Skip to content
2000
image of Mechanistic Insights into the Role of MCP-1 in Diverse Liver Pathological Conditions: A Recent Update

Abstract

Monocyte chemoattractant protein-1 (MCP-1) is regarded as a crucial proinflammatory cytokine that controls the migration and entry of macrophages. It has been demonstrated that chemokine ligand 2 and its receptor, Chemokine receptor 2, are both implicated in several liver disorders. In a similar context, immunity mediators are overexpressed and stimulated by MCP-1. Additionally, MCP-1 alters the physiology of the hepatocytes, promoting immunologic and inflammatory responses beyond regular metabolism. Alcoholism and other factor including abnormal diet stimulate the liver’s synthesis of MCP-1, which can result in inflammation in liver. Studies shows how MCP-1' linked to various liver disorders like Alcoholic liver disease, liver fibrosis, Non- alcoholic fatty liver disease, Hepatitis, Hepatic steatosis, hepatocellular cancer, primary biliary cirrhosis. MCP-1 not only predicts the onset, progression, and prognosis of the illness, but it is also directly related to the degree and stage of liver inflammation. In this review, we will explore the mechanism and connection between MCP-1’s overexpression in liver disorders, further how it can be linked as a therapeutic biomarker in the above scenario.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128332969241120030733
2025-01-06
2025-01-30
Loading full text...

Full text loading...

References

  1. Asrani S.K. Devarbhavi H. Eaton J. Kamath P.S. Burden of liver diseases in the world. J. Hepatol. 2019 70 1 151 171 10.1016/j.jhep.2018.09.014 30266282
    [Google Scholar]
  2. Shahin AE Alshmmary SN Aljabarah NS Alshammari AM Alshammari KM Alabedah RS An overview on non-invasive assessment of cirrhosis. Arch. Pharm. Pract. 2021 12 4 43 10.51847/zpADEWrmGX
    [Google Scholar]
  3. Xu L. Kitade H. Ni Y. Ota T. Roles of chemokines and chemokine receptors in obesity-associated insulin resistance and nonalcoholic fatty liver disease. Biomolecules 2015 5 3 1563 1579 10.3390/biom5031563 26197341
    [Google Scholar]
  4. Laganà M. Schlecht-Louf G. Bachelerie F. The G protein-coupled receptor kinases (GRKs) in chemokine receptor-mediated immune cell migration: From molecular cues to physiopathology. Cells 2021 10 1 75 10.3390/cells10010075 33466410
    [Google Scholar]
  5. Singh S. Aggarwal P. Ravichandiran V. Immunological response of the respiratory tract in the SARS-CoV-2 infection. Coronaviruses 2021 2 9 e020721191471 10.2174/2666796702666210216143545
    [Google Scholar]
  6. Koyama Y. Brenner D.A. Liver inflammation and fibrosis. J. Clin. Invest. 2017 127 1 55 64 10.1172/JCI88881 28045404
    [Google Scholar]
  7. Taghavi Y. Hassanshahi G. Kounis N.G. Koniari I. Khorramdelazad H. Monocyte chemoattractant protein-1 (MCP-1/CCL2) in diabetic retinopathy: Latest evidence and clinical considerations. J. Cell Commun. Signal. 2019 13 4 451 462 10.1007/s12079‑018‑00500‑8 30607767
    [Google Scholar]
  8. Marsillach J. Bertran N. Camps J. Ferré N. Riu F. Tous M. Coll B. Alonso-Villaverde C. Joven J. The role of circulating monocyte chemoattractant protein-1 as a marker of hepatic inflammation in patients with chronic liver disease. Clin. Biochem. 2005 38 12 1138 1140 10.1016/j.clinbiochem.2005.09.006 16242682
    [Google Scholar]
  9. Moench C. Uhrig A. Lohse A. Otto G. The role of monocyte chemoattractant protein-1 in orthotopic liver transplantation. Transplantation proceedings. Elsevier 2003 1452 1455
    [Google Scholar]
  10. Baeck C. Wehr A. Karlmark K.R. Heymann F. Vucur M. Gassler N. Huss S. Klussmann S. Eulberg D. Luedde T. Trautwein C. Tacke F. Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. Gut 2012 61 3 416 426 10.1136/gutjnl‑2011‑300304 21813474
    [Google Scholar]
  11. Mühlbauer M. Bosserhoff A.K. Hartmann A. Thasler W.E. Weiss T.S. Herfarth H. Lock G. Schölmerich J. Hellerbrand C. A novel MCP-1 gene polymorphism is associated with hepatic MCP-1 expression and severity of HCV-related liver disease. Gastroenterology 2003 125 4 1085 1093 10.1016/S0016‑5085(03)01213‑7 14517792
    [Google Scholar]
