Skip to content
2000
image of Unlocking Therapeutic Potential: Mesenchymal Stem Cells-derived Exosomes in IUA Treatment, Current Status and Perspectives

Abstract

Intrauterine adhesion (IUA) is a condition caused by damage to the basal uterine layer which can lead to partial or full occlusion of the uterine cavity. Although traditional treatment options have been useful in mild and moderate cases, they have been unsatisfactory in severe IUA cases. Therefore, it is essential to improve the treatment strategies of IUA. Recent studies have demonstrated that Mesenchymal stem cells (MSCs) exert their therapeutic effects the paracrine secretion of several substances including extracellular vesicles (EV) also called exosomes. MSC-derived exosomes (MSC-Exos) do not have the limitations of MSCs including immunogenicity and tumorigenicity. However, exosomes have limitations in terms of identification, isolation, purification, and origin. The clinical application of exosomes requires quality control and increased standardization in isolation and culture serum. This review summarizes therapeutic potentials of MSC-Exos and explores their potential clinical implications as diagnostic, therapeutic targets as well as prognostic markers in managing IUA.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128337236241210080728
2025-01-06
2025-01-30
Loading full text...

Full text loading...

References

  1. Mancini V. Pensabene V. Organs-on-chip models of the female reproductive system. Bioengineering (Basel) 2019 6 4 103 10.3390/bioengineering6040103 31703369
    [Google Scholar]
  2. Tomic V. Kasum M. Vucic K. Impact of embryo quality and endometrial thickness on implantation in natural cycle IVF. Arch. Gynecol. Obstet. 2020 301 5 1325 1330 10.1007/s00404‑020‑05507‑4 32211954
    [Google Scholar]
  3. Kou L. Jiang X. Xiao S. Zhao YZ. Yao Q. Chen R. Therapeutic options and drug delivery strategies for the prevention of intrauterine adhesions. J Control Release 2020 318 25 37 10.1016/j.jconrel.2019.12.007
    [Google Scholar]
  4. Conforti A. Alviggi C. Mollo A. De Placido G. Magos A. The management of Asherman syndrome: A review of literature. Reprod. Biol. Endocrinol. 2013 11 1 118 10.1186/1477‑7827‑11‑118 24373209
    [Google Scholar]
  5. Khan Z. Goldberg J.M. Hysteroscopic management of asherman’s syndrome. J. Minim. Invasive Gynecol. 2018 25 2 218 228 10.1016/j.jmig.2017.09.020 29024798
    [Google Scholar]
  6. Rein D.T. Schmidt T. Hess A.P. Volkmer A. Schöndorf T. Breidenbach M. Hysteroscopic management of residual trophoblastic tissue is superior to ultrasound-guided curettage. J. Minim. Invasive Gynecol. 2011 18 6 774 778 10.1016/j.jmig.2011.08.003 22024264
    [Google Scholar]
  7. Galipeau J. Sensébé L. Mesenchymal stromal cells: Clinical challenges and therapeutic opportunities. Cell Stem Cell 2018 22 6 824 833 10.1016/j.stem.2018.05.004 29859173
    [Google Scholar]
  8. Røsland G.V. Svendsen A. Torsvik A. Sobala E. McCormack E. Immervoll H. Mysliwietz J. Tonn J.C. Goldbrunner R. Lønning P.E. Bjerkvig R. Schichor C. Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res. 2009 69 13 5331 5339 10.1158/0008‑5472.CAN‑08‑4630 19509230
    [Google Scholar]
  9. Phinney D.G. Pittenger M.F. Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells 2017 35 4 851 858 10.1002/stem.2575 28294454
    [Google Scholar]
  10. Witwer K.W. Buzás E.I. Bemis L.T. Bora A. Lässer C. Lötvall J. Nolte-’t Hoen E.N. Piper M.G. Sivaraman S. Skog J. Théry C. Wauben M.H. Hochberg F. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J. Extracell. Vesicles 2013 2 1 20360 10.3402/jev.v2i0.20360 24009894
