Skip to content
2000
Volume 31, Issue 15
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Monocyte chemoattractant protein-1 (MCP-1) is regarded as a crucial proinflammatory cytokine that controls the migration and entry of macrophages. It has been demonstrated that chemokine ligand 2 and its receptor, chemokine receptor 2, are both implicated in several liver disorders. In a similar context, immunity mediators are overexpressed and stimulated by MCP-1. Additionally, MCP-1 alters the physiology of the hepatocytes, promoting immunologic and inflammatory responses beyond regular metabolism. Alcoholism and other factor including abnormal diet stimulate the liver’s synthesis of MCP-1, which can result in inflammation in liver. Studies shows how MCP-1' linked to various liver disorders like alcoholic liver disease, liver fibrosis, non-alcoholic fatty liver disease, hepatitis, hepatic steatosis, hepatocellular cancer, primary biliary cirrhosis. MCP-1 not only predicts the onset, progression, and prognosis of the illness, but it is also directly related to the degree and stage of liver inflammation. In this review, we will explore the mechanism and connection between MCP-1’s overexpression in liver disorders, further how it can be linked as a therapeutic biomarker in the above scenario.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128332969241120030733
2025-01-06
2025-06-21
Loading full text...

Full text loading...

References

  1. AsraniS.K. DevarbhaviH. EatonJ. KamathP.S. Burden of liver diseases in the world.J. Hepatol.201970115117110.1016/j.jhep.2018.09.01430266282
    [Google Scholar]
  2. ShahinAE AlshmmarySN AljabarahNS An overview on non-invasive assessment of cirrhosis.Arch. Pharm. Pract.20211244310.51847/zpADEWrmGX
    [Google Scholar]
  3. XuL. KitadeH. NiY. OtaT. Roles of chemokines and chemokine receptors in obesity-associated insulin resistance and nonalcoholic fatty liver disease.Biomolecules2015531563157910.3390/biom503156326197341
    [Google Scholar]
  4. LaganàM. Schlecht-LoufG. BachelerieF. The G protein-coupled receptor kinases (GRKs) in chemokine receptor-mediated immune cell migration: From molecular cues to physiopathology.Cells20211017510.3390/cells1001007533466410
    [Google Scholar]
  5. SinghS. AggarwalP. RavichandiranV. Immunological response of the respiratory tract in the SARS-CoV-2 infection.Coronaviruses202129e02072119147110.2174/2666796702666210216143545
    [Google Scholar]
  6. KoyamaY. BrennerD.A. Liver inflammation and fibrosis.J. Clin. Invest.20171271556410.1172/JCI8888128045404
    [Google Scholar]
  7. TaghaviY. HassanshahiG. KounisN.G. KoniariI. KhorramdelazadH. Monocyte chemoattractant protein-1 (MCP-1/CCL2) in diabetic retinopathy: Latest evidence and clinical considerations.J. Cell Commun. Signal.201913445146210.1007/s12079‑018‑00500‑830607767
    [Google Scholar]
  8. MarsillachJ. BertranN. CampsJ. FerréN. RiuF. TousM. CollB. Alonso-VillaverdeC. JovenJ. The role of circulating monocyte chemoattractant protein-1 as a marker of hepatic inflammation in patients with chronic liver disease.Clin. Biochem.200538121138114010.1016/j.clinbiochem.2005.09.00616242682
    [Google Scholar]
  9. MoenchC. UhrigA. LohseA. OttoG. The role of monocyte chemoattractant protein-1 in orthotopic liver transplantation. Transplantation proceedings. Elsevier200314521455
    [Google Scholar]
  10. BaeckC. WehrA. KarlmarkK.R. HeymannF. VucurM. GasslerN. HussS. KlussmannS. EulbergD. LueddeT. TrautweinC. TackeF. Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury.Gut201261341642610.1136/gutjnl‑2011‑30030421813474
    [Google Scholar]
  11. MühlbauerM. BosserhoffA.K. HartmannA. ThaslerW.E. WeissT.S. HerfarthH. LockG. SchölmerichJ. HellerbrandC. A novel MCP-1 gene polymorphism is associated with hepatic MCP-1 expression and severity of HCV-related liver disease.Gastroenterology200312541085109310.1016/S0016‑5085(03)01213‑714517792
    [Google Scholar]
