Skip to content
2000
image of The Multifaceted Roles of Thrombomodulin: Anti-coagulation, Anti-inflammation, and Anti-tumor Potential

Abstract

Thrombomodulin (TM) is a single-chain transmembrane glycoprotein with anticoagulant effects. TM has two forms: membrane type existing on the cell surface and blood type free in plasma and urine. TM functions as an anticoagulant cofactor for thrombin activation of protein C on the surface of vascular endothelial cells. Due to the excellent anti-coagulant effects in modulating the coagulation and fibrinolytic system, the recombinant human soluble TM (rhsTM) has been used for the treatment of disseminated intravascular coagulation (DIC). In addition to anti-coagulation, many studies have shown that TM can also exert anti-inflammatory and anti-tumor effects. TM has a lectin-like domain at its N-terminus that has been shown to exhibit direct anti-inflammatory functions. At the same time, due to its special structure, thrombomodulin plays an important role in vascular-related mechanistic diseases by participating in the regulation of inflammatory pathways, complement, HMGB1, . In this article, changes in TM expression in the body after injury, composition of TM structural domains, anticoagulant, anti-inflammatory, and antitumor effects, and related mechanisms of TM were systematically reviewed, to provide a theoretical basis and reference for the potential clinical implications of TM in treating various diseases.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128335289241218161938
2025-01-30
2025-04-02
Loading full text...

Full text loading...

References

  1. Martin F.A. Murphy R.P. Cummins P.M. Thrombomodulin and the vascular endothelium: Insights into functional, regulatory, and therapeutic aspects. Am. J. Physiol. Heart Circ. Physiol. 2013 304 12 H1585 H1597 10.1152/ajpheart.00096.2013 23604713
    [Google Scholar]
  2. Giri H. Cai X. Panicker S.R. Biswas I. Rezaie A.R. Thrombomodulin regulation of mitogen-activated protein kinases. Int. J. Mol. Sci. 2019 20 8 1851 10.3390/ijms20081851 30991642
    [Google Scholar]
  3. Wang K.C. Chen P.S. Chao T.H. Luo C.Y. Chung H.C. Tseng S.Y. Huang T.Y. Lin Y.L. Shi G.Y. Wu H.L. Li Y.H. The role of vascular smooth muscle cell membrane-bound thrombomodulin in neointima formation. Atherosclerosis 2019 287 54 63 10.1016/j.atherosclerosis.2019.05.019 31212235
    [Google Scholar]
  4. Wang K.C. Li Y.H. Shi G.Y. Tsai H.W. Luo C.Y. Cheng M.H. Ma C.Y. Hsu Y.Y. Cheng T.L. Chang B.I. Lai C.H. Wu H.L. Membrane-bound thrombomodulin regulates macrophage inflammation in abdominal aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 2015 35 11 2412 2422 10.1161/ATVBAHA.115.305529 26338301
    [Google Scholar]
  5. Wu Z. Liu M.C. Liang M. Fu J. Sirt1 protects against thrombomodulin down-regulation and lung coagulation after particulate matter exposure. Blood 2012 119 10 2422 2429 10.1182/blood‑2011‑04‑350413 22262770
    [Google Scholar]
  6. Zeniya M. Fukata H. Toda G. Thrombomodulin expression of sinusoidal endothelial cells in chronic viral hepatitis. J. Gastroenterol. Hepatol. 1995 10 S1 Suppl. 1 S77 S80 10.1111/j.1440‑1746.1995.tb01805.x 8589350
    [Google Scholar]
  7. Miyamoto S Eguchi S Sugiyama N Kawazoe Y Kamohara Y Fujioka H Hepatic expression and serum levels of thrombomodulin reflect the extent of liver injury in rats with fulminant hepatic failure and extensive hepatectomy. Hepatol. Res. 2002 22 3 206 213 10.1016/S1386‑6346(01)00133‑4
    [Google Scholar]
  8. Li Y.H. Chung H.C. Luo C.Y. Chao T.H. Shyu K.G. Shi G.Y. Wu H.L. Thrombomodulin is upregulated in cardiomyocytes during cardiac hypertrophy and prevents the progression of contractile dysfunction. J. Card. Fail. 2010 16 12 980 990 10.1016/j.cardfail.2010.06.415 21111988
    [Google Scholar]
