Z. Lin Z. Mao N. Sun B. Wang G. Ferroptosis: past, present and future. Cell Death Dis. 2020 11 2 88 10.1038/s41419‑020‑2298‑2 32015325
    [Google Scholar]
  30. Geck R.C. Toker A. Nonessential amino acid metabolism in breast cancer. Adv. Biol. Regul. 2016 62 11 17 10.1016/j.jbior.2016.01.001 26838061
    [Google Scholar]
  31. Chen X. Li J. Gray W.H. Lehmann B.D. Bauer J.A. Shyr Y. Pietenpol J.A. TNBCtype: a subtyping tool for triple-negative breast cancer. Cancer Informatics 2012 11
    [Google Scholar]
  32. Dixon S.J. Lemberg K.M. Lamprecht M.R. Skouta R. Zaitsev E.M. Gleason C.E. Stockwell B.R. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 2012 149 5 1060 1072
    [Google Scholar]
  33. Koeberle S.C. Kipp A.P. Stuppner H. Koeberle A. Ferroptosis-modulating small molecules for targeting drug-resistant cancer: Challenges and opportunities in manipulating redox signaling. Med. Res. Rev. 2023 43 3 614 682 10.1002/med.21933 36658724
    [Google Scholar]
  34. Daher B. Vučetić M. Pouysségur J. Cysteine depletion, a key action to challenge cancer cells to ferroptotic cell death. Front. Oncol. 2020 10 723 10.3389/fonc.2020.00723 32457843
    [Google Scholar]
  35. Yu H. Yang C. Jian L. Guo S. Chen R. Li K. Qu F. Tao K. Fu Y. Luo F. Liu S. Sulfasalazine‑induced ferroptosis in breast cancer cells is reduced by the inhibitory effect of estrogen receptor on the transferrin receptor. Oncol. Rep. 2019 42 2 826 838 10.3892/or.2019.7189 31173262
    [Google Scholar]
  36. Walker D.M. Poczobutt J.M. Gonzales M.S. Horita H. Gutierrez-Hartmann A. ESE-1 is required to maintain the transformed phenotype of MCF-7 and ZR-75-1 human breast cancer cells. Open Cancer J. 2010 3 1 77 88 10.2174/1874079001003010077
    [Google Scholar]
  37. Verschoor M.L. Singh G. Ets-1 regulates intracellular glutathione levels: key target for resistant ovarian cancer. Mol. Cancer 2013 12 1 138 10.1186/1476‑4598‑12‑138 24238102
    [Google Scholar]
  38. Liu M. Zhu W. Pei D. System Xc−: a key regulatory target of ferroptosis in cancer. Invest. New Drugs 2021 39 4 1123 1131 10.1007/s10637‑021‑01070‑0 33506324
    [Google Scholar]
  39. Wu W. Song Y. He C. Liu C. Wu R. Fang L. Cong Y. Miao Y. Liu Z. Divalent metal-ion transporter 1 is decreased in intestinal epithelial cells and contributes to the anemia in inflammatory bowel disease. Sci. Rep. 2015 5 1 16344 10.1038/srep16344 26572590
    [Google Scholar]
  40. Lee J. Roh J.L. Promotion of ferroptosis in head and neck cancer with divalent metal transporter 1 inhibition or salinomycin. Hum. Cell 2023 36 3 1090 1098 10.1007/s13577‑023‑00890‑x 36890422
    [Google Scholar]
  41. Ma S. Henson E.S. Chen Y. Gibson S.B. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis. 2016 7 7 e2307 e2307 10.1038/cddis.2016.208 27441659
    [Google Scholar]
  42. Ge A. He Q. Zhao D. Li Y. Chen J. Deng Y. Xiang W. Fan H. Wu S. Li Y. Liu L. Wang Y. Mechanism of ferroptosis in breast cancer and research progress of natural compounds regulating ferroptosis. J. Cell. Mol. Med. 2024 28 1 e18044 10.1111/jcmm.18044 38140764
    [Google Scholar]
  43. Villalpando-Rodriguez G.E. Blankstein A.R. Konzelman C. Gibson S.B. Lysosomal destabilizing drug siramesine and the dual tyrosine kinase inhibitor lapatinib induce a synergistic ferroptosis through reduced heme oxygenase-1 (HO-1) levels. Oxid. Med. Cell. Longev. 2019 2019 1 1 14 10.1155/2019/9561281 31636810