  12. Das U.N. Pro- and anti-inflammatory bioactive lipids imbalance contributes to the pathobiology of autoimmune diseases. Eur. J. Clin. Nutr. 2023 77 6 637 651 10.1038/s41430‑022‑01173‑8 35701524
    [Google Scholar]
  13. Durazzo M. Ferro A. Brascugli I. Mattivi S. Fagoonee S. Pellicano R. Extra-intestinal manifestations of celiac disease: What should we know in 2022? J. Clin. Med. 2022 11 1 258 10.3390/jcm11010258 35011999
    [Google Scholar]
  14. Marciano F. Savoia M. Vajro P. Celiac disease-related hepatic injury: Insights into associated conditions and underlying pathomechanisms. Dig. Liver Dis. 2016 48 2 112 119 10.1016/j.dld.2015.11.013 26711682
    [Google Scholar]
  15. Delbue D. Cardoso-Silva D. Branchi F. Itzlinger A. Letizia M. Siegmund B. Schumann M. Celiac disease monocytes induce a barrier defect in intestinal epithelial cells. Int. J. Mol. Sci. 2019 20 22 5597 10.3390/ijms20225597 31717494
    [Google Scholar]
  16. Watt F.E. James O.F.W. Jones D.E.J. Patterns of autoimmunity in primary biliary cirrhosis patients and their families: A population-based cohort study. QJM 2004 97 7 397 406 10.1093/qjmed/hch078 15208427
    [Google Scholar]
  17. Tsuneyama K. Harada K. Yasoshima M. Hiramatsu K. Mackay C.R. Mackay I.R. Gershwin M.E. Nakanuma Y. Monocyte chemotactic protein-1, -2, and -3 are distinctively expressed in portal tracts and granulomata in primary biliary cirrhosis: Implications for pathogenesis. J. Pathol. 2001 193 1 102 109 10.1002/1096‑9896(2000)9999:9999<::AID‑PATH725>3.0.CO;2‑P 11169522
    [Google Scholar]
  18. Queck A. Bode H. Uschner F.E. Brol M.J. Graf C. Schulz M. Jansen C. Praktiknjo M. Schierwagen R. Klein S. Trautwein C. Wasmuth H.E. Berres M.L. Trebicka J. Lehmann J. Systemic MCP-1 levels derive mainly from injured liver and are associated with complications in cirrhosis. Front. Immunol. 2020 11 354 10.3389/fimmu.2020.00354 32218781
    [Google Scholar]
  19. Ambade A. Lowe P. Kodys K. Catalano D. Gyongyosi B. Cho Y. Iracheta-Vellve A. Adejumo A. Saha B. Calenda C. Mehta J. Lefebvre E. Vig P. Szabo G. Pharmacological inhibition of CCR2/5 signaling prevents and reverses alcohol‐induced liver damage, steatosis, and inflammation in mice. Hepatology 2019 69 3 1105 1121 10.1002/hep.30249 30179264
    [Google Scholar]
  20. Mieli-Vergani G. Vergani D. Czaja A.J. Manns M.P. Krawitt E.L. Vierling J.M. Lohse A.W. Montano-Loza A.J. Autoimmune hepatitis. Nat. Rev. Dis. Primers 2018 4 1 18017 10.1038/nrdp.2018.17 29644994
    [Google Scholar]
  21. Hanna A. Frangogiannis N.G. Inflammatory cytokines and chemokines as therapeutic targets in heart failure. Cardiovasc. Drugs Ther. 2020 34 6 849 863 10.1007/s10557‑020‑07071‑0 32902739
    [Google Scholar]
  22. Iyonaga K. Takeya M. Saita N. Sakamoto O. Yoshimura T. Ando M. Takahashi K. Monocyte chemoattractant protein-1 in idiopathic pulmonary fibrosis and other interstitial lung diseases. Hum. Pathol. 1994 25 5 455 463 10.1016/0046‑8177(94)90117‑1 8200639
    [Google Scholar]
  23. Wasmuth H.E. Tacke F. Trautwein C. Chemokines in liver inflammation and fibrosis. Seminars in Liver Disease Thieme Medical Publishers 3rd ed 215 225
    [Google Scholar]
  24. Rull A. Rodríguez F. Aragonès G. Marsillach J. Beltrán R. Alonso-Villaverde C. Camps J. Joven J. Hepatic monocyte chemoattractant protein-1 is upregulated by dietary cholesterol and contributes to liver steatosis. Cytokine 2009 48 3 273 279 10.1016/j.cyto.2009.08.006 19748796
    [Google Scholar]
  25. Nagy L.E. The role of innate immunity in alcoholic liver disease. Alcohol Res. 2015 37 2 237 250 26695748
    [Google Scholar]
  26. Kim H.S. Ullevig S.L. Zamora D. Lee C.F. Asmis R. Redox regulation of MAPK phosphatase 1 controls monocyte migration and macrophage recruitment. Proc. Natl. Acad. Sci. USA 2012 109 41 E2803 E2812 10.1073/pnas.1212596109 22991462
    [Google Scholar]
  27. Lu B. Rutledge B.J. Gu L. Fiorillo J. Lukacs N.W. Kunkel S.L. North R. Gerard C. Rollins B.J. Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J. Exp. Med. 1998 187 4 601 608 10.1084/jem.187.4.601 9463410
    [Google Scholar]
  28. Hokeness K.L. Kuziel W.A. Biron C.A. Salazar-Mather T.P. Monocyte chemoattractant protein-1 and CCR2 interactions are required for IFN-α/β-induced inflammatory responses and antiviral defense in liver. J. Immunol. 2005 174 3 1549 1556 10.4049/jimmunol.174.3.1549 15661915
