Skip to content
2000
Volume 31, Issue 21
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Thrombomodulin (TM) is a single-chain transmembrane glycoprotein with anticoagulant effects. TM has two forms: membrane type existing on the cell surface and blood type free in plasma and urine. TM functions as an anticoagulant cofactor for thrombin activation of protein C on the surface of vascular endothelial cells. Due to the excellent anti-coagulant effects in modulating the coagulation and fibrinolytic system, the recombinant human soluble TM (rhsTM) has been used for the treatment of disseminated intravascular coagulation (DIC). In addition to anti-coagulation, many studies have shown that TM can also exert anti-inflammatory and anti-tumor effects. TM has a lectin-like domain at its N-terminus that has been shown to exhibit direct anti-inflammatory functions. At the same time, due to its special structure, thrombomodulin plays an important role in vascular-related mechanistic diseases by participating in the regulation of inflammatory pathways, complement, HMGB1, . In this article, changes in TM expression in the body after injury, composition of TM structural domains, anticoagulant, anti-inflammatory, and antitumor effects, and related mechanisms of TM were systematically reviewed, to provide a theoretical basis and reference for the potential clinical implications of TM in treating various diseases.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128335289241218161938
2025-01-30
2025-07-15
Loading full text...

Full text loading...

References

  1. MartinF.A. MurphyR.P. CumminsP.M. Thrombomodulin and the vascular endothelium: Insights into functional, regulatory, and therapeutic aspects.Am. J. Physiol. Heart Circ. Physiol.201330412H1585H159710.1152/ajpheart.00096.201323604713
    [Google Scholar]
  2. GiriH. CaiX. PanickerS.R. BiswasI. RezaieA.R. Thrombomodulin regulation of mitogen-activated protein kinases.Int. J. Mol. Sci.2019208185110.3390/ijms2008185130991642
    [Google Scholar]
  3. WangK.C. ChenP.S. ChaoT.H. LuoC.Y. ChungH.C. TsengS.Y. HuangT.Y. LinY.L. ShiG.Y. WuH.L. LiY.H. The role of vascular smooth muscle cell membrane-bound thrombomodulin in neointima formation.Atherosclerosis2019287546310.1016/j.atherosclerosis.2019.05.01931212235
    [Google Scholar]
  4. WangK.C. LiY.H. ShiG.Y. TsaiH.W. LuoC.Y. ChengM.H. MaC.Y. HsuY.Y. ChengT.L. ChangB.I. LaiC.H. WuH.L. Membrane-bound thrombomodulin regulates macrophage inflammation in abdominal aortic aneurysm.Arterioscler. Thromb. Vasc. Biol.201535112412242210.1161/ATVBAHA.115.30552926338301
    [Google Scholar]
  5. WuZ. LiuM.C. LiangM. FuJ. Sirt1 protects against thrombomodulin down-regulation and lung coagulation after particulate matter exposure.Blood2012119102422242910.1182/blood‑2011‑04‑35041322262770
    [Google Scholar]
  6. ZeniyaM. FukataH. TodaG. Thrombomodulin expression of sinusoidal endothelial cells in chronic viral hepatitis.J. Gastroenterol. Hepatol.199510S1Suppl. 1S77S8010.1111/j.1440‑1746.1995.tb01805.x8589350
    [Google Scholar]
  7. MiyamotoS EguchiS SugiyamaN Hepatic expression and serum levels of thrombomodulin reflect the extent of liver injury in rats with fulminant hepatic failure and extensive hepatectomy.Hepatol. Res.200222320621310.1016/S1386‑6346(01)00133‑4
    [Google Scholar]
  8. LiY.H. ChungH.C. LuoC.Y. ChaoT.H. ShyuK.G. ShiG.Y. WuH.L. Thrombomodulin is upregulated in cardiomyocytes during cardiac hypertrophy and prevents the progression of contractile dysfunction.J. Card. Fail.2010161298099010.1016/j.cardfail.2010.06.41521111988
    [Google Scholar]