    [Google Scholar]
  11. Gallo A. Tandon M. Alevizos I. Illei G.G. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One 2012 7 3 e30679 10.1371/journal.pone.0030679 22427800
    [Google Scholar]
  12. Colombo M. Raposo G. Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 2014 30 1 255 289 10.1146/annurev‑cellbio‑101512‑122326 25288114
    [Google Scholar]
  13. Lou P. Liu S. Xu X. Pan C. Lu Y. Liu J. Extracellular vesicle-based therapeutics for the regeneration of chronic wounds: current knowledge and future perspectives. Acta Biomater. 2021 119 42 56 10.1016/j.actbio.2020.11.001 33161186
    [Google Scholar]
  14. Yin K. Wang S. Zhao R.C. Exosomes from mesenchymal stem/stromal cells: A new therapeutic paradigm. Biomark. Res. 2019 7 1 8 10.1186/s40364‑019‑0159‑x 30992990
    [Google Scholar]
  15. Lai R.C. Arslan F. Lee M.M. Sze N.S.K. Choo A. Chen T.S. Salto-Tellez M. Timmers L. Lee C.N. El Oakley R.M. Pasterkamp G. de Kleijn D.P.V. Lim S.K. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. (Amst.) 2010 4 3 214 222 10.1016/j.scr.2009.12.003 20138817
    [Google Scholar]
  16. Bakhtyar N. Jeschke M.G. Mainville L. Herer E. Amini-Nik S. Acellular gelatinous material of human umbilical cord enhances wound healing: A Candidate remedy for deficient wound healing. Front. Physiol. 2017 8 200 10.3389/fphys.2017.00200 28421003
    [Google Scholar]
  17. Yang B. Chen Y. Shi J. Exosome biochemistry and advanced nanotechnology for next-generation theranostic platforms. Adv Mater 2019 31 2 e1802896 10.1002/adma.201802896
    [Google Scholar]
  18. He C. Zheng S. Luo Y. Wang B. Exosome theranostics: Biology and translational medicine. Theranostics 2018 8 1 237 255 10.7150/thno.21945 29290805
    [Google Scholar]
  19. Zhang Y. Bi J. Huang J. Tang Y. Du S. Li P. Exosome: A review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. Int. J. Nanomedicine 2020 15 6917 6934 10.2147/IJN.S264498 33061359
    [Google Scholar]
  20. Liang Y. Duan L. Lu J. Xia J. Engineering exosomes for targeted drug delivery. Theranostics 2021 11 7 3183 3195 10.7150/thno.52570 33537081
    [Google Scholar]
  21. Kou M. Huang L. Yang J. Chiang Z. Chen S. Liu J. Guo L. Zhang X. Zhou X. Xu X. Yan X. Wang Y. Zhang J. Xu A. Tse H. Lian Q. Mesenchymal stem cell-derived extracellular vesicles for immunomodulation and regeneration: A next generation therapeutic tool? Cell Death Dis. 2022 13 7 580 10.1038/s41419‑022‑05034‑x 35787632
    [Google Scholar]
  22. Hoang D.H. Nguyen T.D. Nguyen H.P. Nguyen X.H. Do P.T.X. Dang V.D. Dam P.T.M. Bui H.T.H. Trinh M.Q. Vu D.M. Hoang N.T.M. Thanh L.N. Than U.T.T. Differential wound healing capacity of mesenchymal stem cell-derived exosomes originated from bone marrow, adipose tissue and umbilical cord under Serum- and Xeno-free condition. Front. Mol. Biosci. 2020 7 119 10.3389/fmolb.2020.00119 32671095
    [Google Scholar]
  23. Das M. Mayilsamy K. Mohapatra S.S. Mohapatra S. Mesenchymal stem cell therapy for the treatment of traumatic brain injury: Progress and prospects. Rev. Neurosci. 2019 30 8 839 855 10.1515/revneuro‑2019‑0002 31203262
    [Google Scholar]
  24. Zhang L. Li Y. Guan C.Y. Tian S. Lv X.D. Li J.H. Ma X. Xia H.F. Therapeutic effect of human umbilical cord-derived mesenchymal stem cells on injured rat endometrium during its chronic phase. Stem Cell Res. Ther. 2018 9 1 36 10.1186/s13287‑018‑0777‑5 29433563
    [Google Scholar]