  9. van Aanhold C.C.L. Dijkstra K.L. Bos M. Wolterbeek R. van den Berg B.M. Bruijn J.A. Bajema I.M. Baelde H.J. Reduced glomerular endothelial thrombomodulin is associated with glomerular macrophage infiltration in diabetic nephropathy. Am. J. Pathol. 2021 191 5 829 837 10.1016/j.ajpath.2021.02.002 33617784
    [Google Scholar]
  10. Turner R.J. Bloemenkamp K.W.M. Bruijn J.A. Baelde H.J. Loss of thrombomodulin in placental dysfunction in preeclampsia. Arterioscler. Thromb. Vasc. Biol. 2016 36 4 728 735 10.1161/ATVBAHA.115.306780 26891741
    [Google Scholar]
  11. Conway E.M. Thrombomodulin and its role in inflammation. Semin. Immunopathol. 2012 34 1 107 125 10.1007/s00281‑011‑0282‑8 21805323
    [Google Scholar]
  12. Öhlin A.K. Larsson K. Hansson M. Soluble thrombomodulin activity and soluble thrombomodulin antigen in plasma. J. Thromb. Haemost. 2005 3 5 976 982 10.1111/j.1538‑7836.2005.01267.x 15869594
    [Google Scholar]
  13. Wu K.K. Soluble thrombomodulin and coronary heart disease. Curr. Opin. Lipidol. 2003 14 4 373 375 10.1097/00041433‑200308000‑00006 12865735
    [Google Scholar]
  14. John S. Drobnik W. Lackner K. Schmieder R.E. Soluble thrombomodulin and endothelial dysfunction in early atherosclerosis. Lancet 1999 354 9190 1647 10.1016/S0140‑6736(05)77135‑X 10560703
    [Google Scholar]
  15. Mezzano D. Tagle R. Pais E. Panes O. Pérez M. Downey P. Muñoz B. Aranda E. Barja P. Thambo S. González F. Mezzano S. Pereira J. Endothelial cell markers in chronic uremia: Relationship with hemostatic defects and severity of renal failure. Thromb. Res. 1997 88 6 465 472 10.1016/S0049‑3848(97)00280‑6 9610957
    [Google Scholar]
  16. Wei X. Du X. Liu Y. Wu J. Zhang J. High plasma soluble thrombomodulin levels indicated poor prognosis of decompensated liver cirrhosis: A prospective cohort study. Eur. J. Gastroenterol. Hepatol. 2022 34 11 1140 1146 10.1097/MEG.0000000000002428 35946457
    [Google Scholar]
  17. Aso Y. Inukai T. Takemura Y. Mechanisms of elevation of serum and urinary concentrations of soluble thrombomodulin in diabetic patients: Possible application as a marker for vascular endothelial injury. Metabolism 1998 47 3 362 365 10.1016/S0026‑0495(98)90272‑4 9500578
    [Google Scholar]
  18. Lin S.M. Wang Y.M. Lin H.C. Lee K.Y. Huang C.D. Liu C.Y. Wang C.H. Kuo H.P. Serum thrombomodulin level relates to the clinical course of disseminated intravascular coagulation, multiorgan dysfunction syndrome, and mortality in patients with sepsis. Crit. Care Med. 2008 36 3 683 689 10.1097/CCM.0B013E31816537D8 18431261
    [Google Scholar]
  19. Lindahl A.K. Boffa M.C. Abildgaard U. Increased plasma thrombomodulin in cancer patients. Thromb. Haemost. 1993 69 2 112 114 10.1055/s‑0038‑1651564 8384380
    [Google Scholar]
  20. Valeriani E. Squizzato A. Gallo A. Porreca E. Vincent J.L. Iba T. Hagiwara A. Di Nisio M. Efficacy and safety of recombinant human soluble thrombomodulin in patients with sepsis‐associated coagulopathy: A systematic review and meta‐analysis. J. Thromb. Haemost. 2020 18 7 1618 1625 10.1111/jth.14812 32237269
    [Google Scholar]
  21. François B. Fiancette M. Helms J. Mercier E. Lascarrou J.B. Kayanoki T. Tanaka K. Fineberg D. Vincent J.L. Wittebole X. Efficacy and safety of human soluble thrombomodulin (ART-123) for treatment of patients in France with sepsis-associated coagulopathy: Post hoc analysis of SCARLET. Ann. Intensive Care 2021 11 1 53 10.1186/s13613‑021‑00842‑4 33788052
    [Google Scholar]
  22. Kato H. Hagihara M. Asai N. Umemura T. Hirai J. Mori N. Yamagishi Y. Iwamoto T. Mikamo H. Efficacy and safety of recombinant human soluble thrombomodulin in patients with sepsis-induced disseminated intravascular coagulation - A meta-analysis. Thromb. Res. 2023 226 165 172 10.1016/j.thromres.2023.05.009 37182388
    [Google Scholar]