    [Google Scholar]
  44. Blankstein A.R. Siramesine and lapatinib induce synergic cell death via a ferroptotic mechanism in lung adenocarcinoma and glioblastoma cells. FGS - Electronic Theses and Practica 2017
    [Google Scholar]
  45. Imoto S. Sawamura T. Shibuya Y. Kono M. Ohbuchi A. Suzuki T. Mizokoshi Y. Saigo K. Labile iron, ROS, and cell death are prominently induced by haemin, but not by non-transferrin-bound iron. Transfus. Apheresis Sci. 2022 61 2 103319 10.1016/j.transci.2021.103319 34801431
    [Google Scholar]
  46. Finazzi D. Arosio P. Biology of ferritin in mammals: an update on iron storage, oxidative damage and neurodegeneration. Arch. Toxicol. 2014 88 10 1787 1802 10.1007/s00204‑014‑1329‑0 25119494
    [Google Scholar]
  47. Zhang Z. Lu M. Chen C. Tong X. Li Y. Yang K. Lv H. Xu J. Qin L. Holo-lactoferrin: the link between ferroptosis and radiotherapy in triple-negative breast cancer. Theranostics 2021 11 7 3167 3182 10.7150/thno.52028 33537080
    [Google Scholar]
  48. Rodriguez-Ochoa N. Cortes-Reynosa P. Rodriguez-Rojas K. de la Garza M. Salazar E.P. Bovine holo-lactoferrin inhibits migration and invasion in MDA-MB-231 breast cancer cells. Mol. Biol. Rep. 2023 50 1 193 201 10.1007/s11033‑022‑07943‑8 36319786
    [Google Scholar]
  49. Elzoghby A.O. Abdelmoneem M.A. Hassanin I.A. Abd Elwakil M.M. Elnaggar M.A. Mokhtar S. Fang J.Y. Elkhodairy K.A. Lactoferrin, a multi-functional glycoprotein: Active therapeutic, drug nanocarrier & targeting ligand. Biomaterials 2020 263 120355 10.1016/j.biomaterials.2020.120355 32932142
    [Google Scholar]
  50. Pan Y. Tang W. Fan W. Zhang J. Chen X. Development of nanotechnology-mediated precision radiotherapy for anti-metastasis and radioprotection. Chem. Soc. Rev. 2022 51 23 9759 9830 10.1039/D1CS01145F 36354107
    [Google Scholar]
  51. Wong R.S.Y. Apoptosis in cancer: from pathogenesis to treatment. J. Exp. Clin. Cancer Res. 2011 30 1 87 10.1186/1756‑9966‑30‑87 21943236
    [Google Scholar]
  52. Endale H.T. Tesfaye W. Mengstie T.A. ROS induced lipid peroxidation and their role in ferroptosis. Front. Cell Dev. Biol. 2023 11 1226044 10.3389/fcell.2023.1226044 37601095
    [Google Scholar]
  53. Clemente S.M. Martínez-Costa O.H. Monsalve M. Samhan-Arias A.K. Targeting lipid peroxidation for cancer treatment. Molecules 2020 25 21 5144 10.3390/molecules25215144 33167334
    [Google Scholar]
  54. Demirci-Çekiç S. Özkan G. Avan A.N. Uzunboy S. Çapanoğlu E. Apak R. Biomarkers of oxidative stress and antioxidant defense. J. Pharm. Biomed. Anal. 2022 209 114477 10.1016/j.jpba.2021.114477 34920302
    [Google Scholar]
  55. Jardim B.V. Moschetta M.G. Leonel C. Gelaleti G.B. Regiani V.R. Ferreira L.C. Lopes J.R. De Campos Zuccari D.P. Glutathione and glutathione peroxidase expression in breast cancer: An immunohistochemical and molecular study. Oncol. Rep. 2013 30 3 1119 1128 10.3892/or.2013.2540 23765060
    [Google Scholar]
  56. Yan Y. Liu Y. Li T. Liang Q. Thakur A. Zhang K. Liu W. Xu Z. Xu Y. Functional roles of magnetic nanoparticles for the identification of metastatic lymph nodes in cancer patients. J. Nanobiotechnology 2023 21 1 337 10.1186/s12951‑023‑02100‑0 37735449
    [Google Scholar]