  12. DasU.N. Pro- and anti-inflammatory bioactive lipids imbalance contributes to the pathobiology of autoimmune diseases.Eur. J. Clin. Nutr.202377663765110.1038/s41430‑022‑01173‑835701524
    [Google Scholar]
  13. DurazzoM. FerroA. BrascugliI. MattiviS. FagooneeS. PellicanoR. Extra-intestinal manifestations of celiac disease: What should we know in 2022?J. Clin. Med.202211125810.3390/jcm1101025835011999
    [Google Scholar]
  14. MarcianoF. SavoiaM. VajroP. Celiac disease-related hepatic injury: Insights into associated conditions and underlying pathomechanisms.Dig. Liver Dis.201648211211910.1016/j.dld.2015.11.01326711682
    [Google Scholar]
  15. DelbueD. Cardoso-SilvaD. BranchiF. ItzlingerA. LetiziaM. SiegmundB. SchumannM. Celiac disease monocytes induce a barrier defect in intestinal epithelial cells.Int. J. Mol. Sci.20192022559710.3390/ijms2022559731717494
    [Google Scholar]
  16. WattF.E. JamesO.F.W. JonesD.E.J. Patterns of autoimmunity in primary biliary cirrhosis patients and their families: A population-based cohort study.QJM200497739740610.1093/qjmed/hch07815208427
    [Google Scholar]
  17. TsuneyamaK. HaradaK. YasoshimaM. HiramatsuK. MackayC.R. MackayI.R. GershwinM.E. NakanumaY. Monocyte chemotactic protein-1, -2, and -3 are distinctively expressed in portal tracts and granulomata in primary biliary cirrhosis: Implications for pathogenesis.J. Pathol.2001193110210910.1002/1096‑9896(2000)9999:9999<::AID‑PATH725>3.0.CO;2‑P11169522
    [Google Scholar]
  18. QueckA. BodeH. UschnerF.E. BrolM.J. GrafC. SchulzM. JansenC. PraktiknjoM. SchierwagenR. KleinS. TrautweinC. WasmuthH.E. BerresM.L. TrebickaJ. LehmannJ. Systemic MCP-1 levels derive mainly from injured liver and are associated with complications in cirrhosis.Front. Immunol.20201135410.3389/fimmu.2020.0035432218781
    [Google Scholar]
  19. AmbadeA. LoweP. KodysK. CatalanoD. GyongyosiB. ChoY. Iracheta-VellveA. AdejumoA. SahaB. CalendaC. MehtaJ. LefebvreE. VigP. SzaboG. Pharmacological inhibition of CCR2/5 signaling prevents and reverses alcohol-induced liver damage, steatosis, and inflammation in mice.Hepatology20196931105112110.1002/hep.3024930179264
    [Google Scholar]
  20. Mieli-VerganiG. VerganiD. CzajaA.J. MannsM.P. KrawittE.L. VierlingJ.M. LohseA.W. Montano-LozaA.J. Autoimmune hepatitis.Nat. Rev. Dis. Primers2018411801710.1038/nrdp.2018.1729644994
    [Google Scholar]
  21. HannaA. FrangogiannisN.G. Inflammatory cytokines and chemokines as therapeutic targets in heart failure.Cardiovasc. Drugs Ther.202034684986310.1007/s10557‑020‑07071‑032902739
    [Google Scholar]
  22. IyonagaK. TakeyaM. SaitaN. SakamotoO. YoshimuraT. AndoM. TakahashiK. Monocyte chemoattractant protein-1 in idiopathic pulmonary fibrosis and other interstitial lung diseases.Hum. Pathol.199425545546310.1016/0046‑8177(94)90117‑18200639
    [Google Scholar]
  23. WasmuthH.E. TackeF. TrautweinC. Chemokines in liver inflammation and fibrosis.Seminars in Liver DiseaseThieme Medical Publishers3rd edpp. 215225
    [Google Scholar]
  24. RullA. RodríguezF. AragonèsG. MarsillachJ. BeltránR. Alonso-VillaverdeC. CampsJ. JovenJ. Hepatic monocyte chemoattractant protein-1 is upregulated by dietary cholesterol and contributes to liver steatosis.Cytokine200948327327910.1016/j.cyto.2009.08.00619748796
    [Google Scholar]
  25. NagyL.E. The role of innate immunity in alcoholic liver disease.Alcohol Res.201537223725026695748
    [Google Scholar]
  26. KimH.S. UllevigS.L. ZamoraD. LeeC.F. AsmisR. Redox regulation of MAPK phosphatase 1 controls monocyte migration and macrophage recruitment.Proc. Natl. Acad. Sci. USA201210941E2803E281210.1073/pnas.121259610922991462
    [Google Scholar]
  27. LuB. RutledgeB.J. GuL. FiorilloJ. LukacsN.W. KunkelS.L. NorthR. GerardC. RollinsB.J. Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice.J. Exp. Med.1998187460160810.1084/jem.187.4.6019463410
    [Google Scholar]
  28. HokenessK.L. KuzielW.A. BironC.A. Salazar-MatherT.P. Monocyte chemoattractant protein-1 and CCR2 interactions are required for IFN-α/β-induced inflammatory responses and antiviral defense in liver.J. Immunol.200517431549155610.4049/jimmunol.174.3.154915661915