  9. van AanholdC.C.L. DijkstraK.L. BosM. WolterbeekR. van den BergB.M. BruijnJ.A. BajemaI.M. BaeldeH.J. Reduced glomerular endothelial thrombomodulin is associated with glomerular macrophage infiltration in diabetic nephropathy.Am. J. Pathol.2021191582983710.1016/j.ajpath.2021.02.00233617784
    [Google Scholar]
  10. TurnerR.J. BloemenkampK.W.M. BruijnJ.A. BaeldeH.J. Loss of thrombomodulin in placental dysfunction in preeclampsia.Arterioscler. Thromb. Vasc. Biol.201636472873510.1161/ATVBAHA.115.30678026891741
    [Google Scholar]
  11. ConwayE.M. Thrombomodulin and its role in inflammation.Semin. Immunopathol.201234110712510.1007/s00281‑011‑0282‑821805323
    [Google Scholar]
  12. ÖhlinA.K. LarssonK. HanssonM. Soluble thrombomodulin activity and soluble thrombomodulin antigen in plasma.J. Thromb. Haemost.20053597698210.1111/j.1538‑7836.2005.01267.x15869594
    [Google Scholar]
  13. WuK.K. Soluble thrombomodulin and coronary heart disease.Curr. Opin. Lipidol.200314437337510.1097/00041433‑200308000‑0000612865735
    [Google Scholar]
  14. JohnS. DrobnikW. LacknerK. SchmiederR.E. Soluble thrombomodulin and endothelial dysfunction in early atherosclerosis.Lancet19993549190164710.1016/S0140‑6736(05)77135‑X10560703
    [Google Scholar]
  15. MezzanoD. TagleR. PaisE. PanesO. PérezM. DowneyP. MuñozB. ArandaE. BarjaP. ThamboS. GonzálezF. MezzanoS. PereiraJ. Endothelial cell markers in chronic uremia: Relationship with hemostatic defects and severity of renal failure.Thromb. Res.199788646547210.1016/S0049‑3848(97)00280‑69610957
    [Google Scholar]
  16. WeiX. DuX. LiuY. WuJ. ZhangJ. High plasma soluble thrombomodulin levels indicated poor prognosis of decompensated liver cirrhosis: A prospective cohort study.Eur. J. Gastroenterol. Hepatol.202234111140114610.1097/MEG.000000000000242835946457
    [Google Scholar]
  17. AsoY. InukaiT. TakemuraY. Mechanisms of elevation of serum and urinary concentrations of soluble thrombomodulin in diabetic patients: Possible application as a marker for vascular endothelial injury.Metabolism199847336236510.1016/S0026‑0495(98)90272‑49500578
    [Google Scholar]
  18. LinS.M. WangY.M. LinH.C. LeeK.Y. HuangC.D. LiuC.Y. WangC.H. KuoH.P. Serum thrombomodulin level relates to the clinical course of disseminated intravascular coagulation, multiorgan dysfunction syndrome, and mortality in patients with sepsis.Crit. Care Med.200836368368910.1097/CCM.0B013E31816537D818431261
    [Google Scholar]
  19. LindahlA.K. BoffaM.C. AbildgaardU. Increased plasma thrombomodulin in cancer patients.Thromb. Haemost.199369211211410.1055/s‑0038‑16515648384380
    [Google Scholar]
  20. ValerianiE. SquizzatoA. GalloA. PorrecaE. VincentJ.L. IbaT. HagiwaraA. Di NisioM. Efficacy and safety of recombinant human soluble thrombomodulin in patients with sepsis-associated coagulopathy: A systematic review and meta-analysis.J. Thromb. Haemost.20201871618162510.1111/jth.1481232237269
    [Google Scholar]
  21. FrançoisB. FiancetteM. HelmsJ. MercierE. LascarrouJ.B. KayanokiT. TanakaK. FinebergD. VincentJ.L. WitteboleX. Efficacy and safety of human soluble thrombomodulin (ART-123) for treatment of patients in France with sepsis-associated coagulopathy: Post hoc analysis of SCARLET.Ann. Intensive Care20211115310.1186/s13613‑021‑00842‑433788052
    [Google Scholar]
  22. KatoH. HagiharaM. AsaiN. UmemuraT. HiraiJ. MoriN. YamagishiY. IwamotoT. MikamoH. Efficacy and safety of recombinant human soluble thrombomodulin in patients with sepsis-induced disseminated intravascular coagulation - A meta-analysis.Thromb. Res.202322616517210.1016/j.thromres.2023.05.00937182388
    [Google Scholar]