  57. Shen Y. Li X. Dong D. Zhang B. Xue Y. Shang P. Transferrin receptor 1 in cancer: a new sight for cancer therapy. Am. J. Cancer Res. 2018 8 6 916 931 30034931
    [Google Scholar]
  58. Li J. Lim J.Y.S. Eu J.Q. Chan A.K.M.H. Goh B.C. Wang L. Wong A.L.A. Reactive oxygen species modulation in the current landscape of anticancer therapies. Antioxid. Redox Signal. 2024 41 4-6 322 341 10.1089/ars.2023.0445 38445392
    [Google Scholar]
  59. Chen Z. Wu Y. Zhang Q. Zhang Y. Biological properties of a benzothiazole-based mononuclear platinum(II) complex as a potential anticancer agent. J. Coord. Chem. 2020 73 12 1817 1832 10.1080/00958972.2020.1793966
    [Google Scholar]
  60. Saha T. Lukong K.E. Breast cancer stem-like cells in drug resistance: a review of mechanisms and novel therapeutic strategies to overcome drug resistance. Front. Oncol. 2022 12 856974 10.3389/fonc.2022.856974 35392236
    [Google Scholar]
  61. Taneja N. Chauhan A. Kulshreshtha R. Singh S. HIF-1 mediated metabolic reprogramming in cancer: Mechanisms and therapeutic implications. Life Sci. 2024 352 122890 10.1016/j.lfs.2024.122890 38971364
    [Google Scholar]
  62. Vogg A.T.J. Drude N. Mottaghy F.M. Morgenroth A. Miran T. Modulation of glutathione promotes apoptosis in triple-negative breast cancer cells. FASEB J. 2018 32 5 2803 2813 10.1096/fj.201701157R 29301945
    [Google Scholar]
  63. Mao X. Lipoxygenase in Ferroptosis. Ferroptosis in Health and Disease 2019 273 284
    [Google Scholar]
  64. Chu B. Kon N. Chen D. Li T. Liu T. Jiang L. Song S. Tavana O. Gu W. ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat. Cell Biol. 2019 21 5 579 591 10.1038/s41556‑019‑0305‑6 30962574
    [Google Scholar]
  65. Lin Z. Liu J. Kang R. Yang M. Tang D. Lipid metabolism in ferroptosis. Adv. Biol. 2021 5 8 2100396 10.1002/adbi.202100396 34015188
    [Google Scholar]
  66. Zheng Z. Li Y. Jin G. Huang T. Zou M. Duan S. The biological role of arachidonic acid 12-lipoxygenase (ALOX12) in various human diseases. Biomed. Pharmacother. 2020 129 110354 10.1016/j.biopha.2020.110354 32540644
    [Google Scholar]
  67. Huang Z. Xia L. Zhou X. Wei C. Mo Q. ALOX12 inhibition sensitizes breast cancer to chemotherapy via AMPK activation and inhibition of lipid synthesis. Biochem. Biophys. Res. Commun. 2019 514 1 24 30 10.1016/j.bbrc.2019.04.101 31014671
    [Google Scholar]
  68. Zhou X. Jiang Y. Li Q. Huang Z. Yang H. Wei C. Aberrant ALOX5 activation correlates with HER2 status and mediates breast cancer biological activities through multiple mechanisms. BioMed Res. Int. 2020 2020 1 1 8 10.1155/2020/1703531 33224971
    [Google Scholar]
  69. Mongiovi J.M. Hong C.C. Zirpoli G.R. Khoury T. Omilian A.R. Qin B. Bandera E.V. Yao S. Ambrosone C.B. Gong Z. Genetic variants in COX2 and ALOX genes and breast cancer risk in white and black women. Front. Oncol. 2021 11 679998 10.3389/fonc.2021.679998 34249719
    [Google Scholar]
  70. Benatzy Y. Palmer M.A. Brüne B. Arachidonate 15-lipoxygenase type B: Regulation, function, and its role in pathophysiology. Front. Pharmacol. 2022 13 1042420 10.3389/fphar.2022.1042420 36438817
    [Google Scholar]
  71. Tang W. Xu F. Zhao M. Zhang S. Ferroptosis regulators, especially SQLE, play an important role in prognosis, progression and immune environment of breast cancer. BMC Cancer 2021 21 1 1160 10.1186/s12885‑021‑08892‑4 34715817
    [Google Scholar]