    [Google Scholar]
  29. DegréD. LemmersA. GustotT. OuzielR. TrépoE. DemetterP. VersetL. QuertinmontE. VercruysseV. Le MoineO. DevièreJ. MorenoC. Hepatic expression of CCL2 in alcoholic liver disease is associated with disease severity and neutrophil infiltrates.Clin. Exp. Immunol.2012169330231010.1111/j.1365‑2249.2012.04609.x22861370
    [Google Scholar]
  30. MarraF. ValenteA.J. PinzaniM. AbboudH.E. Cultured human liver fat-storing cells produce monocyte chemotactic protein-1. Regulation by proinflammatory cytokines.J. Clin. Invest.19939241674168010.1172/JCI1167538408620
    [Google Scholar]
  31. González-ReimersE. Quintero-PlattG. Martín-GonzálezC. Pérez-HernándezO. Romero-AcevedoL. Santolaria-FernándezF. Thrombin activation and liver inflammation in advanced hepatitis C virus infection.World J. Gastroenterol.201622184427443710.3748/wjg.v22.i18.442727182154
    [Google Scholar]
  32. NomiyamaH. HieshimaK. NakayamaT. SakaguchiT. FujisawaR. TanaseS. NishiuraH. MatsunoK. TakamoriH. TabiraY. YamamotoT. MiuraR. YoshieO. Human CC chemokine liver-expressed chemokine/CCL16 is a functional ligand for CCR1, CCR2 and CCR5, and constitutively expressed by hepatocytes.Int. Immunol.20011381021102910.1093/intimm/13.8.102111470772
    [Google Scholar]
  33. ZimmermannH.W. TrautweinC. TackeF. Functional role of monocytes and macrophages for the inflammatory response in acute liver injury.Front. Physiol.201235610.3389/fphys.2012.0005623091461
    [Google Scholar]
  34. RodriguezY. DunfieldJ. RoderiqueT. NiH.M. Liver-adipose tissue crosstalk in alcohol-associated liver disease: The role of mTOR.Liver Res.20226422723710.1016/j.livres.2022.11.00637124481
    [Google Scholar]
  35. KajiiM. SuzukiC. KashiharaJ. KobayashiF. KuboY. MiyamotoH. YuukiT. YamamotoT. NakaeT. Prevention of excessive collagen accumulation by human intravenous immunoglobulin treatment in a murine model of bleomycin-induced scleroderma.Clin. Exp. Immunol.2011163223524110.1111/j.1365‑2249.2010.04295.x21091669
    [Google Scholar]
  36. NioY. YamauchiT. IwabuM. Okada-IwabuM. FunataM. YamaguchiM. UekiK. KadowakiT. Monocyte chemoattractant protein-1 (MCP-1) deficiency enhances alternatively activated M2 macrophages and ameliorates insulin resistance and fatty liver in lipoatrophic diabetic A-ZIP transgenic mice.Diabetologia201255123350335810.1007/s00125‑012‑2710‑222983634
    [Google Scholar]
  37. NassirF. RectorR.S. HammoudG.M. IbdahJ.A. Pathogenesis and prevention of hepatic steatosis.Gastroenterol. Hepatol. (N. Y.)201511316717527099587
    [Google Scholar]
  38. WangW.W. AngS.F. KumarR. HeahC. UtamaA. TaniaN.P. LiH. TanS.H. PooD. ChooS.P. ChowW.C. TanC.K. TohH.C. Identification of serum monocyte chemoattractant protein-1 and prolactin as potential tumor markers in hepatocellular carcinoma.PLoS One201387e6890410.1371/journal.pone.006890423874805
    [Google Scholar]
  39. PanditS. SamantH. Primary biliary cholangitis (primary biliary cirrhosis).Treasure IslandStatPearls Publishing LLC2018
    [Google Scholar]
  40. BaeckC. WeiX. BartneckM. FechV. HeymannF. GasslerN. HittatiyaK. EulbergD. LueddeT. TrautweinC. TackeF. Pharmacological inhibition of the chemokine C-C motif chemokine ligand 2 (monocyte chemoattractant protein 1) accelerates liver fibrosis regression by suppressing Ly-6C+ macrophage infiltration in mice.Hepatology20145931060107210.1002/hep.2678324481979
    [Google Scholar]
  41. KessokuT. KobayashiT. ImajoK. TanakaK. YamamotoA. TakahashiK. KasaiY. OzakiA. IwakiM. NogamiA. HondaY. OgawaY. KatoS. HigurashiT. HosonoK. YonedaM. OkamotoT. UsudaH. WadaK. KobayashiN. SaitoS. NakajimaA. Endotoxins and non-alcoholic fatty liver disease.Front. Endocrinol. (Lausanne)20211277098610.3389/fendo.2021.77098634777261
    [Google Scholar]