  25. Nakao Y. Fukuda T. Zhang Q. Sanui T. Shinjo T. Kou X. Chen C. Liu D. Watanabe Y. Hayashi C. Yamato H. Yotsumoto K. Tanaka U. Taketomi T. Uchiumi T. Le A.D. Shi S. Nishimura F. Exosomes from TNF-α-treated human gingiva-derived MSCs enhance M2 macrophage polarization and inhibit periodontal bone loss. Acta Biomater. 2021 122 306 324 10.1016/j.actbio.2020.12.046 33359765
    [Google Scholar]
  26. Xu L. Ding L. Wang L. Cao Y. Zhu H. Lu J. Li X. Song T. Hu Y. Dai J. Umbilical cord-derived mesenchymal stem cells on scaffolds facilitate collagen degradation via upregulation of MMP-9 in rat uterine scars. Stem Cell Res. Ther. 2017 8 1 84 10.1186/s13287‑017‑0535‑0 28420433
    [Google Scholar]
  27. Bian D. Wu Y. Song G. Azizi R. Zamani A. The application of mesenchymal stromal cells (MSCs) and their derivative exosome in skin wound healing: A comprehensive review. Stem Cell Res. Ther. 2022 13 1 24 10.1186/s13287‑021‑02697‑9 35073970
    [Google Scholar]
  28. Li B. Cao Y. Sun M. Feng H. Expression, regulation, and function of exosome‐derived miRNAs in cancer progression and therapy. FASEB J. 2021 35 10 e21916 10.1096/fj.202100294RR 34510546
    [Google Scholar]
  29. Li R. Li D. Wang H. Chen K. Wang S. Xu J. Ji P. Exosomes from adipose-derived stem cells regulate M1/M2 macrophage phenotypic polarization to promote bone healing via miR-451a/MIF. Stem Cell Res. Ther. 2022 13 1 149 10.1186/s13287‑022‑02823‑1 35395782
    [Google Scholar]
  30. Huang Y. He B. Wang L. Yuan B. Shu H. Zhang F. Sun L. Bone marrow mesenchymal stem cell-derived exosomes promote rotator cuff tendon-bone healing by promoting angiogenesis and regulating M1 macrophages in rats. Stem Cell Res. Ther. 2020 11 1 496 10.1186/s13287‑020‑02005‑x 33239091
    [Google Scholar]
  31. He X. Dong Z. Cao Y. Wang H. Liu S. Liao L. Jin Y. Yuan L. Li B. MSC-derived exosome promotes M2 polarization and enhances cutaneous wound healing. Stem Cells Int. 2019 2019 1 16 10.1155/2019/7132708 31582986
    [Google Scholar]
  32. Guan P. Cui R. Wang Q. Sun Y. A 3D hydrogel loaded with exosomes derived from bone marrow stem cells promotes cartilage repair in rats by modulating immunological microenvironment. Nan Fang Yi Ke Da Xue Xue Bao 2022 42 4 528 537
    [Google Scholar]
  33. Lv H. Liu H. Sun T. Wang H. Zhang X. Xu W. Exosome derived from stem cell: A promising therapeutics for wound healing. Front. Pharmacol. 2022 13 957771 10.3389/fphar.2022.957771 36003496
    [Google Scholar]
  34. Ti D. Hao H. Tong C. Liu J. Dong L. Zheng J. Zhao Y. Liu H. Fu X. Han W. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. J. Transl. Med. 2015 13 1 308 10.1186/s12967‑015‑0642‑6 26386558
    [Google Scholar]
  35. Zhang Y. Xie Y. Hao Z. Zhou P. Wang P. Fang S. Li L. Xu S. Xia Y. Umbilical mesenchymal stem cell-derived exosome-encapsulated hydrogels accelerate bone repair by enhancing Angiogenesis. ACS Appl. Mater. Interfaces 2021 13 16 18472 18487 10.1021/acsami.0c22671 33856781
    [Google Scholar]
  36. Li X.T. Zhao J. Xu D.S. Zhang Y. Zhou S.T. Bone marrow mesenchymal stem cell exosomes promote brain microvascular endothelial cell proliferation and migration in rats. Sichuan Da Xue Xue Bao Yi Xue Ban 2020 51 5 599 604 32975071
    [Google Scholar]
  37. Shi Y. Kang X. Wang Y. Bian X. He G. Zhou M. Tang K. Exosomes derived from bone marrow stromal cells (BMSCs) enhance Tendon-bone healing by regulating macrophage polarization. Med. Sci. Monit. 2020 26 e923328 10.12659/MSM.923328 32369458
    [Google Scholar]
  38. Yao Y. Chen R. Wang G. Zhang Y. Liu F. Exosomes derived from mesenchymal stem cells reverse EMT via TGF-β1/Smad pathway and promote repair of damaged endometrium. Stem Cell Res. Ther. 2019 10 1 225 10.1186/s13287‑019‑1332‑8 31358049
    [Google Scholar]