  23. YangS.M. KaS.M. WuH.L. YehY.C. KuoC.H. HuaK.F. ShiG.Y. HungY.J. HsiaoF.C. YangS.S. ShiehY.S. LinS.H. WeiC.W. LeeJ.S. YangC.Y. ChenA. Thrombomodulin domain 1 ameliorates diabetic nephropathy in mice via anti-NF-κB/NLRP3 inflammasome-mediated inflammation, enhancement of NRF2 antioxidant activity and inhibition of apoptosis.Diabetologia201457242443410.1007/s00125‑013‑3115‑624317792
    [Google Scholar]
  24. WatanabeE. AkamatsuT. OhmoriM. KatoM. TakeuchiN. IshiwadaN. NishimuraR. HishikiH. FujimuraL. ItoC. HatanoM. Recombinant thrombomodulin attenuates hyper-inflammation and glycocalyx damage in a murine model of Streptococcus pneumoniae–induced sepsis.Cytokine202214915572310.1016/j.cyto.2021.15572334662822
    [Google Scholar]
  25. OzakiT. AnasC. MaruyamaS. YamamotoT. YasudaK. MoritaY. ItoY. GotohM. YuzawaY. MatsuoS. Intrarenal administration of recombinant human soluble thrombomodulin ameliorates ischaemic acute renal failure.Nephrol. Dial. Transplant.200723111011910.1093/ndt/gfm56317804460
    [Google Scholar]
  26. ChenC.H. LaiC.H. HongY.K. LuJ.M. LinS.Y. LeeT.C. ChangL.Y. HoM.L. ConwayE.M. WuH.L. ChengT.L. Thrombomodulin functional domains support osteoblast differentiation and bone healing in diabetes in mice.J. Bone Miner. Res.20203591812182310.1002/jbmr.403632329910
    [Google Scholar]
  27. WangH. VinnikovI. ShahzadK. BockF. RanjanS. WolterJ. KashifM. OhJ. BierhausA. NawrothP. KirschfinkM. ConwayE.M. MadhusudhanT. IsermannB. The lectin-like domain of thrombomodulin ameliorates diabetic glomerulopathy via complement inhibition.Thromb. Haemost.201210861141115323014597
    [Google Scholar]
  28. ZhangX. SuC. ZhaoS. LiJ. YuF. Combination therapy of Ulinastatin with Thrombomodulin alleviates endotoxin (LPS) - Induced liver and kidney injury via inhibiting apoptosis, oxidative stress and HMGB1/TLR4/NF-κB pathway.Bioengineered20221322951297010.1080/21655979.2021.202468635148668
    [Google Scholar]
  29. HerzogC. LorenzA. GillmannH.J. ChowdhuryA. LarmannJ. HarendzaT. EchtermeyerF. MüllerM. SchmitzM. StypmannJ. SeidlerD.G. DammM. StehrS.N. KochT. WollertK.C. ConwayE.M. TheilmeierG. Thrombomodulin’s lectin-like domain reduces myocardial damage by interfering with HMGB1-mediated TLR2 signalling.Cardiovasc. Res.2014101340041010.1093/cvr/cvt27524323314
    [Google Scholar]
  30. AkatsukaM. MasudaY. TatsumiH. YamakageM. Recombinant human soluble thrombomodulin is associated with attenuation of sepsis-induced renal impairment by inhibition of extracellular histone release.PLoS One2020151e022809310.1371/journal.pone.022809331971961
    [Google Scholar]
  31. TakeshitaA. YasumaT. NishihamaK. D’Alessandro-GabazzaC.N. TodaM. TotokiT. OkanoY. UchidaA. InoueR. QinL. WangS. D’AlessandroV.F. KobayashiT. TakeiY. MizoguchiA. YanoY. GabazzaE.C. Thrombomodulin ameliorates transforming growth factor-β1–mediated chronic kidney disease via the G-protein coupled receptor 15/Akt signal pathway.Kidney Int.20209851179119210.1016/j.kint.2020.05.04133069430
    [Google Scholar]
  32. ChenP.S. WangK.C. ChaoT.H. ChungH.C. TsengS.Y. LuoC.Y. ShiG.Y. WuH.L. LiY.H. Recombinant thrombomodulin exerts anti-autophagic action in endothelial cells and provides anti-atherosclerosis effect in apolipoprotein E deficient mice.Sci. Rep.201771328410.1038/s41598‑017‑03443‑z28607460
    [Google Scholar]
  33. TanakaJ. SekiY. IshikuraH. TsubotaM. SekiguchiF. YamaguchiK. MuraiA. UmemuraT. KawabataA. Recombinant human soluble thrombomodulin prevents peripheral HMGB 1-dependent hyperalgesia in rats.Br. J. Pharmacol.201317061233124110.1111/bph.1239624004409
    [Google Scholar]
  34. UzawaA. MoriM. MasudaH. OhtaniR. UchidaT. KuwabaraS. Recombinant thrombomodulin ameliorates experimental autoimmune encephalomyelitis by suppressing high mobility group box 1 and inflammatory cytokines.Clin. Exp. Immunol.20181931475410.1111/cei.1312329509323