  72. Vishnupriya P. Aparna A. Viswanadha V.P. Lipoxygenase (LOX) pathway: a promising target to combat cancer. Curr. Pharm. Des. 2021 27 31 3349 3369 10.2174/1381612826666210101153216 33388012
    [Google Scholar]
  73. Mehraj U. Ganai R.A. Macha M.A. Hamid A. Zargar M.A. Bhat A.A. Nasser M.W. Haris M. Batra S.K. Alshehri B. Al-Baradie R.S. Mir M.A. Wani N.A. The tumor microenvironment as driver of stemness and therapeutic resistance in breast cancer: New challenges and therapeutic opportunities. Cell Oncol. (Dordr.) 2021 44 6 1209 1229 10.1007/s13402‑021‑00634‑9 34528143
    [Google Scholar]
  74. Connor A.E. Baumgartner R.N. Baumgartner K.B. Pinkston C.M. Boone S.D. John E.M. Mejía G.T. Hines L.M. Giuliano A.R. Wolff R.K. Slattery M.L. Associations between ALOX, COX, and CRP polymorphisms and breast cancer among Hispanic and non-Hispanic white women: The breast cancer health disparities study. Mol. Carcinog. 2015 54 12 1541 1553 10.1002/mc.22228 25339205
    [Google Scholar]
  75. Tian R. Zuo X. Jaoude J. Mao F. Colby J. Shureiqi I. ALOX15 as a suppressor of inflammation and cancer: Lost in the link. Prostaglandins Other Lipid Mediat. 2017 132 77 83 10.1016/j.prostaglandins.2017.01.002 28089732
    [Google Scholar]
  76. Gholamalizadeh M. Majidi N. Tajaddod S. Abdollahi S. Poorhosseini S.M. Ahmadzadeh M. Naimi Joubani M. Mirzaei Dahka S. Shafaei H. Hajiesmaeil M. Alizadeh A. Doaei S. Houshiar-Rad A. Interactions of colorectal cancer, dietary fats, and polymorphisms of arachidonate lipoxygenase and cyclooxygenase genes: a literature review. Front. Oncol. 2022 12 865208 10.3389/fonc.2022.865208 35928873
    [Google Scholar]
  77. Jones D. Pereira E.R. Padera T.P. Growth and immune evasion of lymph node metastasis. Front. Oncol. 2018 8 36 10.3389/fonc.2018.00036 29527513
    [Google Scholar]
  78. Biswas P. Swaroop S. Dutta N. Arya A. Ghosh S. Dhabal S. Das P. Majumder C. Pal M. Bhattacharjee A. IL-13 and the hydroperoxy fatty acid 13(S)HpODE play crucial role in inducing an apoptotic pathway in cancer cells involving MAO-A/ROS/p53/p21 signaling axis. Free Radic. Biol. Med. 2023 195 309 328 10.1016/j.freeradbiomed.2022.12.103 36592660
    [Google Scholar]
  79. Alaaeddine R.A. Elzahhar P.A. AlZaim I. Abou-Kheir W. Belal A.S.F. El-Yazbi A.F. The emerging role of COX-2, 15-LOX and PPARγ in metabolic diseases and cancer: an introduction to novel multi-target directed ligands (MTDLs). Curr. Med. Chem. 2021 28 11 2260 2300 10.2174/1875533XMTA54Mzkc0 32867639
    [Google Scholar]
  80. Kazan H.H. Urfali-Mamatoglu C. Yalcin G.D. Bulut O. Sezer A. Banerjee S. Gunduz U. 15-LOX-1 has diverse roles in the resensitization of resistant cancer cell lines to doxorubicin. J. Cell. Physiol. 2020 235 5 4965 4978 10.1002/jcp.29375 31663148
    [Google Scholar]
  81. Pinnix Z.K. Miller L.D. Wang W. D’Agostino R. Jr Kute T. Willingham M.C. Torti F.M. Ferroportin and iron regulation in breast cancer progression and prognosis. Sci. Transl. Med. 2010 2 43 43ra56
    [Google Scholar]
  82. Liu P. He K. Song H. Ma Z. Yin W. Xu L.X. Deferoxamine-induced increase in the intracellular iron levels in highly aggressive breast cancer cells leads to increased cell migration by enhancing TNF-α-dependent NF-κB signaling and TGF-β signaling. J. Inorg. Biochem. 2016 160 40 48 10.1016/j.jinorgbio.2016.04.014 27138103