    [Google Scholar]
  29. Degré D. Lemmers A. Gustot T. Ouziel R. Trépo E. Demetter P. Verset L. Quertinmont E. Vercruysse V. Le Moine O. Devière J. Moreno C. Hepatic expression of CCL2 in alcoholic liver disease is associated with disease severity and neutrophil infiltrates. Clin. Exp. Immunol. 2012 169 3 302 310 10.1111/j.1365‑2249.2012.04609.x 22861370
    [Google Scholar]
  30. Marra F. Valente A.J. Pinzani M. Abboud H.E. Cultured human liver fat-storing cells produce monocyte chemotactic protein-1. Regulation by proinflammatory cytokines. J. Clin. Invest. 1993 92 4 1674 1680 10.1172/JCI116753 8408620
    [Google Scholar]
  31. González-Reimers E. Quintero-Platt G. Martín-González C. Pérez-Hernández O. Romero-Acevedo L. Santolaria-Fernández F. Thrombin activation and liver inflammation in advanced hepatitis C virus infection. World J. Gastroenterol. 2016 22 18 4427 4437 10.3748/wjg.v22.i18.4427 27182154
    [Google Scholar]
  32. Nomiyama H. Hieshima K. Nakayama T. Sakaguchi T. Fujisawa R. Tanase S. Nishiura H. Matsuno K. Takamori H. Tabira Y. Yamamoto T. Miura R. Yoshie O. Human CC chemokine liver-expressed chemokine/CCL16 is a functional ligand for CCR1, CCR2 and CCR5, and constitutively expressed by hepatocytes. Int. Immunol. 2001 13 8 1021 1029 10.1093/intimm/13.8.1021 11470772
    [Google Scholar]
  33. Zimmermann H.W. Trautwein C. Tacke F. Functional role of monocytes and macrophages for the inflammatory response in acute liver injury. Front. Physiol. 2012 3 56 10.3389/fphys.2012.00056 23091461
    [Google Scholar]
  34. Rodriguez Y. Dunfield J. Roderique T. Ni H.M. Liver-adipose tissue crosstalk in alcohol-associated liver disease: The role of mTOR. Liver Res. 2022 6 4 227 237 10.1016/j.livres.2022.11.006 37124481
    [Google Scholar]
  35. Kajii M. Suzuki C. Kashihara J. Kobayashi F. Kubo Y. Miyamoto H. Yuuki T. Yamamoto T. Nakae T. Prevention of excessive collagen accumulation by human intravenous immunoglobulin treatment in a murine model of bleomycin-induced scleroderma. Clin. Exp. Immunol. 2011 163 2 235 241 10.1111/j.1365‑2249.2010.04295.x 21091669
    [Google Scholar]
  36. Nio Y. Yamauchi T. Iwabu M. Okada-Iwabu M. Funata M. Yamaguchi M. Ueki K. Kadowaki T. Monocyte chemoattractant protein-1 (MCP-1) deficiency enhances alternatively activated M2 macrophages and ameliorates insulin resistance and fatty liver in lipoatrophic diabetic A-ZIP transgenic mice. Diabetologia 2012 55 12 3350 3358 10.1007/s00125‑012‑2710‑2 22983634
    [Google Scholar]
  37. Nassir F. Rector R.S. Hammoud G.M. Ibdah J.A. Pathogenesis and prevention of hepatic steatosis. Gastroenterol. Hepatol. (N. Y.) 2015 11 3 167 175 27099587
    [Google Scholar]
  38. Wang W.W. Ang S.F. Kumar R. Heah C. Utama A. Tania N.P. Li H. Tan S.H. Poo D. Choo S.P. Chow W.C. Tan C.K. Toh H.C. Identification of serum monocyte chemoattractant protein-1 and prolactin as potential tumor markers in hepatocellular carcinoma. PLoS One 2013 8 7 e68904 10.1371/journal.pone.0068904 23874805
    [Google Scholar]
  39. Pandit S. Samant H. Primary biliary cholangitis (primary biliary cirrhosis). Treasure Island StatPearls Publishing LLC 2018
    [Google Scholar]
  40. Baeck C. Wei X. Bartneck M. Fech V. Heymann F. Gassler N. Hittatiya K. Eulberg D. Luedde T. Trautwein C. Tacke F. Pharmacological inhibition of the chemokine C-C motif chemokine ligand 2 (monocyte chemoattractant protein 1) accelerates liver fibrosis regression by suppressing Ly-6C + macrophage infiltration in mice. Hepatology 2014 59 3 1060 1072 10.1002/hep.26783 24481979
    [Google Scholar]
  41. Kessoku T. Kobayashi T. Imajo K. Tanaka K. Yamamoto A. Takahashi K. Kasai Y. Ozaki A. Iwaki M. Nogami A. Honda Y. Ogawa Y. Kato S. Higurashi T. Hosono K. Yoneda M. Okamoto T. Usuda H. Wada K. Kobayashi N. Saito S. Nakajima A. Endotoxins and non-alcoholic fatty liver disease. Front. Endocrinol. (Lausanne) 2021 12 770986 10.3389/fendo.2021.770986 34777261
    [Google Scholar]