    [Google Scholar]
  35. LeviM. Cancer-related coagulopathies.Thromb. Res.2014133Suppl. 2S70S7510.1016/S0049‑3848(14)50012‑624862149
    [Google Scholar]
  36. FranchiniM. Dario Di MinnoM. CoppolaA. Disseminated intravascular coagulation in hematologic malignancies.Semin. Thromb. Hemost.201036438840310.1055/s‑0030‑125404820614391
    [Google Scholar]
  37. ZhangJ. XueM. ChenY. LiuC. KuangZ. MuS. WeiW. YinJ. XiangH. HuY. LongX. FangS. SunS. WangB. TongC. SongZ. Identification of soluble thrombomodulin and tissue plasminogen activator-inhibitor complex as biomarkers for prognosis and early evaluation of septic shock and sepsis-induced disseminated intravascular coagulation.Ann. Palliat. Med.20211010101701018410.21037/apm‑21‑222234551574
    [Google Scholar]
  38. WadaH. OhiwaM. KanekoT. TamakiS. TanigawaM. ShirakawaS. KoyamaM. HayashiT. SuzukiK. Plasma thrombomodulin as a marker of vascular disorders in thrombotic thrombocytopenic purpura and disseminated intravascular coagulation.Am. J. Hematol.1992391202410.1002/ajh.28303901061311143
    [Google Scholar]
  39. SadlerJ.E. LentzS.R. SheehanJ.P. TsiangM. WuQ. Structure-function relationships of the thrombin-thrombomodulin interaction.Haemostasis199323Suppl. 11831938388351
    [Google Scholar]
  40. HofsteengeJ. StoneS.R. The effect of thrombomodulin on the cleavage of fibrinogen and fibrinogen fragments by thrombin.Eur. J. Biochem.19871681495410.1111/j.1432‑1033.1987.tb13385.x2822406
    [Google Scholar]
  41. BajzarL. Thrombin activatable fibrinolysis inhibitor and an antifibrinolytic pathway.Arterioscler. Thromb. Vasc. Biol.200020122511251810.1161/01.ATV.20.12.251111116046
    [Google Scholar]
  42. LeeR.H. KawanoT. GroverS.P. BharathiV. MartinezD. CowleyD.O. MackmanN. BergmeierW. AntoniakS. Genetic deletion of platelet PAR4 results in reduced thrombosis and impaired hemostatic plug stability.J. Thromb. Haemost.202220242243310.1111/jth.1556934689407
    [Google Scholar]
  43. SlungaardA. FernandezJ.A. GriffinJ.H. KeyN.S. LongJ.R. PiegorsD.J. LentzS.R. Platelet factor 4 enhances generation of activated protein C in vitro and in vivo.Blood2003102114615110.1182/blood‑2002‑11‑352912609838
    [Google Scholar]
  44. SillenM. DeclerckP.J. Thrombin activatable fibrinolysis inhibitor (TAFI): An updated narrative review.Int. J. Mol. Sci.2021227367010.3390/ijms2207367033916027
    [Google Scholar]
  45. WangW. NagashimaM. SchneiderM. MorserJ. NesheimM. Elements of the primary structure of thrombomodulin required for efficient thrombin-activable fibrinolysis inhibitor activation.J. Biol. Chem.200027530229422294710.1074/jbc.M00176020010801821
    [Google Scholar]
  46. Schenk-BraatE.A.M. MorserJ. RijkenD.C. Identification of the epidermal growth factor-like domains of thrombomodulin essential for the acceleration of thrombin-mediated inactivation of single-chain urokinase-type plasminogen activator.Eur. J. Biochem.2001268215562556910.1046/j.1432‑1033.2001.02487.x11683879
    [Google Scholar]
  47. OkudaA. OguraT. ImanishiM. MiyanoA. NishiokaN. HiguchiK. Clinical impact of recombinant soluble thrombomodulin for disseminated intravascular coagulation associated with severe acute cholangitis.Gut Liver201812447147710.5009/gnl1748929699063
    [Google Scholar]
  48. TarasawaK. FujimoriK. FushimiK. Recombinant human soluble thrombomodulin contributes to a reduction in-hospital mortality of acute cholangitis with disseminated intravascular coagulation: A propensity score analyses of a Japanese nationwide database.Tohoku J. Exp. Med.20202521536110.1620/tjem.252.5332879147