    [Google Scholar]
  83. Bent E.H. Millán-Barea L.R. Zhuang I. Goulet D.R. Fröse J. Hemann M.T. Microenvironmental IL-6 inhibits anti-cancer immune responses generated by cytotoxic chemotherapy. Nat. Commun. 2021 12 1 6218 10.1038/s41467‑021‑26407‑4 34711820
    [Google Scholar]
  84. Basak T. Kanwar R.K. Iron imbalance in cancer: Intersection of deficiency and overload. Cancer Med. 2022 11 20 3837 3853 10.1002/cam4.4761 35460205
    [Google Scholar]
  85. Hou W. Xie Y. Song X. Sun X. Lotze M.T. Zeh H.J. III Kang R. Tang D. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 2016 12 8 1425 1428 10.1080/15548627.2016.1187366 27245739
    [Google Scholar]
  86. Sui S. Zhang J. Xu S. Wang Q. Wang P. Pang D. Ferritinophagy is required for the induction of ferroptosis by the bromodomain protein BRD4 inhibitor (+)-JQ1 in cancer cells. Cell Death Dis. 2019 10 5 331 10.1038/s41419‑019‑1564‑7 30988278
    [Google Scholar]
  87. Toumazi D. El Daccache S. Constantinou C. An unexpected link: The role of mammary and gut microbiota on breast cancer development and management. Oncol. Rep. 2021 45 5 80 10.3892/or.2021.8031 33786630
    [Google Scholar]
  88. Latunde-Dada G.O. Ferroptosis: Role of lipid peroxidation, iron and ferritinophagy. Biochim. Biophys. Acta, Gen. Subj. 2017 1861 8 1893 1900 10.1016/j.bbagen.2017.05.019 28552631
    [Google Scholar]
  89. Khan F. Pandey P. Verma M. Ramniwas S. Lee D. Moon S. Park M.N. Upadhyay T.K. Kim B. Emerging trends of phytochemicals as ferroptosis modulators in cancer therapy. Biomed. Pharmacother. 2024 173 116363 10.1016/j.biopha.2024.116363 38479184
    [Google Scholar]
  90. Zhu Y. Yao Y. Shi Z. Everaert N. Ren G. Synergistic effect of bioactive anticarcinogens from soybean on anti-proliferative activity in MDA-MB-231 and MCF-7 human breast cancer cells in vitro. Molecules 2018 23 7 1557 10.3390/molecules23071557 29954123
    [Google Scholar]
  91. Bellezza I. Giambanco I. Minelli A. Donato R. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim. Biophys. Acta Mol. Cell Res. 2018 1865 5 721 733 10.1016/j.bbamcr.2018.02.010 29499228
    [Google Scholar]
  92. Kitamura H. Motohashi H. NRF2 addiction in cancer cells. Cancer Sci. 2018 109 4 900 911 10.1111/cas.13537 29450944
    [Google Scholar]
  93. Okazaki K. Papagiannakopoulos T. Motohashi H. Metabolic features of cancer cells in NRF2 addiction status. Biophys. Rev. 2020 12 2 435 441 10.1007/s12551‑020‑00659‑8 32112372
    [Google Scholar]
  94. Qi X. Wan Z. Jiang B. Ouyang Y. Feng W. Zhu H. Tan Y. He R. Xie L. Li Y. Inducing ferroptosis has the potential to overcome therapy resistance in breast cancer. Front. Immunol. 2022 13 1038225 10.3389/fimmu.2022.1038225 36505465
    [Google Scholar]
  95. Panieri E. Telkoparan-Akillilar P. Suzen S. Saso L. The NRF2/KEAP1 axis in the regulation of tumor metabolism: mechanisms and therapeutic perspectives. Biomolecules 2020 10 5 791 10.3390/biom10050791 32443774
    [Google Scholar]
  96. Kerins M.J. Ooi A. The roles of NRF2 in modulating cellular iron homeostasis. Antioxid. Redox Signal. 2018 29 17 1756 1773 10.1089/ars.2017.7176 28793787
    [Google Scholar]
  97. Soghli N. Yousefi H. Naderi T. Fallah A. Moshksar A. Darbeheshti F. Vittori C. Delavar M.R. Zare A. Rad H.S. Kazemi A. Bitaraf A. Hussen B.M. Taheri M. Jamali E. NRF2 signaling pathway: A comprehensive prognostic and gene expression profile analysis in breast cancer. Pathol. Res. Pract. 2023 243 154341 10.1016/j.prp.2023.154341 36739754