  42. You R. Jiang H. Xu Q. Yin G. Preintervention MCP-1 serum levels as an early predictive marker of tumor response in patients with hepatocellular carcinoma undergoing transarterial chemoembolization. Transl. Cancer Res. 2021 10 2 966 976 10.21037/tcr‑20‑2791 35116424
    [Google Scholar]
  43. Castro A.M. Macedo-de la Concha L.E. Pantoja-Meléndez C.A. Low-grade inflammation and its relation to obesity and chronic degenerative diseases. Rev. Med. Hosp. Gen. (Mex.) 2017 80 2 101 105 10.1016/j.hgmx.2016.06.011
    [Google Scholar]
  44. Lesińska M. Hartleb M. Gutkowski K. Nowakowska-Duława E. Procalcitonin and macrophage inflammatory protein-1 beta (MIP-1β) in serum and peritoneal fluid of patients with decompensated cirrhosis and spontaneous bacterial peritonitis. Adv. Med. Sci. 2014 59 1 52 56 10.1016/j.advms.2013.07.006 24797975
    [Google Scholar]
  45. Fisher N.C. Neil D A H. Williams A. Adams D.H. Serum concentrations and peripheral secretion of the beta chemokines monocyte chemoattractant protein 1 and macrophage inflammatory protein 1α in alcoholic liver disease. Gut 1999 45 3 416 420 10.1136/gut.45.3.416 10446112
    [Google Scholar]
  46. Bataller R. Brenner D.A. Liver fibrosis. J. Clin. Invest. 2005 115 2 209 218 10.1172/JCI24282 15690074
    [Google Scholar]
  47. Harada K. Chiba M. Okamura A. Hsu M. Sato Y. Igarashi S. Ren X.S. Ikeda H. Ohta H. Kasashima S. Kawashima A. Nakanuma Y. Monocyte chemoattractant protein-1 derived from biliary innate immunity contributes to hepatic fibrogenesis. J. Clin. Pathol. 2011 64 8 660 665 10.1136/jclinpath‑2011‑200040 21527401
    [Google Scholar]
  48. Kobayashi K. Yoshioka T. Miyauchi J. Nakazawa A. Yamazaki S. Ono H. Tatsuno M. Iijima K. Takahashi C. Okada Y. Teranishi K. Matsunaga T. Matsushima C. Inagaki M. Suehiro M. Suehiro S. Nishitani M. Kubota H. Iio J. Nishida Y. Katayama T. Takada N. Watanabe K. Yamamoto T. Yasumizu R. Matsuoka K. Ohki K. Kiyokawa N. Maihara T. Usami I. Monocyte chemoattractant protein-1 (MCP-1) as a potential therapeutic target and a noninvasive biomarker of liver fibrosis associated with transient myeloproliferative disorder in down syndrome. J. Pediatr. Hematol. Oncol. 2017 39 5 e285 e289 10.1097/MPH.0000000000000809 28267084
    [Google Scholar]
  49. Chen L. Chen R. Kemper S. Cong M. You H. Brigstock D.R. Therapeutic effects of serum extracellular vesicles in liver fibrosis. J. Extracell. Vesicles 2018 7 1 1461505 10.1080/20013078.2018.1461505 29696080
    [Google Scholar]
  50. Chu P. Nakamoto N. Ebinuma H. Usui S. Saeki K. Matsumoto A. Mikami Y. Sugiyama K. Tomita K. Kanai T. Saito H. Hibi T. C-C motif chemokine receptor 9 positive macrophages activate hepatic stellate cells and promote liver fibrosis in mice. Hepatology 2013 58 1 337 350 10.1002/hep.26351 23460364
    [Google Scholar]
  51. Seki E. Schwabe R.F. Hepatic inflammation and fibrosis: Functional links and key pathways. Hepatology 2015 61 3 1066 1079 10.1002/hep.27332 25066777
    [Google Scholar]
  52. Iinuma Y. Kubota M. Yagi M. Kanada S. Yamazaki S. Kinoshita Y. Effects of the herbal medicine inchinko-to on liver function in postoperative patients with biliary atresia—a pilot study. J. Pediatr. Surg. 2003 38 11 1607 1611 10.1016/S0022‑3468(03)00570‑0 14614709
    [Google Scholar]
  53. Boucher J. Kleinridders A. Kahn C.R. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb. Perspect. Biol. 2014 6 1 a009191 10.1101/cshperspect.a009191 24384568
    [Google Scholar]
  54. Tsuruta S. Nakamuta M. Enjoji M. Kotoh K. Hiasa K. Egashira K. Nawata H. Anti-monocyte chemoattractant protein-1 gene therapy prevents dimethylnitrosamine-induced hepatic fibrosis in rats. Int. J. Mol. Med. 2004 14 5 837 842 10.3892/ijmm.14.5.837 15492853
    [Google Scholar]
  55. Tanaka N. Kimura T. Fujimori N. Nagaya T. Komatsu M. Tanaka E. Current status, problems, and perspectives of non-alcoholic fatty liver disease research. World J. Gastroenterol. 2019 25 2 163 177 10.3748/wjg.v25.i2.163 30670907
    [Google Scholar]
  56. Lin S. Huang J. Wang M. Kumar R. Liu Y. Liu S. Wu Y. Wang X. Zhu Y. Comparison of MAFLD and NAFLD diagnostic criteria in real world. Liver Int. 2020 40 9 2082 2089 10.1111/liv.14548 32478487
    [Google Scholar]