  23. Yang S.M. Ka S.M. Wu H.L. Yeh Y.C. Kuo C.H. Hua K.F. Shi G.Y. Hung Y.J. Hsiao F.C. Yang S.S. Shieh Y.S. Lin S.H. Wei C.W. Lee J.S. Yang C.Y. Chen A. Thrombomodulin domain 1 ameliorates diabetic nephropathy in mice via anti-NF-κB/NLRP3 inflammasome-mediated inflammation, enhancement of NRF2 antioxidant activity and inhibition of apoptosis. Diabetologia 2014 57 2 424 434 10.1007/s00125‑013‑3115‑6 24317792
    [Google Scholar]
  24. Watanabe E. Akamatsu T. Ohmori M. Kato M. Takeuchi N. Ishiwada N. Nishimura R. Hishiki H. Fujimura L. Ito C. Hatano M. Recombinant thrombomodulin attenuates hyper-inflammation and glycocalyx damage in a murine model of Streptococcus pneumoniae–induced sepsis. Cytokine 2022 149 155723 10.1016/j.cyto.2021.155723 34662822
    [Google Scholar]
  25. Ozaki T. Anas C. Maruyama S. Yamamoto T. Yasuda K. Morita Y. Ito Y. Gotoh M. Yuzawa Y. Matsuo S. Intrarenal administration of recombinant human soluble thrombomodulin ameliorates ischaemic acute renal failure. Nephrol. Dial. Transplant. 2007 23 1 110 119 10.1093/ndt/gfm563 17804460
    [Google Scholar]
  26. Chen C.H. Lai C.H. Hong Y.K. Lu J.M. Lin S.Y. Lee T.C. Chang L.Y. Ho M.L. Conway E.M. Wu H.L. Cheng T.L. Thrombomodulin functional domains support osteoblast differentiation and bone healing in diabetes in mice. J. Bone Miner. Res. 2020 35 9 1812 1823 10.1002/jbmr.4036 32329910
    [Google Scholar]
  27. Wang H. Vinnikov I. Shahzad K. Bock F. Ranjan S. Wolter J. Kashif M. Oh J. Bierhaus A. Nawroth P. Kirschfink M. Conway E.M. Madhusudhan T. Isermann B. The lectin-like domain of thrombomodulin ameliorates diabetic glomerulopathy via complement inhibition. Thromb. Haemost. 2012 108 6 1141 1153 23014597
    [Google Scholar]
  28. Zhang X. Su C. Zhao S. Li J. Yu F. Combination therapy of Ulinastatin with Thrombomodulin alleviates endotoxin (LPS) - Induced liver and kidney injury via inhibiting apoptosis, oxidative stress and HMGB1/TLR4/NF-κB pathway. Bioengineered 2022 13 2 2951 2970 10.1080/21655979.2021.2024686 35148668
    [Google Scholar]
  29. Herzog C. Lorenz A. Gillmann H.J. Chowdhury A. Larmann J. Harendza T. Echtermeyer F. Müller M. Schmitz M. Stypmann J. Seidler D.G. Damm M. Stehr S.N. Koch T. Wollert K.C. Conway E.M. Theilmeier G. Thrombomodulin’s lectin-like domain reduces myocardial damage by interfering with HMGB1-mediated TLR2 signalling. Cardiovasc. Res. 2014 101 3 400 410 10.1093/cvr/cvt275 24323314
    [Google Scholar]
  30. Akatsuka M. Masuda Y. Tatsumi H. Yamakage M. Recombinant human soluble thrombomodulin is associated with attenuation of sepsis-induced renal impairment by inhibition of extracellular histone release. PLoS One 2020 15 1 e0228093 10.1371/journal.pone.0228093 31971961
    [Google Scholar]
  31. Takeshita A. Yasuma T. Nishihama K. D’Alessandro-Gabazza C.N. Toda M. Totoki T. Okano Y. Uchida A. Inoue R. Qin L. Wang S. D’Alessandro V.F. Kobayashi T. Takei Y. Mizoguchi A. Yano Y. Gabazza E.C. Thrombomodulin ameliorates transforming growth factor-β1–mediated chronic kidney disease via the G-protein coupled receptor 15/Akt signal pathway. Kidney Int. 2020 98 5 1179 1192 10.1016/j.kint.2020.05.041 33069430
    [Google Scholar]
  32. Chen P.S. Wang K.C. Chao T.H. Chung H.C. Tseng S.Y. Luo C.Y. Shi G.Y. Wu H.L. Li Y.H. Recombinant thrombomodulin exerts anti-autophagic action in endothelial cells and provides anti-atherosclerosis effect in apolipoprotein E deficient mice. Sci. Rep. 2017 7 1 3284 10.1038/s41598‑017‑03443‑z 28607460
    [Google Scholar]
  33. Tanaka J. Seki Y. Ishikura H. Tsubota M. Sekiguchi F. Yamaguchi K. Murai A. Umemura T. Kawabata A. Recombinant human soluble thrombomodulin prevents peripheral HMGB 1‐dependent hyperalgesia in rats. Br. J. Pharmacol. 2013 170 6 1233 1241 10.1111/bph.12396 24004409
    [Google Scholar]
  34. Uzawa A. Mori M. Masuda H. Ohtani R. Uchida T. Kuwabara S. Recombinant thrombomodulin ameliorates experimental autoimmune encephalomyelitis by suppressing high mobility group box 1 and inflammatory cytokines. Clin. Exp. Immunol. 2018 193 1 47 54 10.1111/cei.13123 29509323