    [Google Scholar]
  98. Sprouse M.L. Welte T. Boral D. Liu H.N. Yin W. Vishnoi M. Goswami-Sewell D. Li L. Pei G. Jia P. Glitza-Oliva I.C. Marchetti D. PMN-MDSCs enhance CTC metastatic properties through reciprocal interactions via ROS/Notch/Nodal signaling. Int. J. Mol. Sci. 2019 20 8 1916 10.3390/ijms20081916 31003475
    [Google Scholar]
  99. Hallis S.P. Go B.J. Yoo J.M. Cho G.H. Kwak M.K. Toward a better understanding of NRF2/NFE2L2 and BCRP/ABCG2 in therapy resistance in cancer. Drug Targets and Therapeutics 2023 2 2 111 123 10.58502/DTT.23.0021
    [Google Scholar]
  100. Gorska-Arcisz M. Popeda M. Braun M. Piasecka D. Nowak J.I. Kitowska K. Stasilojc G. Okroj M. Romanska H.M. Sadej R. FGFR2-triggered autophagy and activation of Nrf-2 reduce breast cancer cell response to anti-ER drugs. Cell. Mol. Biol. Lett. 2024 29 1 71 10.1186/s11658‑024‑00586‑6 38745155
    [Google Scholar]
  101. Li W. Liang L. Liu S. Yi H. Zhou Y. FSP1: a key regulator of ferroptosis. Trends Mol. Med. 2023 29 9 753 764 10.1016/j.molmed.2023.05.013 37357101
    [Google Scholar]
  102. Nakamura T. Hipp C. Santos Dias Mourão A. Borggräfe J. Aldrovandi M. Henkelmann B. Wanninger J. Mishima E. Lytton E. Emler D. Proneth B. Sattler M. Conrad M. Phase separation of FSP1 promotes ferroptosis. Nature 2023 619 7969 371 377 10.1038/s41586‑023‑06255‑6 37380771
    [Google Scholar]
  103. Doll S. Freitas F.P. Shah R. Aldrovandi M. da Silva M.C. Ingold I. Goya Grocin A. Xavier da Silva T.N. Panzilius E. Scheel C.H. Mourão A. Buday K. Sato M. Wanninger J. Vignane T. Mohana V. Rehberg M. Flatley A. Schepers A. Kurz A. White D. Sauer M. Sattler M. Tate E.W. Schmitz W. Schulze A. O’Donnell V. Proneth B. Popowicz G.M. Pratt D.A. Angeli J.P.F. Conrad M. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 2019 575 7784 693 698 10.1038/s41586‑019‑1707‑0 31634899
    [Google Scholar]
  104. Alimohammadi M. Rahimi A. Faramarzi F. Golpour M. Jafari-Shakib R. Alizadeh-Navaei R. Rafiei A. Effects of coenzyme Q10 supplementation on inflammation, angiogenesis, and oxidative stress in breast cancer patients: a systematic review and meta-analysis of randomized controlled- trials. Inflammopharmacology 2021 29 3 579 593 10.1007/s10787‑021‑00817‑8 34008150
    [Google Scholar]
  105. Tafazoli A. Coenzyme Q10 in breast cancer care. Future Oncol. 2017 13 11 1035 1041 10.2217/fon‑2016‑0547 28481148
    [Google Scholar]
  106. Abdi S. Montazeri V. Garjani A. Shayanfar A. Pirouzpanah S. Coenzyme Q10 in association with metabolism-related AMPK/PFKFB3 and angiogenic VEGF/VEGFR2 genes in breast cancer patients. Mol. Biol. Rep. 2020 47 4 2459 2473 10.1007/s11033‑020‑05310‑z 32140960
    [Google Scholar]
  107. Liang Y. Wang Y. Zhang Y. Ye F. Luo D. Li Y. Jin Y. Han D. Wang Z. Chen B. Zhao W. Wang L. Chen X. Ma T. Kong X. Yang Q. HSPB1 facilitates chemoresistance through inhibiting ferroptotic cancer cell death and regulating NF-κB signaling pathway in breast cancer. Cell Death Dis. 2023 14 7 434 10.1038/s41419‑023‑05972‑0 37454220
    [Google Scholar]
  108. Belavgeni A. Tonnus W. Linkermann A. Cancer cells evade ferroptosis: sex hormone-driven membrane-bound O-acyltransferase domain-containing 1 and 2 (MBOAT1/2) expression. Signal Transduct. Target. Ther. 2023 8 1 336 10.1038/s41392‑023‑01593‑3 37679313