  42. YouR. JiangH. XuQ. YinG. Preintervention MCP-1 serum levels as an early predictive marker of tumor response in patients with hepatocellular carcinoma undergoing transarterial chemoembolization.Transl. Cancer Res.202110296697610.21037/tcr‑20‑279135116424
    [Google Scholar]
  43. CastroA.M. Macedo-de la ConchaL.E. Pantoja-MeléndezC.A. Low-grade inflammation and its relation to obesity and chronic degenerative diseases.Rev. Med. Hosp. Gen. (Mex.)201780210110510.1016/j.hgmx.2016.06.011
    [Google Scholar]
  44. LesińskaM. HartlebM. GutkowskiK. Nowakowska-DuławaE. Procalcitonin and macrophage inflammatory protein-1 beta (MIP-1β) in serum and peritoneal fluid of patients with decompensated cirrhosis and spontaneous bacterial peritonitis.Adv. Med. Sci.2014591525610.1016/j.advms.2013.07.00624797975
    [Google Scholar]
  45. FisherN.C. NeilDAH WilliamsA. AdamsD.H. Serum concentrations and peripheral secretion of the beta chemokines monocyte chemoattractant protein 1 and macrophage inflammatory protein 1α in alcoholic liver disease.Gut199945341642010.1136/gut.45.3.41610446112
    [Google Scholar]
  46. BatallerR. BrennerD.A. Liver fibrosis.J. Clin. Invest.2005115220921810.1172/JCI2428215690074
    [Google Scholar]
  47. HaradaK. ChibaM. OkamuraA. HsuM. SatoY. IgarashiS. RenX.S. IkedaH. OhtaH. KasashimaS. KawashimaA. NakanumaY. Monocyte chemoattractant protein-1 derived from biliary innate immunity contributes to hepatic fibrogenesis.J. Clin. Pathol.201164866066510.1136/jclinpath‑2011‑20004021527401
    [Google Scholar]
  48. KobayashiK. YoshiokaT. MiyauchiJ. NakazawaA. YamazakiS. OnoH. TatsunoM. IijimaK. TakahashiC. OkadaY. TeranishiK. MatsunagaT. MatsushimaC. InagakiM. SuehiroM. SuehiroS. NishitaniM. KubotaH. IioJ. NishidaY. KatayamaT. TakadaN. WatanabeK. YamamotoT. YasumizuR. MatsuokaK. OhkiK. KiyokawaN. MaiharaT. UsamiI. Monocyte chemoattractant protein-1 (MCP-1) as a potential therapeutic target and a noninvasive biomarker of liver fibrosis associated with transient myeloproliferative disorder in down syndrome.J. Pediatr. Hematol. Oncol.2017395e285e28910.1097/MPH.000000000000080928267084
    [Google Scholar]
  49. ChenL. ChenR. KemperS. CongM. YouH. BrigstockD.R. Therapeutic effects of serum extracellular vesicles in liver fibrosis.J. Extracell. Vesicles201871146150510.1080/20013078.2018.146150529696080
    [Google Scholar]
  50. ChuP. NakamotoN. EbinumaH. UsuiS. SaekiK. MatsumotoA. MikamiY. SugiyamaK. TomitaK. KanaiT. SaitoH. HibiT. C-C motif chemokine receptor 9 positive macrophages activate hepatic stellate cells and promote liver fibrosis in mice.Hepatology201358133735010.1002/hep.2635123460364
    [Google Scholar]
  51. SekiE. SchwabeR.F. Hepatic inflammation and fibrosis: Functional links and key pathways.Hepatology20156131066107910.1002/hep.2733225066777
    [Google Scholar]
  52. IinumaY. KubotaM. YagiM. KanadaS. YamazakiS. KinoshitaY. Effects of the herbal medicine inchinko-to on liver function in postoperative patients with biliary atresia-a pilot study.J. Pediatr. Surg.200338111607161110.1016/S0022‑3468(03)00570‑014614709
    [Google Scholar]
  53. BoucherJ. KleinriddersA. KahnC.R. Insulin receptor signaling in normal and insulin-resistant states.Cold Spring Harb. Perspect. Biol.201461a00919110.1101/cshperspect.a00919124384568
    [Google Scholar]
  54. TsurutaS. NakamutaM. EnjojiM. KotohK. HiasaK. EgashiraK. NawataH. Anti-monocyte chemoattractant protein-1 gene therapy prevents dimethylnitrosamine-induced hepatic fibrosis in rats.Int. J. Mol. Med.200414583784210.3892/ijmm.14.5.83715492853
    [Google Scholar]
  55. TanakaN. KimuraT. FujimoriN. NagayaT. KomatsuM. TanakaE. Current status, problems, and perspectives of non-alcoholic fatty liver disease research.World J. Gastroenterol.201925216317710.3748/wjg.v25.i2.16330670907
    [Google Scholar]
  56. LinS. HuangJ. WangM. KumarR. LiuY. LiuS. WuY. WangX. ZhuY. Comparison of MAFLD and NAFLD diagnostic criteria in real world.Liver Int.20204092082208910.1111/liv.1454832478487
    [Google Scholar]