  57. Bose T. Alvarenga J.C.L. Tejero M.E. Voruganti V.S. Proffitt J.M. Freeland-Graves J.H. Cole S.A. Comuzzie A.G. Association of monocyte chemoattractant protein‐1 with adipocyte number, insulin resistance and liver function markers. J. Med. Primatol. 2009 38 6 418 424 10.1111/j.1600‑0684.2009.00379.x 19702660
    [Google Scholar]
  58. Ramirez-Pedraza M. Fernández M. Interplay between macrophages and angiogenesis: A double-edged sword in liver disease. Front. Immunol. 2019 10 2882 10.3389/fimmu.2019.02882 31921146
    [Google Scholar]
  59. McClain C.J. Hill D.B. Song Z. Deaciuc I. Barve S. Monocyte activation in alcoholic liver disease. Alcohol 2002 27 1 53 61 10.1016/S0741‑8329(02)00212‑4 12062638
    [Google Scholar]
  60. Szabo G. Wands J.R. Eken A. Osna N.A. Weinman S.A. Machida K. Joe Wang H. Alcohol and hepatitis C virus- interactions in immune dysfunctions and liver damage. Alcohol. Clin. Exp. Res. 2010 34 10 1675 1686 10.1111/j.1530‑0277.2010.01255.x 20608905
    [Google Scholar]
  61. Ge D. Fellay J. Thompson A.J. Simon J.S. Shianna K.V. Urban T.J. Heinzen E.L. Qiu P. Bertelsen A.H. Muir A.J. Sulkowski M. McHutchison J.G. Goldstein D.B. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 2009 461 7262 399 401 10.1038/nature08309 19684573
    [Google Scholar]
  62. Toniutto P. Shalaby S. Mameli L. Morisco F. Gambato M. Cossiga V. Role of sex in liver tumor occurrence and clinical outcomes: A comprehensive review. Hepatology 2023 10 1097 37013373
    [Google Scholar]
  63. Poynard T. Bedossa P. Opolon P. Natural history of liver fibrosis progression in patients with chronic hepatitis C. Lancet 1997 349 9055 825 832 10.1016/S0140‑6736(96)07642‑8 9121257
    [Google Scholar]
  64. Fahey S. Dempsey E. Long A. The role of chemokines in acute and chronic hepatitis C infection. Cell. Mol. Immunol. 2014 11 1 25 40 10.1038/cmi.2013.37 23954947
    [Google Scholar]
  65. Oo Y.H. Banz V. Kavanagh D. Liaskou E. Withers D.R. Humphreys E. Reynolds G.M. Lee-Turner L. Kalia N. Hubscher S.G. Klenerman P. Eksteen B. Adams D.H. CXCR3-dependent recruitment and CCR6-mediated positioning of Th-17 cells in the inflamed liver. J. Hepatol. 2012 57 5 1044 1051 10.1016/j.jhep.2012.07.008 22796894
    [Google Scholar]
  66. Ipsen D.H. Lykkesfeldt J. Tveden-Nyborg P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell. Mol. Life Sci. 2018 75 18 3313 3327 10.1007/s00018‑018‑2860‑6 29936596
    [Google Scholar]
  67. Seki E. de Minicis S. Inokuchi S. Taura K. Miyai K. van Rooijen N. Schwabe R.F. Brenner D.A. CCR2 promotes hepatic fibrosis in mice. Hepatology 2009 50 1 185 197 10.1002/hep.22952 19441102
    [Google Scholar]
  68. She S. Ren L. Chen P. Wang M. Chen D. Wang Y. Chen H. Functional roles of chemokine receptor CCR2 and its ligands in liver disease. Front. Immunol. 2022 13 812431 10.3389/fimmu.2022.812431 35281057
    [Google Scholar]
  69. Ferrante A.W. Jr Obesity‐induced inflammation: A metabolic dialogue in the language of inflammation. J. Intern. Med. 2007 262 4 408 414 10.1111/j.1365‑2796.2007.01852.x 17875176
    [Google Scholar]
  70. Refolo M.G. Messa C. Guerra V. Carr B.I. D’Alessandro R. Inflammatory mechanisms of HCC development. Cancers 2020 12 3 641 10.3390/cancers12030641 32164265
    [Google Scholar]
  71. Befeler A.S. di Bisceglie A.M. Hepatocellular carcinoma: Diagnosis and treatment. Gastroenterology 2002 122 6 1609 1619 10.1053/gast.2002.33411 12016426
    [Google Scholar]
  72. Liu X. Jing X. Cheng X. Ma D. Jin Z. Yang W. Qiu W. FGFR3 promotes angiogenesis-dependent metastasis of hepatocellular carcinoma via facilitating MCP-1-mediated vascular formation. Med. Oncol. 2016 33 5 46 10.1007/s12032‑016‑0761‑9 27044356
    [Google Scholar]
  73. Sonbol MB Riaz IB Naqvi SAA Almquist DR Mina S Almasri J Systemic therapy and sequencing options in advanced hepatocellular carcinoma: A systematic review and network meta-analysis. JAMA oncology 2020 6 12 e204930 10.1001/jamaoncol.2020.4930
    [Google Scholar]
  74. Liu T. Han C. Wang S. Fang P. Ma Z. Xu L. Yin R. Cancer-associated fibroblasts: An emerging target of anti-cancer immunotherapy. J. Hematol. Oncol. 2019 12 1 86 10.1186/s13045‑019‑0770‑1 31462327
    [Google Scholar]