    [Google Scholar]
  49. OguraT. EguchiT. AmanoM. SanoT. NishiokaN. MiyanoA. TsujimaeM. TanimuraH. YamadaT. TerashimaY. OkadaA. HiguchiK. Multicenter clinical experience with recombinant soluble thrombomodulin for disseminated intravascular coagulation associated with severe acute cholecystitis.Thromb. Res.2019176747810.1016/j.thromres.2018.12.02530780007
    [Google Scholar]
  50. KatoT. MatsuuraK. Recombinant human soluble thrombomodulin improves mortality in patients with sepsis especially for severe coagulopathy: A retrospective study.Thromb. J.20181611910.1186/s12959‑018‑0172‑630158838
    [Google Scholar]
  51. AokiY. TakeiR. MohriM. GondaY. GomiK. SugiharaT. KiyotaT. YamamotoS. IshidaT. MaruyamaI. Antithrombotic effects of recombinant human soluble thrombomodulin (rhs-TM) on arteriovenous shunt thrombosis in rats.Am. J. Hematol.199447316216610.1002/ajh.28304703037942778
    [Google Scholar]
  52. ÇobankaraV. ÖzatlıD. KirazS. ÖztürkM.A. Ertenliİ. TürkT. AprasŞ. Haznedarogluİ.C. ÇalgüneriM. Successful treatment of rheumatoid arthritis is associated with a reduction in serum sE-selectin and thrombomodulin level.Clin. Rheumatol.200423543043410.1007/s10067‑004‑0915‑615278755
    [Google Scholar]
  53. LaszikZ.G. ZhouX.J. FerrellG.L. SilvaF.G. EsmonC.T. Down-regulation of endothelial expression of endothelial cell protein C receptor and thrombomodulin in coronary atherosclerosis.Am. J. Pathol.2001159379780210.1016/S0002‑9440(10)61753‑111549570
    [Google Scholar]
  54. DhainautJ.F. YanS.B. CariouA. MiraJ.P. Soluble thrombomodulin, plasma-derived unactivated protein C, and recombinant human activated protein C in sepsis.Crit. Care Med.2002305Suppl.S318S32410.1097/00003246‑200205001‑0002312004254
    [Google Scholar]
  55. KinasewitzG.T. YanS.B. BassonB. CompP. RussellJ.A. CariouA. UmS.L. UtterbackB. LaterreP.F. DhainautJ.F. Universal changes in biomarkers of coagulation and inflammation occur in patients with severe sepsis, regardless of causative micro-organism [ISRCTN74215569].Crit. Care200482R82R9010.1186/cc245915025782
    [Google Scholar]
  56. SarangiP.P. LeeH. KimM. Activated protein C action in inflammation.Br. J. Haematol.2010148681783310.1111/j.1365‑2141.2009.08020.x19995397
    [Google Scholar]
  57. RezaieA.R. Regulation of the protein C anticoagulant and antiinflammatory pathways.Curr. Med. Chem.201017192059206910.2174/09298671079123370620423310
    [Google Scholar]
  58. MuraoA AzizM WangH BrennerM WangP Release mechanisms of major DAMPs.Apoptosis2021263-415216210.1007/s10495‑021‑01663‑3
    [Google Scholar]
  59. ItoT. The role of thrombomodulin in sepsis-associated DIC.Rinsho Ketsueki201657440541127169442
    [Google Scholar]
  60. XuJ. ZhangX. PelayoR. MonestierM. AmmolloC.T. SemeraroF. TaylorF.B. EsmonN.L. LupuF. EsmonC.T. Extracellular histones are major mediators of death in sepsis.Nat. Med.200915111318132110.1038/nm.205319855397
    [Google Scholar]
  61. OsadaK. MinamiT. AriokaT. SakaiT. TawaraS. KawasakiK. FareedJ. MatsuzakiO. Thrombomodulin alfa attenuates the procoagulant effect and cytotoxicity of extracellular histones through the promotion of protein C activation.Thromb. Res.2017160515710.1016/j.thromres.2017.10.01929101790
    [Google Scholar]
  62. HayaseN. DoiK. HirumaT. MatsuuraR. HamasakiY. NoiriE. NangakuM. MorimuraN. Recombinant thrombomodulin prevents acute lung injury induced by renal ischemia-reperfusion injury.Sci. Rep.202010128910.1038/s41598‑019‑57205‑031937858
    [Google Scholar]
  63. ShresthaB. ItoT. KakuuchiM. TotokiT. NagasatoT. YamamotoM. MaruyamaI. Recombinant thrombomodulin suppresses histone-induced neutrophil extracellular trap formation.Front. Immunol.201910253510.3389/fimmu.2019.0253531736962