  57. BoseT. AlvarengaJ.C.L. TejeroM.E. VorugantiV.S. ProffittJ.M. Freeland-GravesJ.H. ColeS.A. ComuzzieA.G. Association of monocyte chemoattractant protein-1 with adipocyte number, insulin resistance and liver function markers.J. Med. Primatol.200938641842410.1111/j.1600‑0684.2009.00379.x19702660
    [Google Scholar]
  58. Ramirez-PedrazaM. FernándezM. Interplay between macrophages and angiogenesis: A double-edged sword in liver disease.Front. Immunol.201910288210.3389/fimmu.2019.0288231921146
    [Google Scholar]
  59. McClainC.J. HillD.B. SongZ. DeaciucI. BarveS. Monocyte activation in alcoholic liver disease.Alcohol2002271536110.1016/S0741‑8329(02)00212‑412062638
    [Google Scholar]
  60. SzaboG. WandsJ.R. EkenA. OsnaN.A. WeinmanS.A. MachidaK. Joe WangH. Alcohol and hepatitis C virus- interactions in immune dysfunctions and liver damage.Alcohol. Clin. Exp. Res.201034101675168610.1111/j.1530‑0277.2010.01255.x20608905
    [Google Scholar]
  61. GeD. FellayJ. ThompsonA.J. SimonJ.S. ShiannaK.V. UrbanT.J. HeinzenE.L. QiuP. BertelsenA.H. MuirA.J. SulkowskiM. McHutchisonJ.G. GoldsteinD.B. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance.Nature2009461726239940110.1038/nature0830919684573
    [Google Scholar]
  62. ToniuttoP. ShalabyS. MameliL. Role of sex in liver tumor occurrence and clinical outcomes: A comprehensive review.Hepatology202310109737013373
    [Google Scholar]
  63. PoynardT. BedossaP. OpolonP. Natural history of liver fibrosis progression in patients with chronic hepatitis C.Lancet1997349905582583210.1016/S0140‑6736(96)07642‑89121257
    [Google Scholar]
  64. FaheyS. DempseyE. LongA. The role of chemokines in acute and chronic hepatitis C infection.Cell. Mol. Immunol.2014111254010.1038/cmi.2013.3723954947
    [Google Scholar]
  65. OoY.H. BanzV. KavanaghD. LiaskouE. WithersD.R. HumphreysE. ReynoldsG.M. Lee-TurnerL. KaliaN. HubscherS.G. KlenermanP. EksteenB. AdamsD.H. CXCR3-dependent recruitment and CCR6-mediated positioning of Th-17 cells in the inflamed liver.J. Hepatol.20125751044105110.1016/j.jhep.2012.07.00822796894
    [Google Scholar]
  66. IpsenD.H. LykkesfeldtJ. Tveden-NyborgP. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease.Cell. Mol. Life Sci.201875183313332710.1007/s00018‑018‑2860‑629936596
    [Google Scholar]
  67. SekiE. de MinicisS. InokuchiS. TauraK. MiyaiK. van RooijenN. SchwabeR.F. BrennerD.A. CCR2 promotes hepatic fibrosis in mice.Hepatology200950118519710.1002/hep.2295219441102
    [Google Scholar]
  68. SheS. RenL. ChenP. WangM. ChenD. WangY. ChenH. Functional roles of chemokine receptor CCR2 and its ligands in liver disease.Front. Immunol.20221381243110.3389/fimmu.2022.81243135281057
    [Google Scholar]
  69. FerranteA.W.Jr Obesity-induced inflammation: A metabolic dialogue in the language of inflammation.J. Intern. Med.2007262440841410.1111/j.1365‑2796.2007.01852.x17875176
    [Google Scholar]
  70. RefoloM.G. MessaC. GuerraV. CarrB.I. D’AlessandroR. Inflammatory mechanisms of HCC development.Cancers202012364110.3390/cancers1203064132164265
    [Google Scholar]
  71. BefelerA.S. di BisceglieA.M. Hepatocellular carcinoma: Diagnosis and treatment.Gastroenterology200212261609161910.1053/gast.2002.3341112016426
    [Google Scholar]
  72. LiuX. JingX. ChengX. MaD. JinZ. YangW. QiuW. FGFR3 promotes angiogenesis-dependent metastasis of hepatocellular carcinoma via facilitating MCP-1-mediated vascular formation.Med. Oncol.20163354610.1007/s12032‑016‑0761‑927044356
    [Google Scholar]
  73. SonbolMB RiazIB NaqviSAA Systemic therapy and sequencing options in advanced hepatocellular carcinoma: A systematic review and network meta-analysis.JAMA oncology2020612e20493010.1001/jamaoncol.2020.4930
    [Google Scholar]
  74. LiuT. HanC. WangS. FangP. MaZ. XuL. YinR. Cancer-associated fibroblasts: An emerging target of anti-cancer immunotherapy.J. Hematol. Oncol.20191218610.1186/s13045‑019‑0770‑131462327
    [Google Scholar]
  75. ZhangY. LvY. LiL.S. ZhaoX.J. ZhaoM.X. ShenH. Aminophosphate precursors for the synthesis of near-unity emitting InP quantum dots and their application in liver cancer diagnosis.4th edWiley Online Library2022; p. 0082