  75. Zhang Y. Lv Y. Li L.S. Zhao X.J. Zhao M.X. Shen H. Aminophosphate precursors for the synthesis of near‐unity emitting InP quantum dots and their application in liver cancer diagnosis. 4th ed Wiley Online Library 20220082
    [Google Scholar]
  76. Duan J. Huang Z. Qin S. Li B. Zhang Z. Liu R. Wang K. Nice E.C. Jiang J. Huang C. Oxidative stress induces extracellular vesicle release by upregulation of HEXB to facilitate tumour growth in experimental hepatocellular carcinoma. J. Extracell. Vesicles 2024 13 7 e12468 10.1002/jev2.12468 38944674
    [Google Scholar]
  77. Niu M. Yi M. Li N. Wu K. Wu K. Advances of targeted therapy for hepatocellular carcinoma. Front. Oncol. 2021 11 719896 10.3389/fonc.2021.719896 34381735
    [Google Scholar]
  78. Gerussi A. Paraboschi E.M. Cappadona C. Caime C. Binatti E. Cristoferi L. Asselta R. Invernizzi P. The role of epigenetics in primary biliary cholangitis. Int. J. Mol. Sci. 2022 23 9 4873 10.3390/ijms23094873 35563266
    [Google Scholar]
  79. Yang Y. He X. Rojas M. Leung P.S.C. Gao L. Mechanism-based target therapy in primary biliary cholangitis: opportunities before liver cirrhosis? Front. Immunol. 2023 14 1184252 10.3389/fimmu.2023.1184252 37325634
    [Google Scholar]
  80. Park J.W. Kim J.H. Kim S.E. Jung J.H. Jang M.K. Park S.H. Lee M.S. Kim H.S. Suk K.T. Kim D.J. Primary biliary cholangitis and primary sclerosing cholangitis: Current knowledge of pathogenesis and therapeutics. Biomedicines 2022 10 6 1288 10.3390/biomedicines10061288 35740310
    [Google Scholar]
  81. Dhingra S. Chandramohan A. Udayakumary R. Lingamaiah D. Murti K. Singh S. Iskander K. Knowledge, attitude, and perceptions of the public toward the COVID-19 vaccine: A cross-sectional study from India. J. Appl. Pharm. Sci. 2023 13 12 114 122 10.7324/JAPS.2023.47175
    [Google Scholar]
  82. Kang J. Postigo-Fernandez J. Kim K. Zhu C. Yu J. Meroni M. Mayfield B. Bartolomé A. Dapito D.H. Ferrante A.W. Jr Dongiovanni P. Valenti L. Creusot R.J. Pajvani U.B. Notch-mediated hepatocyte MCP-1 secretion causes liver fibrosis. JCI Insight 2023 8 3 e165369 10.1172/jci.insight.165369 36752206
    [Google Scholar]
  83. Chowdhury O. Ghosh S. Das A. Liu H. Shang P. Stepicheva N.A. Hose S. Sinha D. Chattopadhyay S. Sustained systemic inflammation increases autophagy and induces EMT/fibrotic changes in mouse liver cells: Protection by melatonin. Cell. Signal. 2023 101 110521 10.1016/j.cellsig.2022.110521 36375715
    [Google Scholar]
  84. Yang Y. Jia X. Qu M. Yang X. Fang Y. Ying X. Zhang M. Wei J. Pan Y. Exploring the potential of treating chronic liver disease targeting the PI3K/Akt pathway and polarization mechanism of macrophages. Heliyon 2023 9 6 e17116 10.1016/j.heliyon.2023.e17116 37484431
    [Google Scholar]
  85. Funada K. Kusano Y. Gyotoku Y. Shirahashi R. Suda T. Tamano M. Novel multi-parametric diagnosis of non-alcoholic fatty liver disease using ultrasonography, body mass index, and Fib-4 index. World J. Gastroenterol. 2023 29 23 3703 3714 10.3748/wjg.v29.i23.3703 37398885
    [Google Scholar]
  86. Mandrekar P. Ambade A. Lim A. Szabo G. Catalano D. An essential role for monocyte chemoattractant protein-1 in alcoholic liver injury: Regulation of proinflammatory cytokines and hepatic steatosis in mice. Hepatology 2011 54 6 2185 2197 10.1002/hep.24599 21826694
    [Google Scholar]
  87. Groves D.T. Jiang Y. Chemokines, a family of chemotactic cytokines. Crit. Rev. Oral Biol. Med. 1995 6 2 109 118 10.1177/10454411950060020101 7548618
    [Google Scholar]
  88. Saiman Y. Friedman S.L. The role of chemokines in acute liver injury. Front. Physiol. 2012 3 213 10.3389/fphys.2012.00213 22723782
    [Google Scholar]
  89. Moench C. Uhrig A. Lohse A.W. Otto G. The role of monocyte chemoattractant protein-1 in orthotopic liver transplantation. 4th ed Elsevier 1452 1455
    [Google Scholar]
  90. Ran G. Lin Y. Tian L. Zhang T. Yan D. Yu J. Deng Y. Natural killer cell homing and trafficking in tissues and tumors: From biology to application. Signal Transduct. Target. Ther. 2022 7 1 205 10.1038/s41392‑022‑01058‑z 35768424
    [Google Scholar]
  91. Carr M.W. Roth S.J. Luther E. Rose S.S. Springer T.A. Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc. Natl. Acad. Sci. USA 1994 91 9 3652 3656 10.1073/pnas.91.9.3652 8170963