    [Google Scholar]
  35. Levi M. Cancer-related coagulopathies. Thromb. Res. 2014 133 Suppl. 2 S70 S75 10.1016/S0049‑3848(14)50012‑6 24862149
    [Google Scholar]
  36. Franchini M. Dario Di Minno M. Coppola A. Disseminated intravascular coagulation in hematologic malignancies. Semin. Thromb. Hemost. 2010 36 4 388 403 10.1055/s‑0030‑1254048 20614391
    [Google Scholar]
  37. Zhang J. Xue M. Chen Y. Liu C. Kuang Z. Mu S. Wei W. Yin J. Xiang H. Hu Y. Long X. Fang S. Sun S. Wang B. Tong C. Song Z. Identification of soluble thrombomodulin and tissue plasminogen activator-inhibitor complex as biomarkers for prognosis and early evaluation of septic shock and sepsis-induced disseminated intravascular coagulation. Ann. Palliat. Med. 2021 10 10 10170 10184 10.21037/apm‑21‑2222 34551574
    [Google Scholar]
  38. Wada H. Ohiwa M. Kaneko T. Tamaki S. Tanigawa M. Shirakawa S. Koyama M. Hayashi T. Suzuki K. Plasma thrombomodulin as a marker of vascular disorders in thrombotic thrombocytopenic purpura and disseminated intravascular coagulation. Am. J. Hematol. 1992 39 1 20 24 10.1002/ajh.2830390106 1311143
    [Google Scholar]
  39. Sadler J.E. Lentz S.R. Sheehan J.P. Tsiang M. Wu Q. Structure-function relationships of the thrombin-thrombomodulin interaction. Haemostasis 1993 23 Suppl. 1 183 193 8388351
    [Google Scholar]
  40. Hofsteenge J. Stone S.R. The effect of thrombomodulin on the cleavage of fibrinogen and fibrinogen fragments by thrombin. Eur. J. Biochem. 1987 168 1 49 54 10.1111/j.1432‑1033.1987.tb13385.x 2822406
    [Google Scholar]
  41. Bajzar L. Thrombin activatable fibrinolysis inhibitor and an antifibrinolytic pathway. Arterioscler. Thromb. Vasc. Biol. 2000 20 12 2511 2518 10.1161/01.ATV.20.12.2511 11116046
    [Google Scholar]
  42. Lee R.H. Kawano T. Grover S.P. Bharathi V. Martinez D. Cowley D.O. Mackman N. Bergmeier W. Antoniak S. Genetic deletion of platelet PAR4 results in reduced thrombosis and impaired hemostatic plug stability. J. Thromb. Haemost. 2022 20 2 422 433 10.1111/jth.15569 34689407
    [Google Scholar]
  43. Slungaard A. Fernandez J.A. Griffin J.H. Key N.S. Long J.R. Piegors D.J. Lentz S.R. Platelet factor 4 enhances generation of activated protein C in vitro and in vivo. Blood 2003 102 1 146 151 10.1182/blood‑2002‑11‑3529 12609838
    [Google Scholar]
  44. Sillen M. Declerck P.J. Thrombin activatable fibrinolysis inhibitor (TAFI): An updated narrative review. Int. J. Mol. Sci. 2021 22 7 3670 10.3390/ijms22073670 33916027
    [Google Scholar]
  45. Wang W. Nagashima M. Schneider M. Morser J. Nesheim M. Elements of the primary structure of thrombomodulin required for efficient thrombin-activable fibrinolysis inhibitor activation. J. Biol. Chem. 2000 275 30 22942 22947 10.1074/jbc.M001760200 10801821
    [Google Scholar]
  46. Schenk-Braat E.A.M. Morser J. Rijken D.C. Identification of the epidermal growth factor‐like domains of thrombomodulin essential for the acceleration of thrombin‐mediated inactivation of single‐chain urokinase‐type plasminogen activator. Eur. J. Biochem. 2001 268 21 5562 5569 10.1046/j.1432‑1033.2001.02487.x 11683879
    [Google Scholar]
  47. Okuda A. Ogura T. Imanishi M. Miyano A. Nishioka N. Higuchi K. Clinical impact of recombinant soluble thrombomodulin for disseminated intravascular coagulation associated with severe acute cholangitis. Gut Liver 2018 12 4 471 477 10.5009/gnl17489 29699063
    [Google Scholar]
  48. Tarasawa K. Fujimori K. Fushimi K. Recombinant human soluble thrombomodulin contributes to a reduction in-hospital mortality of acute cholangitis with disseminated intravascular coagulation: A propensity score analyses of a Japanese nationwide database. Tohoku J. Exp. Med. 2020 252 1 53 61 10.1620/tjem.252.53 32879147