    [Google Scholar]
  64. ChenG WardMF SamaAE WangH Extracellular HMGB1 as a proinflammatory cytokine.J. Interferon Cytokine Res.2004246329333
    [Google Scholar]
  65. XieW. ZhuT. DongX. NanF. MengX. ZhouP. SunG. SunX. HMGB1-triggered inflammation inhibition of notoginseng leaf triterpenes against cerebral ischemia and reperfusion injury via MAPK and NF-κB signaling pathways.Biomolecules201991051210.3390/biom910051231547018
    [Google Scholar]
  66. LiY.H. KuoC.H. ShiG.Y. WuH.L. The role of thrombomodulin lectin-like domain in inflammation.J. Biomed. Sci.20121913410.1186/1423‑0127‑19‑3422449172
    [Google Scholar]
  67. TsujitaR TsubotaM HayashiY SaekiH SekiguchiF KawabataA. Role of thrombin in soluble thrombomodulin-induced suppression of peripheral HMGB1-mediated allodynia in mice.J. Neuroimmune Pharmacol.2018132179188
    [Google Scholar]
  68. NishizawaS. KikutaJ. SenoS. KajikiM. TsujitaR. MizunoH. SudoT. AoT. MatsudaH. IshiiM. Thrombomodulin induces anti-inflammatory effects by inhibiting the rolling adhesion of leukocytes in vivo.J. Pharmacol. Sci.20201431172210.1016/j.jphs.2020.01.00132122774
    [Google Scholar]
  69. LinW.L. ChangC.F. ShiC.S. ShiG.Y. WuH.L. Recombinant lectin-like domain of thrombomodulin suppresses vascular inflammation by reducing leukocyte recruitment via interacting with Lewis Y on endothelial cells.Arterioscler. Thromb. Vasc. Biol.201333102366237310.1161/ATVBAHA.113.30122123950139
    [Google Scholar]
  70. LinW.L. ChenC.C. ShiG.Y. MaC.Y. ChangC.F. WuH.L. Monocytic thrombomodulin promotes cell adhesion through interacting with its ligand, Lewisy.Immunol. Cell Biol.201795437237910.1038/icb.2016.11027808085
    [Google Scholar]
  71. AmadaE. FukudaK. KumagaiK. KawakuboH. KitagawaY. Soluble recombinant human thrombomodulin suppresses inflammation-induced gastrointestinal tumor growth in a murine peritonitis model.Mol. Cell. Biochem.20204751-219520310.1007/s11010‑020‑03872‑x32767229
    [Google Scholar]
  72. WalportM.J. Complement.N. Engl. J. Med.2001344141058106610.1056/NEJM20010405344140611287977
    [Google Scholar]
  73. AmaralM.C. AlvesJ.D. Pathogenesis of multi-organic failure in autoimmune diseases.Autoimmun. Rev.20098652552810.1016/j.autrev.2009.01.00919186222
    [Google Scholar]
  74. NaitoM. TaguchiO. KobayashiT. TakagiT. D’Alessandro-GabazzaC.N. MatsushimaY. Boveda-RuizD. Gil-BernabeP. MatsumotoT. Chelakkot-GovindalayathilA.L. TodaM. YasukawaA. HatajiO. MorserJ. TakeiY. GabazzaE.C. Thrombin-activatable fibrinolysis inhibitor protects against acute lung injury by inhibiting the complement system.Am. J. Respir. Cell Mol. Biol.201349464665310.1165/rcmb.2012‑0454OC23721130
    [Google Scholar]
  75. OikonomopoulouK. RicklinD. WardP.A. LambrisJ.D. Interactions between coagulation and complement-Their role in inflammation.Semin. Immunopathol.201234115116510.1007/s00281‑011‑0280‑x21811895
    [Google Scholar]
  76. TateishiK. ImaokaM. MatsushitaM. Dual modulating functions of thrombomodulin in the alternative complement pathway.Biosci. Trends201610323123410.5582/bst.2016.0105227210597
    [Google Scholar]
  77. Van De WouwerM. PlaisanceS. De VrieseA. WaelkensE. CollenD. PerssonJ. DahaM.R. ConwayE.M. The lectin- like domain of thrombomodulin interferes with complement activation and protects against arthritis.J. Thromb. Haemost.2006481813182410.1111/j.1538‑7836.2006.02033.x16879225
    [Google Scholar]
  78. ZhuS. XuX. LiuK. GuQ. WeiF. JinH. Peptide GC31 inhibits chemokines and ICAM-1 expression in corneal fibroblasts exposed to LPS or poly(I:C) by blocking the NF-κB and MAPK pathways.Exp. Eye Res.201716410911710.1016/j.exer.2017.07.01728778400