    [Google Scholar]
  92. Huby T. Gautier E.L. Immune cell-mediated features of non-alcoholic steatohepatitis. Nat. Rev. Immunol. 2022 22 7 429 443 10.1038/s41577‑021‑00639‑3 34741169
    [Google Scholar]
  93. Oo Y.H. Shetty S. Adams D.H. The role of chemokines in the recruitment of lymphocytes to the liver. Dig. Dis. 2010 28 1 31 44 10.1159/000282062 20460888
    [Google Scholar]
  94. Hadjittofi C. Feretis M. Martin J. Harper S. Huguet E. Liver regeneration biology: Implications for liver tumour therapies. World J. Clin. Oncol. 2021 12 12 1101 1156 10.5306/wjco.v12.i12.1101 35070734
    [Google Scholar]
  95. Jankauskas S.S. Wong D.W.L. Bucala R. Djudjaj S. Boor P. Evolving complexity of MIF signaling. Cell. Signal. 2019 57 76 88 10.1016/j.cellsig.2019.01.006 30682543
    [Google Scholar]
  96. Talreja J. Peng C. Samavati L. MIF modulates p38/ERK phosphorylation via MKP-1 induction in sarcoidosis. iScience 2024 27 1 108746 10.1016/j.isci.2023.108746 38299032
    [Google Scholar]
  97. Lennard Richard M.L. Nowling T.K. Brandon D. Watson D.K. Zhang X.K. Fli-1 controls transcription from the MCP-1 gene promoter, which may provide a novel mechanism for chemokine and cytokine activation. Mol. Immunol. 2015 63 2 566 573 10.1016/j.molimm.2014.07.013 25108845
    [Google Scholar]
  98. Sadeghi M. Dehnavi S. Asadirad A. Xu S. Majeed M. Jamialahmadi T. Johnston T.P. Sahebkar A. Curcumin and chemokines: Mechanism of action and therapeutic potential in inflammatory diseases. Inflammopharmacology 2023 31 3 1069 1093 10.1007/s10787‑023‑01136‑w 36997729
    [Google Scholar]
  99. Shalini V. Pushpan C.K. G S. A J. A H. Tricin, flavonoid from Njavara reduces inflammatory responses in hPBMCs by modulating the p38MAPK and PI3K/Akt pathways and prevents inflammation associated endothelial dysfunction in HUVECs. Immunobiology 2016 221 2 137 144 10.1016/j.imbio.2015.09.016 26514297
    [Google Scholar]
  100. Oyama T. Yasui Y. Sugie S. Koketsu M. Watanabe K. Tanaka T. Dietary tricin suppresses inflammation-related colon carcinogenesis in male Crj: CD-1 mice. Cancer Prev. Res. (Phila.) 2009 2 12 1031 1038 10.1158/1940‑6207.CAPR‑09‑0061 19934339
    [Google Scholar]
  101. Xie J. Yang L. Tian L. Li W. Yang L. Li L. Macrophage migration inhibitor factor upregulates MCP-1 expression in an autocrine manner in hepatocytes during acute mouse liver injury. Sci. Rep. 2016 6 1 27665 10.1038/srep27665 27273604
    [Google Scholar]
  102. Harrington C. Krishnan S. Mack C.L. Cravedi P. Assis D.N. Levitsky J. Noninvasive biomarkers for the diagnosis and management of autoimmune hepatitis. Hepatology 2022 76 6 1862 1879 10.1002/hep.32591 35611859
    [Google Scholar]
  103. Wirtz T.H. Reuken P.A. Jansen C. Fischer P. Bergmann I. Backhaus C. Emontzpohl C. Reißing J. Brandt E.F. Koenen M.T. Schneider K.M. Schierwagen R. Brol M.J. Chang J. Zimmermann H.W. Köse-Vogel N. Eggermann T. Kurth I. Stoppe C. Bucala R. Bernhagen J. Praktiknjo M. Stallmach A. Trautwein C. Trebicka J. Bruns T. Berres M.L. Balance between macrophage migration inhibitory factor and sCD74 predicts outcome in patients with acute decompensation of cirrhosis. JHEP Reports 2021 3 2 100221 10.1016/j.jhepr.2020.100221 33659891
    [Google Scholar]
  104. Song S. Xiao Z. Dekker F.J. Poelarends G.J. Melgert B.N. Macrophage migration inhibitory factor family proteins are multitasking cytokines in tissue injury. Cell. Mol. Life Sci. 2022 79 2 105 10.1007/s00018‑021‑04038‑8 35091838
    [Google Scholar]
  105. Assis D.N. Leng L. Du X. Zhang C.K. Grieb G. Merk M. Garcia A.B. McCrann C. Chapiro J. Meinhardt A. Mizue Y. Nikolic-Paterson D.J. Bernhagen J. Kaplan M.M. Zhao H. Boyer J.L. Bucala R. The role of macrophage migration inhibitory factor in autoimmune liver disease. Hepatology 2014 59 2 580 591 10.1002/hep.26664 23913513
    [Google Scholar]
  106. Assis D.N. Takahashi H. Leng L. Zeniya M. Boyer J.L. Bucala R. A macrophage migration inhibitory factor polymorphism is associated with autoimmune hepatitis severity in US and Japanese patients. Dig. Dis. Sci. 2016 61 12 3506 3512 10.1007/s10620‑016‑4322‑z 27696094
    [Google Scholar]