    [Google Scholar]
  49. Ogura T. Eguchi T. Amano M. Sano T. Nishioka N. Miyano A. Tsujimae M. Tanimura H. Yamada T. Terashima Y. Okada A. Higuchi K. Multicenter clinical experience with recombinant soluble thrombomodulin for disseminated intravascular coagulation associated with severe acute cholecystitis. Thromb. Res. 2019 176 74 78 10.1016/j.thromres.2018.12.025 30780007
    [Google Scholar]
  50. Kato T. Matsuura K. Recombinant human soluble thrombomodulin improves mortality in patients with sepsis especially for severe coagulopathy: A retrospective study. Thromb. J. 2018 16 1 19 10.1186/s12959‑018‑0172‑6 30158838
    [Google Scholar]
  51. Aoki Y. Takei R. Mohri M. Gonda Y. Gomi K. Sugihara T. Kiyota T. Yamamoto S. Ishida T. Maruyama I. Antithrombotic effects of recombinant human soluble thrombomodulin (rhs‐TM) on arteriovenous shunt thrombosis in rats. Am. J. Hematol. 1994 47 3 162 166 10.1002/ajh.2830470303 7942778
    [Google Scholar]
  52. Çobankara V. Özatlı D. Kiraz S. Öztürk M.A. Ertenli İ. Türk T. Apras Ş. Haznedaroglu İ.C. Çalgüneri M. Successful treatment of rheumatoid arthritis is associated with a reduction in serum sE-selectin and thrombomodulin level. Clin. Rheumatol. 2004 23 5 430 434 10.1007/s10067‑004‑0915‑6 15278755
    [Google Scholar]
  53. Laszik Z.G. Zhou X.J. Ferrell G.L. Silva F.G. Esmon C.T. Down-regulation of endothelial expression of endothelial cell protein C receptor and thrombomodulin in coronary atherosclerosis. Am. J. Pathol. 2001 159 3 797 802 10.1016/S0002‑9440(10)61753‑1 11549570
    [Google Scholar]
  54. Dhainaut J.F. Yan S.B. Cariou A. Mira J.P. Soluble thrombomodulin, plasma-derived unactivated protein C, and recombinant human activated protein C in sepsis. Crit. Care Med. 2002 30 5 Suppl. S318 S324 10.1097/00003246‑200205001‑00023 12004254
    [Google Scholar]
  55. Kinasewitz G.T. Yan S.B. Basson B. Comp P. Russell J.A. Cariou A. Um S.L. Utterback B. Laterre P.F. Dhainaut J.F. Universal changes in biomarkers of coagulation and inflammation occur in patients with severe sepsis, regardless of causative micro-organism [ISRCTN74215569]. Crit. Care 2004 8 2 R82 R90 10.1186/cc2459 15025782
    [Google Scholar]
  56. Sarangi P.P. Lee H. Kim M. Activated protein C action in inflammation. Br. J. Haematol. 2010 148 6 817 833 10.1111/j.1365‑2141.2009.08020.x 19995397
    [Google Scholar]
  57. Rezaie A.R. Regulation of the protein C anticoagulant and antiinflammatory pathways. Curr. Med. Chem. 2010 17 19 2059 2069 10.2174/092986710791233706 20423310
    [Google Scholar]
  58. Murao A Aziz M Wang H Brenner M Wang P Release mechanisms of major DAMPs. Apoptosis 2021 26 3-4 152 162 10.1007/s10495‑021‑01663‑3
    [Google Scholar]
  59. Ito T. The role of thrombomodulin in sepsis-associated DIC. Rinsho Ketsueki 2016 57 4 405 411 27169442
    [Google Scholar]
  60. Xu J. Zhang X. Pelayo R. Monestier M. Ammollo C.T. Semeraro F. Taylor F.B. Esmon N.L. Lupu F. Esmon C.T. Extracellular histones are major mediators of death in sepsis. Nat. Med. 2009 15 11 1318 1321 10.1038/nm.2053 19855397
    [Google Scholar]
  61. Osada K. Minami T. Arioka T. Sakai T. Tawara S. Kawasaki K. Fareed J. Matsuzaki O. Thrombomodulin alfa attenuates the procoagulant effect and cytotoxicity of extracellular histones through the promotion of protein C activation. Thromb. Res. 2017 160 51 57 10.1016/j.thromres.2017.10.019 29101790
    [Google Scholar]
  62. Hayase N. Doi K. Hiruma T. Matsuura R. Hamasaki Y. Noiri E. Nangaku M. Morimura N. Recombinant thrombomodulin prevents acute lung injury induced by renal ischemia-reperfusion injury. Sci. Rep. 2020 10 1 289 10.1038/s41598‑019‑57205‑0 31937858
    [Google Scholar]
  63. Shrestha B. Ito T. Kakuuchi M. Totoki T. Nagasato T. Yamamoto M. Maruyama I. Recombinant thrombomodulin suppresses histone-induced neutrophil extracellular trap formation. Front. Immunol. 2019 10 2535 10.3389/fimmu.2019.02535 31736962