    [Google Scholar]
  79. PanB. WangX. KojimaS. NishiokaC. YokoyamaA. HondaG. XuK. IkezoeT. The fifth epidermal growth factor like region of thrombomodulin alleviates LPS-induced sepsis through interacting with GPR15.Thromb. Haemost.2017117357057910.1160/TH16‑10‑076228078348
    [Google Scholar]
  80. YueJ. LópezJ.M. Understanding MAPK signaling pathways in apoptosis.Int. J. Mol. Sci.2020217234610.3390/ijms2107234632231094
    [Google Scholar]
  81. Van de WouwerM. ConwayE.M. Novel functions of thrombomodulin in inflammation.Crit. Care Med.2004325Suppl.S254S26110.1097/01.CCM.0000128036.64448.9e15118527
    [Google Scholar]
  82. HelmsJ. Clere-JehlR. BianchiniE. Le BorgneP. BurbanM. ZobairiF. DiehlJ.L. GrunebaumL. TotiF. MezianiF. BorgelD. Thrombomodulin favors leukocyte microvesicle fibrinolytic activity, reduces NETosis and prevents septic shock-induced coagulopathy in rats.Ann. Intensive Care20177111810.1186/s13613‑017‑0340‑z29222696
    [Google Scholar]
  83. WattJ. MaguireD.G. ReidC.N. LamontJ.V. FitzgeraldS.P. RuddockM.W. Thrombomodulin expression in bladder cancer tissue and its association with prognosis and patient survival.Res. Rep. Urol.20201215716510.2147/RRU.S24941732432058
    [Google Scholar]
  84. TabataM. SugiharaK. YonezawaS. YamashitaS. MaruyamaL. An immunohistochemical study of thrombomodulin in oral squamous cell carcinoma and its association with invasive and metastatic potential.J. Oral Pathol. Med.199726625826410.1111/j.1600‑0714.1997.tb01234.x9234185
    [Google Scholar]
  85. OgawaH. YonezawaS. MaruyamaI. MatsushitaY. TezukaY. ToyoyamaH. YanagiM. MatsumotoH. NishijimaH. ShimotakaharaT. AikouT. SatoE. Expression of thrombomodulin in squamous cell carcinoma of the lung: Its relationship to lymph node metastasis and prognosis of the patients.Cancer Lett.20001491-29510310.1016/S0304‑3835(99)00348‑110737713
    [Google Scholar]
  86. TezukaY. YonezawaS. MaruyamaI. MatsushitaY. ShimizuT. ObamaH. SagaraM. ShiraoK. KusanoC. NatsugoeS. Expression of thrombomodulin in esophageal squamous cell carcinoma and its relationship to lymph node metastasis.Cancer Res.19955518419642007664297
    [Google Scholar]
  87. IkezoeT. YangJ. NishiokaC. IsakaM. IwabuN. SakaiM. TaniguchiA. HondaG. YokoyamaA. Thrombomodulin enhances the antifibrinolytic and antileukemic effects of all–trans retinoic acid in acute promyelocytic leukemia cells.Exp. Hematol.201240645746510.1016/j.exphem.2012.01.01622327096
    [Google Scholar]
  88. ZhouJ. TangZ.Y. FanJ. WuZ.Q. JiY. YeS.L. The potential of plasma thrombomodulin as a biomarker of portal vein tumor thrombus in hepatocellular carcinoma.J. Cancer Res. Clin. Oncol.2001127955956410.1007/s00432010023711570577
    [Google Scholar]
  89. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell2011144564667410.1016/j.cell.2011.02.01321376230
    [Google Scholar]
  90. JinW. YinH. LiH. YuX.J. XuH.X. LiuL. Neutrophil extracellular DNA traps promote pancreatic cancer cells migration and invasion by activating EGFR/ERK pathway.J. Cell. Mol. Med.202125125443545610.1111/jcmm.1655533955688
    [Google Scholar]
  91. KajiokaH. KagawaS. ItoA. YoshimotoM. SakamotoS. KikuchiS. KurodaS. YoshidaR. UmedaY. NomaK. TazawaH. FujiwaraT. Targeting neutrophil extracellular traps with thrombomodulin prevents pancreatic cancer metastasis.Cancer Lett.202149711310.1016/j.canlet.2020.10.01533065249
    [Google Scholar]
  92. TakakiW. KonishiH. MatsubaraD. ShodaK. AritaT. KataokaS. ShibamotoJ. FurukeH. TakabatakeK. ShimizuH. KomatsuS. ShiozakiA. KubotaT. OkamotoK. OtsujiE. Role of extracellular high-mobility group box-1 as a therapeutic target of gastric cancer.Int. J. Mol. Sci.2022236326410.3390/ijms2306326435328684