    [Google Scholar]
  76. DuanJ. HuangZ. QinS. LiB. ZhangZ. LiuR. WangK. NiceE.C. JiangJ. HuangC. Oxidative stress induces extracellular vesicle release by upregulation of HEXB to facilitate tumour growth in experimental hepatocellular carcinoma.J. Extracell. Vesicles2024137e1246810.1002/jev2.1246838944674
    [Google Scholar]
  77. NiuM. YiM. LiN. WuK. WuK. Advances of targeted therapy for hepatocellular carcinoma.Front. Oncol.20211171989610.3389/fonc.2021.71989634381735
    [Google Scholar]
  78. GerussiA. ParaboschiE.M. CappadonaC. CaimeC. BinattiE. CristoferiL. AsseltaR. InvernizziP. The role of epigenetics in primary biliary cholangitis.Int. J. Mol. Sci.2022239487310.3390/ijms2309487335563266
    [Google Scholar]
  79. YangY. HeX. RojasM. LeungP.S.C. GaoL. Mechanism-based target therapy in primary biliary cholangitis: Opportunities before liver cirrhosis?Front. Immunol.202314118425210.3389/fimmu.2023.118425237325634
    [Google Scholar]
  80. ParkJ.W. KimJ.H. KimS.E. JungJ.H. JangM.K. ParkS.H. LeeM.S. KimH.S. SukK.T. KimD.J. Primary biliary cholangitis and primary sclerosing cholangitis: Current knowledge of pathogenesis and therapeutics.Biomedicines2022106128810.3390/biomedicines1006128835740310
    [Google Scholar]
  81. DhingraS. ChandramohanA. UdayakumaryR. LingamaiahD. MurtiK. SinghS. IskanderK. Knowledge, attitude, and perceptions of the public toward the COVID-19 vaccine: A cross-sectional study from India.J. Appl. Pharm. Sci.2023131211412210.7324/JAPS.2023.47175
    [Google Scholar]
  82. KangJ. Postigo-FernandezJ. KimK. ZhuC. YuJ. MeroniM. MayfieldB. BartoloméA. DapitoD.H. FerranteA.W.Jr DongiovanniP. ValentiL. CreusotR.J. PajvaniU.B. Notch-mediated hepatocyte MCP-1 secretion causes liver fibrosis.JCI Insight202383e16536910.1172/jci.insight.16536936752206
    [Google Scholar]
  83. ChowdhuryO. GhoshS. DasA. LiuH. ShangP. StepichevaN.A. HoseS. SinhaD. ChattopadhyayS. Sustained systemic inflammation increases autophagy and induces EMT/fibrotic changes in mouse liver cells: Protection by melatonin.Cell. Signal.202310111052110.1016/j.cellsig.2022.11052136375715
    [Google Scholar]
  84. YangY. JiaX. QuM. YangX. FangY. YingX. ZhangM. WeiJ. PanY. Exploring the potential of treating chronic liver disease targeting the PI3K/Akt pathway and polarization mechanism of macrophages.Heliyon202396e1711610.1016/j.heliyon.2023.e1711637484431
    [Google Scholar]
  85. FunadaK. KusanoY. GyotokuY. ShirahashiR. SudaT. TamanoM. Novel multi-parametric diagnosis of non-alcoholic fatty liver disease using ultrasonography, body mass index, and Fib-4 index.World J. Gastroenterol.202329233703371410.3748/wjg.v29.i23.370337398885
    [Google Scholar]
  86. MandrekarP. AmbadeA. LimA. SzaboG. CatalanoD. An essential role for monocyte chemoattractant protein-1 in alcoholic liver injury: Regulation of proinflammatory cytokines and hepatic steatosis in mice.Hepatology20115462185219710.1002/hep.2459921826694
    [Google Scholar]
  87. GrovesD.T. JiangY. Chemokines, a family of chemotactic cytokines.Crit. Rev. Oral Biol. Med.19956210911810.1177/104544119500600201017548618
    [Google Scholar]
  88. SaimanY. FriedmanS.L. The role of chemokines in acute liver injury.Front. Physiol.2012321310.3389/fphys.2012.0021322723782
    [Google Scholar]
  89. MoenchC. UhrigA. LohseA.W. OttoG. The role of monocyte chemoattractant protein-1 in orthotopic liver transplantation.4th edElsevierpp. 1452-5
    [Google Scholar]
  90. RanG. LinY. TianL. ZhangT. YanD. YuJ. DengY. Natural killer cell homing and trafficking in tissues and tumors: From biology to application.Signal Transduct. Target. Ther.20227120510.1038/s41392‑022‑01058‑z35768424
    [Google Scholar]
  91. CarrM.W. RothS.J. LutherE. RoseS.S. SpringerT.A. Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant.Proc. Natl. Acad. Sci. USA19949193652365610.1073/pnas.91.9.36528170963
    [Google Scholar]