  107. McClain C.J. Barve S. Barve S. Deaciuc I. Hill D.B. Tumor necrosis factor and alcoholic liver disease. Alcohol. Clin. Exp. Res. 1998 22 s5 Suppl. 248S 252S 10.1111/j.1530‑0277.1998.tb04011.x 9727645
    [Google Scholar]
  108. Sharma S. Bhattacharya S. Joshi K. Singh S. A shift in focus towards precision oncology, driven by revolutionary nanodiagnostics; revealing mysterious pathways in colorectal carcinogenesis. J. Cancer Res. Clin. Oncol. 2023 149 17 16157 16177 10.1007/s00432‑023‑05331‑8 37650995
    [Google Scholar]
  109. Kumagi T. Akbar F. Horiike N. Onji M. Increased serum levels of macrophage migration inhibitory factor in alcoholic liver diseases and their expression in liver tissues. Clin. Biochem. 2001 34 3 189 193 10.1016/S0009‑9120(01)00214‑4 11408016
    [Google Scholar]
  110. Singh S. Anshita D. Ravichandiran V. MCP-1: Function, regulation, and involvement in disease. Int. Immunopharmacol. 2021 101 Pt B 107598 10.1016/j.intimp.2021.107598 34233864
    [Google Scholar]
  111. Tan H.Y. Wang N. Li S. Hong M. Wang X. Feng Y. The reactive oxygen species in macrophage polarization: Reflecting its dual role in progression and treatment of human diseases. Oxid. Med. Cell. Longev. 2016 2016 1 2795090 10.1155/2016/2795090 27143992
    [Google Scholar]
  112. Cichoż-Lach H. Michalak A. Oxidative stress as a crucial factor in liver diseases. World J. Gastroenterol. 2014 20 25 8082 8091 10.3748/wjg.v20.i25.8082 25009380
    [Google Scholar]
  113. Zhao S. Jiang J. Jing Y. Liu W. Yang X. Hou X. Gao L. Wei L. The concentration of tumor necrosis factor-α determines its protective or damaging effect on liver injury by regulating Yap activity. Cell Death Dis. 2020 11 1 70 10.1038/s41419‑020‑2264‑z 31988281
    [Google Scholar]
  114. Liu J. Dean D.A. Gene therapy for acute respiratory distress syndrome. Front. Physiol. 2022 12 786255 10.3389/fphys.2021.786255 35111077
    [Google Scholar]
  115. Lemasters JJ Jaeschke H Oxidative stress and inflammation in the liver. The Liver: Biology and Pathobiology Wiley 2020 10.1002/9781119436812.ch55
    [Google Scholar]
  116. Jiang X. Peng Y. Liu L. Wang Y. Li M. Li W. Huang F. Zheng C. Xu F. Hu Q. Wei W. Dong S. Zhao Q. MAIT cells ameliorate liver fibrosis by enhancing the cytotoxicity of NK cells in cholestatic murine models. Liver Int. 2022 42 12 2743 2758 10.1111/liv.15445 36181707
    [Google Scholar]
  117. Jain S.K. McVie R. Hyperketonemia can increase lipid peroxidation and lower glutathione levels in human erythrocytes in vitro and in type 1 diabetic patients. Diabetes 1999 48 9 1850 1855 10.2337/diabetes.48.9.1850 10480618
    [Google Scholar]
  118. Harris E.H. Elevated liver function tests in type 2 diabetes. Clin. Diabetes 2005 23 3 115 119 10.2337/diaclin.23.3.115
    [Google Scholar]
  119. Banerjee A. Abdelmegeed M.A. Jang S. Song B.J. Increased sensitivity to binge alcohol-induced gut leakiness and inflammatory liver disease in HIV transgenic rats. PLoS One 2015 10 10 e0140498 10.1371/journal.pone.0140498 26484872
    [Google Scholar]
  120. Aggarwal P Singh S Ravichandiran V Natural bioactive components to inhibit endothelial dysfunction in atherosclerosis.
    [Google Scholar]
  121. Ryu J. Hadley J.T. Li Z. Dong F. Xu H. Xin X. Zhang Y. Chen C. Li S. Guo X. Zhao J.L. Leach R.J. Abdul-Ghani M.A. DeFronzo R.A. Kamat A. Liu F. Dong L.Q. Adiponectin alleviates diet-induced inflammation in the liver by suppressing MCP-1 expression and macrophage infiltration. Diabetes 2021 70 6 1303 1316 10.2337/db20‑1073 34162682
    [Google Scholar]
  122. Kulkarni O. Eulberg D. Selve N. Zöllner S. Allam R. Pawar R.D. Pfeiffer S. Segerer S. Klussmann S. Anders H.J. Anti-Ccl2 Spiegelmer permits 75% dose reduction of cyclophosphamide to control diffuse proliferative lupus nephritis and pneumonitis in MRL-Fas(lpr) mice. J. Pharmacol. Exp. Ther. 2009 328 2 371 377 10.1124/jpet.108.142711 18997060
    [Google Scholar]
  123. Kalo E. Read S. Ahlenstiel G. Targeting gut–liver axis for treatment of liver fibrosis and portal hypertension. Livers 2021 1 3 147 179 10.3390/livers1030014
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128332969241120030733
Loading
/content/journals/cpd/10.2174/0113816128332969241120030733
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test