    [Google Scholar]
  93. MatsubaraD. KonishiH. AritaT. ShodaK. FujitaY. OginoS. TakaoK. NanishiK. KosugaT. KomatsuS. ShiozakiA. FujiwaraH. OkamotoK. OtsujiE. Involvement of intracellular and extracellular high-mobility group box-1 in the progression of esophageal squamous cell carcinoma.Ann. Surg. Oncol.20202793233324410.1245/s10434‑020‑08363‑332221734
    [Google Scholar]
  94. MarunoM. YoshimineT. IsakaT. KurodaR. IshiiH. HayakawaT. Expression of thrombomodulin in astrocytomas of various malignancy and in gliotic and normal brains.J. Neurooncol.199419215516010.1007/BF013064577964991
    [Google Scholar]
  95. HsuY.Y. ShiG.Y. WangK.C. MaC.Y. ChengT.L. WuH.L. Thrombomodulin promotes focal adhesion kinase activation and contributes to angiogenesis by binding to fibronectin.Oncotarget2016742681226813910.18632/oncotarget.1182827602495
    [Google Scholar]
  96. LeviM. Disseminated intravascular coagulation in cancer: An update.Semin. Thromb. Hemost.201945434234710.1055/s‑0039‑168789031041800
    [Google Scholar]
  97. KashiwagiS. AsanoY. TakahashiK. ShibutaniM. AmanoR. TomitaS. HirakawaK. OhiraM. Clinical outcomes of recombinant human-soluble thrombomodulin treatment for disseminated intravascular coagulation in solid tumors.Anticancer Res.20193952259226410.21873/anticanres.1334231092417
    [Google Scholar]
  98. QingY. GuoY. ZhaoQ. HuP. LiH. YuX. ZhuM. WangH. WangZ. XuJ. GuoQ. HuiH. Targeting lysosomal HSP70 induces acid sphingomyelinase-mediated disturbance of lipid metabolism and leads to cell death in T cell malignancies.Clin. Transl. Med.2023133e122910.1002/ctm2.122936959764
    [Google Scholar]
  99. OokuraM. HosonoN. TasakiT. OiwaK. FujitaK. ItoK. LeeS. MatsudaY. MoritaM. TaiK. NegoroE. KishiS. IwasakiH. UedaT. YamauchiT. Successful treatment of disseminated intravascular coagulation by recombinant human soluble thrombomodulin in patients with acute myeloid leukemia.Medicine20189744e1298110.1097/MD.000000000001298130383650
    [Google Scholar]
  100. YangJ. IkezoeT. NishiokaC. HondaG. YokoyamaA. Thrombomodulin-induced differentiation of acute myelomonocytic leukemia cells via JNK signaling.Leuk. Res.201236562563310.1016/j.leukres.2012.01.01922342852
    [Google Scholar]
  101. KotakaM. SaitoY. KatoT. SatakeH. MakiyamaA. TsujiY. ShinozakiK. FujiwaraT. MizushimaT. HariharaY. NagataN. KuriharaN. AndoM. KusakawaG. SakaiT. UchidaY. TakamotoM. KimotoS. HyodoI. Correction to: A placebo-controlled, double-blind, randomized study of recombinant thrombomodulin (ART-123) to prevent oxaliplatin-induced peripheral neuropathy.Cancer Chemother. Pharmacol.202187458558610.1007/s00280‑020‑04185‑y33136172
    [Google Scholar]
  102. KondohY. AzumaA. InoueY. OguraT. SakamotoS. TsushimaK. JohkohT. FujimotoK. IchikadoK. MatsuzawaY. SaitoT. KishiK. TomiiK. SakamotoN. AoshimaM. ArayaJ. IzumiS. AritaM. AbeM. YamauchiH. ShindohJ. SudaT. OkamotoM. EbinaM. YamadaY. TohdaY. KawamuraT. TaguchiY. IshiiH. HashimotoN. AbeS. TaniguchiH. TagawaJ. BesshoK. YamamoriN. HommaS. Thrombomodulin alfa for acute exacerbation of idiopathic pulmonary fibrosis. A randomized, double-blind placebo-controlled trial.Am. J. Respir. Crit. Care Med.202020191110111910.1164/rccm.201909‑1818OC31917621
    [Google Scholar]
  103. LoghmaniH. ConwayE.M. Exploring traditional and nontraditional roles for thrombomodulin.Blood2018132214815810.1182/blood‑2017‑12‑76899429866818
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128335289241218161938
Loading
/content/journals/cpd/10.2174/0113816128335289241218161938
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test