    [Google Scholar]
  109. Brabletz T. Kalluri R. Nieto M.A. Weinberg R.A. EMT in cancer. Nat. Rev. Cancer 2018 18 2 128 134 10.1038/nrc.2017.118 29326430
    [Google Scholar]
  110. Hausman R. Brown W. McDonald P. Awrey S. Sun G. Montell D. Dedhar S. Abstract 6002: Increased ferroptosis sensitivity and epithelial to mesenchymal transition of breast cancer cells overcoming chemotherapeutic mediated apoptotic caspase activation. Cancer Res. 2024 84 6_Supplement 6002 6002 10.1158/1538‑7445.AM2024‑6002
    [Google Scholar]
  111. Yan Y. Cai J. Huang Z. Cao X. Tang P. Wang Z. Zhang F. Xia S. Shen B. A novel ferroptosis-related prognostic signature reveals macrophage infiltration and EMT status in bladder cancer. Front. Cell Dev. Biol. 2021 9 712230 10.3389/fcell.2021.712230 34490263
    [Google Scholar]
  112. Ligorio F. Pellegrini I. Castagnoli L. Vingiani A. Lobefaro R. Zattarin E. Santamaria M. Pupa S.M. Pruneri G. de Braud F. Vernieri C. Targeting lipid metabolism is an emerging strategy to enhance the efficacy of anti-HER2 therapies in HER2-positive breast cancer. Cancer Lett. 2021 511 77 87 10.1016/j.canlet.2021.04.023 33961924
    [Google Scholar]
  113. Han C. Wei S. He F. Liu D. Wan H. Liu H. Li L. Xu H. Du X. Xu F. The regulation of lipid deposition by insulin in goose liver cells is mediated by the PI3K-AKT-mTOR signaling pathway. PLoS One 2015 10 5 e0098759 10.1371/journal.pone.0098759 25945932
    [Google Scholar]
  114. Chen X. Li S. Long D. Shan J. Li Y. Rapamycin facilitates differentiation of regulatory T cells via enhancement of oxidative phosphorylation. Cell. Immunol. 2021 365 104378 10.1016/j.cellimm.2021.104378 34015699
    [Google Scholar]
  115. Ebrahimi N. Adelian S. Shakerian S. Afshinpour M. Chaleshtori S.R. Rostami N. Rezaei-Tazangi F. Beiranvand S. Hamblin M.R. Aref A.R. Crosstalk between ferroptosis and the epithelial-mesenchymal transition: Implications for inflammation and cancer therapy. Cytokine Growth Factor Rev. 2022 64 33 45 10.1016/j.cytogfr.2022.01.006 35219587
    [Google Scholar]
  116. Lin C.C. Yang W.H. Lin Y.T. Tang X. Chen P.H. Ding C.K.C. Qu D.C. Alvarez J.V. Chi J.T. DDR2 upregulation confers ferroptosis susceptibility of recurrent breast tumors through the Hippo pathway. Oncogene 2021 40 11 2018 2034 10.1038/s41388‑021‑01676‑x 33603168
    [Google Scholar]
  117. Verma N. Vinik Y. Saroha A. Nair N.U. Ruppin E. Mills G. Karn T. Dubey V. Khera L. Raj H. Maina F. Lev S. Synthetic lethal combination targeting BET uncovered intrinsic susceptibility of TNBC to ferroptosis. Sci. Adv. 2020 6 34 eaba8968 10.1126/sciadv.aba8968 32937365
    [Google Scholar]
  118. El-Attar E. Kamel A. Karmouty A. Wehida N. Nassra R. El Nemr M. Kandil N.S. Assessment of serum CoQ10 levels and other antioxidant markers in breast cancer. Asian Pac. J. Cancer Prev. 2020 21 2 465 471 10.31557/APJCP.2020.21.2.465 32102525
    [Google Scholar]
  119. Koppula P. Zhuang L. Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell 2021 12 8 599 620 10.1007/s13238‑020‑00789‑5 33000412
    [Google Scholar]
  120. Zhang T. Yao C. II Zhou X. Liu S. Qi L. Zhu S. Zhao C. Hu D. Shen W. Glutathione‑degrading enzymes in the complex landscape of tumors. Int. J. Oncol. 2024 65 1 72 10.3892/ijo.2024.5660 38847236