  92. HubyT. GautierE.L. Immune cell-mediated features of non-alcoholic steatohepatitis.Nat. Rev. Immunol.202222742944310.1038/s41577‑021‑00639‑334741169
    [Google Scholar]
  93. OoY.H. ShettyS. AdamsD.H. The role of chemokines in the recruitment of lymphocytes to the liver.Dig. Dis.2010281314410.1159/00028206220460888
    [Google Scholar]
  94. HadjittofiC. FeretisM. MartinJ. HarperS. HuguetE. Liver regeneration biology: Implications for liver tumour therapies.World J. Clin. Oncol.202112121101115610.5306/wjco.v12.i12.110135070734
    [Google Scholar]
  95. JankauskasS.S. WongD.W.L. BucalaR. DjudjajS. BoorP. Evolving complexity of MIF signaling.Cell. Signal.201957768810.1016/j.cellsig.2019.01.00630682543
    [Google Scholar]
  96. TalrejaJ. PengC. SamavatiL. MIF modulates p38/ERK phosphorylation via MKP-1 induction in sarcoidosis.iScience202427110874610.1016/j.isci.2023.10874638299032
    [Google Scholar]
  97. RichardMLL NowlingT.K. BrandonD. WatsonD.K. ZhangX.K. Fli-1 controls transcription from the MCP-1 gene promoter, which may provide a novel mechanism for chemokine and cytokine activation.Mol. Immunol.201563256657310.1016/j.molimm.2014.07.01325108845
    [Google Scholar]
  98. SadeghiM. DehnaviS. AsadiradA. XuS. MajeedM. JamialahmadiT. JohnstonT.P. SahebkarA. Curcumin and chemokines: Mechanism of action and therapeutic potential in inflammatory diseases.Inflammopharmacology20233131069109310.1007/s10787‑023‑01136‑w36997729
    [Google Scholar]
  99. ShaliniV. PushpanC.K. SindhuG JayalekshmyA HelenA Tricin, flavonoid from Njavara reduces inflammatory responses in hPBMCs by modulating the p38MAPK and PI3K/Akt pathways and prevents inflammation associated endothelial dysfunction in HUVECs.Immunobiology2016221213714410.1016/j.imbio.2015.09.01626514297
    [Google Scholar]
  100. OyamaT. YasuiY. SugieS. KoketsuM. WatanabeK. TanakaT. Dietary tricin suppresses inflammation-related colon carcinogenesis in male Crj: CD-1 mice.Cancer Prev. Res. (Phila.)20092121031103810.1158/1940‑6207.CAPR‑09‑006119934339
    [Google Scholar]
  101. XieJ. YangL. TianL. LiW. YangL. LiL. Macrophage migration inhibitor factor upregulates MCP-1 expression in an autocrine manner in hepatocytes during acute mouse liver injury.Sci. Rep.2016612766510.1038/srep2766527273604
    [Google Scholar]
  102. HarringtonC. KrishnanS. MackC.L. CravediP. AssisD.N. LevitskyJ. Noninvasive biomarkers for the diagnosis and management of autoimmune hepatitis.Hepatology20227661862187910.1002/hep.3259135611859
    [Google Scholar]
  103. WirtzT.H. ReukenP.A. JansenC. FischerP. BergmannI. BackhausC. EmontzpohlC. ReißingJ. BrandtE.F. KoenenM.T. SchneiderK.M. SchierwagenR. BrolM.J. ChangJ. ZimmermannH.W. Köse-VogelN. EggermannT. KurthI. StoppeC. BucalaR. BernhagenJ. PraktiknjoM. StallmachA. TrautweinC. TrebickaJ. BrunsT. BerresM.L. Balance between macrophage migration inhibitory factor and sCD74 predicts outcome in patients with acute decompensation of cirrhosis.JHEP Reports20213210022110.1016/j.jhepr.2020.10022133659891
    [Google Scholar]
  104. SongS. XiaoZ. DekkerF.J. PoelarendsG.J. MelgertB.N. Macrophage migration inhibitory factor family proteins are multitasking cytokines in tissue injury.Cell. Mol. Life Sci.202279210510.1007/s00018‑021‑04038‑835091838
    [Google Scholar]
  105. AssisD.N. LengL. DuX. ZhangC.K. GriebG. MerkM. GarciaA.B. McCrannC. ChapiroJ. MeinhardtA. MizueY. Nikolic-PatersonD.J. BernhagenJ. KaplanM.M. ZhaoH. BoyerJ.L. BucalaR. The role of macrophage migration inhibitory factor in autoimmune liver disease.Hepatology201459258059110.1002/hep.2666423913513
    [Google Scholar]
  106. AssisD.N. TakahashiH. LengL. ZeniyaM. BoyerJ.L. BucalaR. A macrophage migration inhibitory factor polymorphism is associated with autoimmune hepatitis severity in US and Japanese patients.Dig. Dis. Sci.201661123506351210.1007/s10620‑016‑4322‑z27696094
    [Google Scholar]
  107. McClainC.J. BarveS. BarveS. DeaciucI. HillD.B. Tumor necrosis factor and alcoholic liver disease.Alcohol. Clin. Exp. Res.199822s5Suppl.248S252S10.1111/j.1530‑0277.1998.tb04011.x9727645