    [Google Scholar]
  64. Chen G Ward MF Sama AE Wang H Extracellular HMGB1 as a proinflammatory cytokine. J. Interferon Cytokine Res. 2004 24 6 329 333
    [Google Scholar]
  65. Xie W. Zhu T. Dong X. Nan F. Meng X. Zhou P. Sun G. Sun X. HMGB1-triggered inflammation inhibition of notoginseng leaf triterpenes against cerebral ischemia and reperfusion injury via MAPK and NF-κB signaling pathways. Biomolecules 2019 9 10 512 10.3390/biom9100512 31547018
    [Google Scholar]
  66. Li Y.H. Kuo C.H. Shi G.Y. Wu H.L. The role of thrombomodulin lectin-like domain in inflammation. J. Biomed. Sci. 2012 19 1 34 10.1186/1423‑0127‑19‑34 22449172
    [Google Scholar]
  67. Tsujita R Tsubota M Hayashi Y Saeki H Sekiguchi F Kawabata A. Role of thrombin in soluble thrombomodulin-induced suppression of peripheral HMGB1-mediated allodynia in mice. J. Neuroimmune Pharmacol. 2018 13 2 179 188
    [Google Scholar]
  68. Nishizawa S. Kikuta J. Seno S. Kajiki M. Tsujita R. Mizuno H. Sudo T. Ao T. Matsuda H. Ishii M. Thrombomodulin induces anti-inflammatory effects by inhibiting the rolling adhesion of leukocytes in vivo. J. Pharmacol. Sci. 2020 143 1 17 22 10.1016/j.jphs.2020.01.001 32122774
    [Google Scholar]
  69. Lin W.L. Chang C.F. Shi C.S. Shi G.Y. Wu H.L. Recombinant lectin-like domain of thrombomodulin suppresses vascular inflammation by reducing leukocyte recruitment via interacting with Lewis Y on endothelial cells. Arterioscler. Thromb. Vasc. Biol. 2013 33 10 2366 2373 10.1161/ATVBAHA.113.301221 23950139
    [Google Scholar]
  70. Lin W.L. Chen C.C. Shi G.Y. Ma C.Y. Chang C.F. Wu H.L. Monocytic thrombomodulin promotes cell adhesion through interacting with its ligand, Lewis y. Immunol. Cell Biol. 2017 95 4 372 379 10.1038/icb.2016.110 27808085
    [Google Scholar]
  71. Amada E. Fukuda K. Kumagai K. Kawakubo H. Kitagawa Y. Soluble recombinant human thrombomodulin suppresses inflammation-induced gastrointestinal tumor growth in a murine peritonitis model. Mol. Cell. Biochem. 2020 475 1-2 195 203 10.1007/s11010‑020‑03872‑x 32767229
    [Google Scholar]
  72. Walport M.J. Complement. N. Engl. J. Med. 2001 344 14 1058 1066 10.1056/NEJM200104053441406 11287977
    [Google Scholar]
  73. Amaral M.C. Alves J.D. Pathogenesis of multi-organic failure in autoimmune diseases. Autoimmun. Rev. 2009 8 6 525 528 10.1016/j.autrev.2009.01.009 19186222
    [Google Scholar]
  74. Naito M. Taguchi O. Kobayashi T. Takagi T. D’Alessandro-Gabazza C.N. Matsushima Y. Boveda-Ruiz D. Gil-Bernabe P. Matsumoto T. Chelakkot-Govindalayathil A.L. Toda M. Yasukawa A. Hataji O. Morser J. Takei Y. Gabazza E.C. Thrombin-activatable fibrinolysis inhibitor protects against acute lung injury by inhibiting the complement system. Am. J. Respir. Cell Mol. Biol. 2013 49 4 646 653 10.1165/rcmb.2012‑0454OC 23721130
    [Google Scholar]
  75. Oikonomopoulou K. Ricklin D. Ward P.A. Lambris J.D. Interactions between coagulation and complement—Their role in inflammation. Semin. Immunopathol. 2012 34 1 151 165 10.1007/s00281‑011‑0280‑x 21811895
    [Google Scholar]
  76. Tateishi K. Imaoka M. Matsushita M. Dual modulating functions of thrombomodulin in the alternative complement pathway. Biosci. Trends 2016 10 3 231 234 10.5582/bst.2016.01052 27210597
    [Google Scholar]
  77. Van De Wouwer M. Plaisance S. De Vriese A. Waelkens E. Collen D. Persson J. Daha M.R. Conway E.M. The lectin- like domain of thrombomodulin interferes with complement activation and protects against arthritis. J. Thromb. Haemost. 2006 4 8 1813 1824 10.1111/j.1538‑7836.2006.02033.x 16879225
    [Google Scholar]
  78. Zhu S. Xu X. Liu K. Gu Q. Wei F. Jin H. Peptide GC31 inhibits chemokines and ICAM-1 expression in corneal fibroblasts exposed to LPS or poly(I:C) by blocking the NF-κB and MAPK pathways. Exp. Eye Res. 2017 164 109 117 10.1016/j.exer.2017.07.017 28778400