    [Google Scholar]
  121. Wu K. Zhang W. Chen H. Wu J. Wang X. Yang X. Liang X.J. Zhang J. Liu D. An iron oxyhydroxide-based nanosystem sensitizes ferroptosis by a “Three-Pronged” strategy in breast cancer stem cells. Acta Biomater. 2023 160 281 296 10.1016/j.actbio.2023.02.015 36822484
    [Google Scholar]
  122. Wu S. Li T. Liu W. Huang Y. Ferroptosis and cancer: complex relationship and potential application of exosomes. Front. Cell Dev. Biol. 2021 9 733751 10.3389/fcell.2021.733751 34568341
    [Google Scholar]
  123. Zhu J. Zhang K. Zhou Y. Wang R. Gong L. Wang C. Zhong K. Liu W. Feng F. Qu W. A carrier-free nanomedicine enables apoptosis-ferroptosis synergistic breast cancer therapy by targeting subcellular organelles. ACS Appl. Mater. Interfaces 2023 15 18 22403 22414 10.1021/acsami.3c01350 37104698
    [Google Scholar]
  124. Wu X. Liu C. Li Z. Gai C. Ding D. Chen W. Hao F. Li W. Regulation of GSK3β/Nrf2 signaling pathway modulated erastin-induced ferroptosis in breast cancer. Mol. Cell. Biochem. 2020 473 1-2 217 228 10.1007/s11010‑020‑03821‑8 32642794
    [Google Scholar]
  125. Jing S. Lu Y. Zhang J. Ren Y. Mo Y. Liu D. Duan L. Yuan Z. Wang C. Wang Q. Levistilide a induces ferroptosis by activating the Nrf2/HO-1 signaling pathway in breast cancer cells. Drug Des. Devel. Ther. 2022 16 2981 2993 10.2147/DDDT.S374328 36105321
    [Google Scholar]
  126. Liang D. Feng Y. Zandkarimi F. Wang H. Zhang Z. Kim J. Cai Y. Gu W. Stockwell B.R. Jiang X. Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones. Cell 2023 186 13 2748 2764.e22 10.1016/j.cell.2023.05.003 37267948
    [Google Scholar]
  127. Li Z. Li J. Liu X. Liu Y. Chen H. Sun X. β-eudesmol inhibits cell proliferation and induces ferroptosis via regulating MAPK signaling pathway in breast cancer. Toxicon 2024 237 107529 10.1016/j.toxicon.2023.107529 38030095
    [Google Scholar]
  128. Chen C. Xie B. Li Z. Chen L. Chen Y. Zhou J. Ju S. Zhou Y. Zhang X. Zhuo W. Yang J. Mao M. Xu L. Wang L. Fascin enhances the vulnerability of breast cancer to erastin-induced ferroptosis. Cell Death Dis. 2022 13 2 150 10.1038/s41419‑022‑04579‑1 35165254
    [Google Scholar]
  129. Fang K. Du S. Shen D. Xiong Z. Jiang K. Liang D. Wang J. Xu H. Hu L. Zhai X. Jiang Y. Xia Z. Xie C. Jin D. Cheng W. Meng S. Wang Y. SUFU suppresses ferroptosis sensitivity in breast cancer cells via Hippo/YAP pathway. iScience 2022 25 7 104618 10.1016/j.isci.2022.104618 35800779
    [Google Scholar]
  130. Zhang J. Gao R. Li J. Yu K. Bi K. Alloimperatorin activates apoptosis, ferroptosis, and oxeiptosis to inhibit the growth and invasion of breast cancer cells in vitro. Biochem. Cell Biol. 2022 100 3 213 222 10.1139/bcb‑2021‑0399 35263194
    [Google Scholar]
  131. Nengroo M.A. Sinha A. Datta D. Iron Vulnerability of Cancer Stem Cells: Role of ROS and Beyond. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. Singapore Springer Nature Singapore 2022 2509 2537 10.1007/978‑981‑16‑5422‑0_235
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128343266241230045019
Loading
/content/journals/cpd/10.2174/0113816128343266241230045019
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: EMT ; therapeutics ; ferroptosis ; apoptosis ; signaling pathway ; Breast cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test