    [Google Scholar]
  108. SharmaS. BhattacharyaS. JoshiK. SinghS. A shift in focus towards precision oncology, driven by revolutionary nanodiagnostics; revealing mysterious pathways in colorectal carcinogenesis.J. Cancer Res. Clin. Oncol.202314917161571617710.1007/s00432‑023‑05331‑837650995
    [Google Scholar]
  109. KumagiT. AkbarF. HoriikeN. OnjiM. Increased serum levels of macrophage migration inhibitory factor in alcoholic liver diseases and their expression in liver tissues.Clin. Biochem.200134318919310.1016/S0009‑9120(01)00214‑411408016
    [Google Scholar]
  110. SinghS. AnshitaD. RavichandiranV. MCP-1: Function, regulation, and involvement in disease.Int. Immunopharmacol.2021101Pt B10759810.1016/j.intimp.2021.10759834233864
    [Google Scholar]
  111. TanH.Y. WangN. LiS. HongM. WangX. FengY. The reactive oxygen species in macrophage polarization: Reflecting its dual role in progression and treatment of human diseases.Oxid. Med. Cell. Longev.201620161279509010.1155/2016/279509027143992
    [Google Scholar]
  112. Cichoż-LachH. MichalakA. Oxidative stress as a crucial factor in liver diseases.World J. Gastroenterol.201420258082809110.3748/wjg.v20.i25.808225009380
    [Google Scholar]
  113. ZhaoS. JiangJ. JingY. LiuW. YangX. HouX. GaoL. WeiL. The concentration of tumor necrosis factor-α determines its protective or damaging effect on liver injury by regulating Yap activity.Cell Death Dis.20201117010.1038/s41419‑020‑2264‑z31988281
    [Google Scholar]
  114. LiuJ. DeanD.A. Gene therapy for acute respiratory distress syndrome.Front. Physiol.20221278625510.3389/fphys.2021.78625535111077
    [Google Scholar]
  115. LemastersJJ JaeschkeH Oxidative stress and inflammation in the liver.The Liver: Biology and PathobiologyWiley202010.1002/9781119436812.ch55
    [Google Scholar]
  116. JiangX. PengY. LiuL. WangY. LiM. LiW. HuangF. ZhengC. XuF. HuQ. WeiW. DongS. ZhaoQ. MAIT cells ameliorate liver fibrosis by enhancing the cytotoxicity of NK cells in cholestatic murine models.Liver Int.202242122743275810.1111/liv.1544536181707
    [Google Scholar]
  117. JainS.K. McVieR. Hyperketonemia can increase lipid peroxidation and lower glutathione levels in human erythrocytes in vitro and in type 1 diabetic patients.Diabetes19994891850185510.2337/diabetes.48.9.185010480618
    [Google Scholar]
  118. HarrisE.H. Elevated liver function tests in type 2 diabetes.Clin. Diabetes200523311511910.2337/diaclin.23.3.115
    [Google Scholar]
  119. BanerjeeA. AbdelmegeedM.A. JangS. SongB.J. Increased sensitivity to binge alcohol-induced gut leakiness and inflammatory liver disease in HIV transgenic rats.PLoS One20151010e014049810.1371/journal.pone.014049826484872
    [Google Scholar]
  120. AggarwalP SinghS RavichandiranV Natural bioactive components to inhibit endothelial dysfunction in atherosclerosis.
    [Google Scholar]
  121. RyuJ. HadleyJ.T. LiZ. DongF. XuH. XinX. ZhangY. ChenC. LiS. GuoX. ZhaoJ.L. LeachR.J. Abdul-GhaniM.A. DeFronzoR.A. KamatA. LiuF. DongL.Q. Adiponectin alleviates diet-induced inflammation in the liver by suppressing MCP-1 expression and macrophage infiltration.Diabetes20217061303131610.2337/db20‑107334162682
    [Google Scholar]
  122. KulkarniO. EulbergD. SelveN. ZöllnerS. AllamR. PawarR.D. PfeifferS. SegererS. KlussmannS. AndersH.J. Anti-CCL2 Spiegelmer permits 75% dose reduction of cyclophosphamide to control diffuse proliferative lupus nephritis and pneumonitis in MRL-Fas(lpr) mice.J. Pharmacol. Exp. Ther.2009328237137710.1124/jpet.108.14271118997060
    [Google Scholar]
  123. KaloE. ReadS. AhlenstielG. Targeting gut–liver axis for treatment of liver fibrosis and portal hypertension.Livers20211314717910.3390/livers1030014
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128332969241120030733
Loading
/content/journals/cpd/10.2174/0113816128332969241120030733
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test