    [Google Scholar]
  79. Pan B. Wang X. Kojima S. Nishioka C. Yokoyama A. Honda G. Xu K. Ikezoe T. The fifth epidermal growth factor like region of thrombomodulin alleviates LPS-induced sepsis through interacting with GPR15. Thromb. Haemost. 2017 117 3 570 579 10.1160/TH16‑10‑0762 28078348
    [Google Scholar]
  80. Yue J. López J.M. Understanding MAPK signaling pathways in apoptosis. Int. J. Mol. Sci. 2020 21 7 2346 10.3390/ijms21072346 32231094
    [Google Scholar]
  81. Van de Wouwer M. Conway E.M. Novel functions of thrombomodulin in inflammation. Crit. Care Med. 2004 32 5 Suppl. S254 S261 10.1097/01.CCM.0000128036.64448.9e 15118527
    [Google Scholar]
  82. Helms J. Clere-Jehl R. Bianchini E. Le Borgne P. Burban M. Zobairi F. Diehl J.L. Grunebaum L. Toti F. Meziani F. Borgel D. Thrombomodulin favors leukocyte microvesicle fibrinolytic activity, reduces NETosis and prevents septic shock-induced coagulopathy in rats. Ann. Intensive Care 2017 7 1 118 10.1186/s13613‑017‑0340‑z 29222696
    [Google Scholar]
  83. Watt J. Maguire D.G. Reid C.N. Lamont J.V. Fitzgerald S.P. Ruddock M.W. Thrombomodulin expression in bladder cancer tissue and its association with prognosis and patient survival. Res. Rep. Urol. 2020 12 157 165 10.2147/RRU.S249417 32432058
    [Google Scholar]
  84. Tabata M. Sugihara K. Yonezawa S. Yamashita S. Maruyama L. An immunohistochemical study of thrombomodulin in oral squamous cell carcinoma and its association with invasive and metastatic potential. J. Oral Pathol. Med. 1997 26 6 258 264 10.1111/j.1600‑0714.1997.tb01234.x 9234185
    [Google Scholar]
  85. Ogawa H. Yonezawa S. Maruyama I. Matsushita Y. Tezuka Y. Toyoyama H. Yanagi M. Matsumoto H. Nishijima H. Shimotakahara T. Aikou T. Sato E. Expression of thrombomodulin in squamous cell carcinoma of the lung: Its relationship to lymph node metastasis and prognosis of the patients. Cancer Lett. 2000 149 1-2 95 103 10.1016/S0304‑3835(99)00348‑1 10737713
    [Google Scholar]
  86. Tezuka Y. Yonezawa S. Maruyama I. Matsushita Y. Shimizu T. Obama H. Sagara M. Shirao K. Kusano C. Natsugoe S. Expression of thrombomodulin in esophageal squamous cell carcinoma and its relationship to lymph node metastasis. Cancer Res. 1995 55 18 4196 4200 7664297
    [Google Scholar]
  87. Ikezoe T. Yang J. Nishioka C. Isaka M. Iwabu N. Sakai M. Taniguchi A. Honda G. Yokoyama A. Thrombomodulin enhances the antifibrinolytic and antileukemic effects of all–trans retinoic acid in acute promyelocytic leukemia cells. Exp. Hematol. 2012 40 6 457 465 10.1016/j.exphem.2012.01.016 22327096
    [Google Scholar]
  88. Zhou J. Tang Z.Y. Fan J. Wu Z.Q. Ji Y. Ye S.L. The potential of plasma thrombomodulin as a biomarker of portal vein tumor thrombus in hepatocellular carcinoma. J. Cancer Res. Clin. Oncol. 2001 127 9 559 564 10.1007/s004320100237 11570577
    [Google Scholar]
  89. Hanahan D. Weinberg R.A. Hallmarks of cancer: The next generation. Cell 2011 144 5 646 674 10.1016/j.cell.2011.02.013 21376230
    [Google Scholar]
  90. Jin W. Yin H. Li H. Yu X.J. Xu H.X. Liu L. Neutrophil extracellular DNA traps promote pancreatic cancer cells migration and invasion by activating EGFR/ERK pathway. J. Cell. Mol. Med. 2021 25 12 5443 5456 10.1111/jcmm.16555 33955688
    [Google Scholar]
  91. Kajioka H. Kagawa S. Ito A. Yoshimoto M. Sakamoto S. Kikuchi S. Kuroda S. Yoshida R. Umeda Y. Noma K. Tazawa H. Fujiwara T. Targeting neutrophil extracellular traps with thrombomodulin prevents pancreatic cancer metastasis. Cancer Lett. 2021 497 1 13 10.1016/j.canlet.2020.10.015 33065249
    [Google Scholar]
  92. Takaki W. Konishi H. Matsubara D. Shoda K. Arita T. Kataoka S. Shibamoto J. Furuke H. Takabatake K. Shimizu H. Komatsu S. Shiozaki A. Kubota T. Okamoto K. Otsuji E. Role of extracellular high-mobility group box-1 as a therapeutic target of gastric cancer. Int. J. Mol. Sci. 2022 23 6 3264 10.3390/ijms23063264 35328684
    [Google Scholar]
  93. Matsubara D. Konishi H. Arita T. Shoda K. Fujita Y. Ogino S. Takao K. Nanishi K. Kosuga T. Komatsu S. Shiozaki A. Fujiwara H. Okamoto K. Otsuji E. Involvement of intracellular and extracellular high-mobility group box-1 in the progression of esophageal squamous cell carcinoma. Ann. Surg. Oncol. 2020 27 9 3233 3244 10.1245/s10434‑020‑08363‑3 32221734
    [Google Scholar]
  94. Maruno M. Yoshimine T. Isaka T. Kuroda R. Ishii H. Hayakawa T. Expression of thrombomodulin in astrocytomas of various malignancy and in gliotic and normal brains. J. Neurooncol. 1994 19 2 155 160 10.1007/BF01306457 7964991
    [Google Scholar]
  95. Hsu Y.Y. Shi G.Y. Wang K.C. Ma C.Y. Cheng T.L. Wu H.L. Thrombomodulin promotes focal adhesion kinase activation and contributes to angiogenesis by binding to fibronectin. Oncotarget 2016 7 42 68122 68139 10.18632/oncotarget.11828 27602495
    [Google Scholar]
  96. Levi M. Disseminated intravascular coagulation in cancer: An update. Semin. Thromb. Hemost. 2019 45 4 342 347 10.1055/s‑0039‑1687890 31041800
    [Google Scholar]
  97. Kashiwagi S. Asano Y. Takahashi K. Shibutani M. Amano R. Tomita S. Hirakawa K. Ohira M. Clinical outcomes of recombinant human-soluble thrombomodulin treatment for disseminated intravascular coagulation in solid tumors. Anticancer Res. 2019 39 5 2259 2264 10.21873/anticanres.13342 31092417
    [Google Scholar]
  98. Qing Y. Guo Y. Zhao Q. Hu P. Li H. Yu X. Zhu M. Wang H. Wang Z. Xu J. Guo Q. Hui H. Targeting lysosomal HSP70 induces acid sphingomyelinase‐mediated disturbance of lipid metabolism and leads to cell death in T cell malignancies. Clin. Transl. Med. 2023 13 3 e1229 10.1002/ctm2.1229 36959764
    [Google Scholar]
  99. Ookura M. Hosono N. Tasaki T. Oiwa K. Fujita K. Ito K. Lee S. Matsuda Y. Morita M. Tai K. Negoro E. Kishi S. Iwasaki H. Ueda T. Yamauchi T. Successful treatment of disseminated intravascular coagulation by recombinant human soluble thrombomodulin in patients with acute myeloid leukemia. Medicine 2018 97 44 e12981 10.1097/MD.0000000000012981 30383650
    [Google Scholar]
  100. Yang J. Ikezoe T. Nishioka C. Honda G. Yokoyama A. Thrombomodulin-induced differentiation of acute myelomonocytic leukemia cells via JNK signaling. Leuk. Res. 2012 36 5 625 633 10.1016/j.leukres.2012.01.019 22342852
    [Google Scholar]
  101. Kotaka M. Saito Y. Kato T. Satake H. Makiyama A. Tsuji Y. Shinozaki K. Fujiwara T. Mizushima T. Harihara Y. Nagata N. Kurihara N. Ando M. Kusakawa G. Sakai T. Uchida Y. Takamoto M. Kimoto S. Hyodo I. Correction to: A placebo‑controlled, double‑blind, randomized study of recombinant thrombomodulin (ART‑123) to prevent oxaliplatin‑induced peripheral neuropathy. Cancer Chemother. Pharmacol. 2021 87 4 585 586 10.1007/s00280‑020‑04185‑y 33136172
    [Google Scholar]
  102. Kondoh Y. Azuma A. Inoue Y. Ogura T. Sakamoto S. Tsushima K. Johkoh T. Fujimoto K. Ichikado K. Matsuzawa Y. Saito T. Kishi K. Tomii K. Sakamoto N. Aoshima M. Araya J. Izumi S. Arita M. Abe M. Yamauchi H. Shindoh J. Suda T. Okamoto M. Ebina M. Yamada Y. Tohda Y. Kawamura T. Taguchi Y. Ishii H. Hashimoto N. Abe S. Taniguchi H. Tagawa J. Bessho K. Yamamori N. Homma S. Thrombomodulin alfa for acute exacerbation of idiopathic pulmonary fibrosis. A randomized, double-blind placebo-controlled trial. Am. J. Respir. Crit. Care Med. 2020 201 9 1110 1119 10.1164/rccm.201909‑1818OC 31917621
    [Google Scholar]
  103. Loghmani H. Conway E.M. Exploring traditional and nontraditional roles for thrombomodulin. Blood 2018 132 2 148 158 10.1182/blood‑2017‑12‑768994 29866818
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128335289241218161938
Loading
/content/journals/cpd/10.2174/0113816128335289241218161938
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test