  39. Liu J. Qiu R. Liu R. Song P. Lin P. Chen H. Zhou D. Wang A. Jin Y. Autophagy mediates Escherichia Coli-induced cellular inflammatory injury by regulating calcium mobilization, mitochondrial dysfunction, and endoplasmic reticulum stress. Int. J. Mol. Sci. 2022 23 22 14174 10.3390/ijms232214174 36430657
    [Google Scholar]
  40. Han C.Y. Rho H.S. Kim A. Kim T.H. Jang K. Jun D.W. Kim J.W. Kim B. Kim S.G. FXR inhibits endoplasmic reticulum stress-induced NLRP3 inflammasome in hepatocytes and ameliorates liver injury. Cell Rep. 2018 24 11 2985 2999 10.1016/j.celrep.2018.07.068 30208322
    [Google Scholar]
  41. Bao M. Feng Q. Zou L. Huang J. Zhu C. Xia W. Endoplasmic reticulum stress promotes endometrial fibrosis through the TGF-β/SMAD pathway. Reproduction 2023 165 2 171 182 10.1530/REP‑22‑0294 36342661
    [Google Scholar]
  42. Salunkhe S. Dheeraj Basak Moumita Chitkara Deepak Mittal Anupama Surface functionalization of exosomes for target-specific delivery and in vivo imaging & tracking: Strategies and significance. J Control Release 2020 326 599 614
    [Google Scholar]
  43. Tamura R. Uemoto S. Tabata Y. Augmented liver targeting of exosomes by surface modification with cationized pullulan. Acta Biomater. 2017 57 274 284 10.1016/j.actbio.2017.05.013 28483695
    [Google Scholar]
  44. Zhu Q. Tang S. Zhu Y. Chen D. Huang J. Lin J. Exosomes derived from CTF1-modified bone marrow stem cells promote endometrial regeneration and restore fertility. Front. Bioeng. Biotechnol. 2022 10 868734 10.3389/fbioe.2022.868734 35497344
    [Google Scholar]
  45. Li X. Zhang Y. Wang Y. Zhao D. Sun C. Zhou S. Xu D. Zhao J. Exosomes derived from CXCR4-overexpressing BMSC promoted activation of microvascular endothelial cells in cerebral ischemia/reperfusion injury. Neural Plast. 2020 2020 1 13 10.1155/2020/8814239 33381162
    [Google Scholar]
  46. Sun J. Shen H. Shao L. Teng X. Chen Y. Liu X. Yang Z. Shen Z. HIF-1α overexpression in mesenchymal stem cell-derived exosomes mediates cardioprotection in myocardial infarction by enhanced angiogenesis. Stem Cell Res. Ther. 2020 11 1 373 10.1186/s13287‑020‑01881‑7 32859268
    [Google Scholar]
  47. McGettrick A.F. O’Neill L.A.J. The role of HIF in immunity and inflammation. Cell Metab. 2020 32 4 524 536 10.1016/j.cmet.2020.08.002 32853548
    [Google Scholar]
  48. Liu W. Li L. Rong Y. Qian D. Chen J. Zhou Z. Luo Y. Jiang D. Cheng L. Zhao S. Kong F. Wang J. Zhou Z. Xu T. Gong F. Huang Y. Gu C. Zhao X. Bai J. Wang F. Zhao W. Zhang L. Li X. Yin G. Fan J. Cai W. Hypoxic mesenchymal stem cell-derived exosomes promote bone fracture healing by the transfer of miR-126. Acta Biomater. 2020 103 196 212 10.1016/j.actbio.2019.12.020 31857259
    [Google Scholar]
  49. Ochoa-Bernal M.A. Fazleabas A.T. Physiologic events of embryo implantation and decidualization in human and non-human primates. Int. J. Mol. Sci. 2020 21 6 1973 10.3390/ijms21061973 32183093
    [Google Scholar]
  50. Achache H. Revel A. Endometrial receptivity markers, the journey to successful embryo implantation. Hum. Reprod. Update 2006 12 6 731 746 10.1093/humupd/dml004 16982667
    [Google Scholar]
  51. Liu H. Zhang X. Zhang M. Zhang S. Li J. Zhang Y. Wang Q. Cai J.P. Cheng K. Wang S. Mesenchymal stem cell derived exosomes repair uterine injury by targeting transforming growth factor-β signaling. ACS Nano 2024 18 4 3509 3519 10.1021/acsnano.3c10884 38241636
    [Google Scholar]
  52. Lin Y. Li Y. Chen P. Zhang Y. Sun J. Sun X. Li J. Jin J. Xue J. Zheng J. Jiang X.C. Chen C. Li X. Wu Y. Zhao W. Liu J. Ye X. Zhang R. Gao J. Zhang D. Exosome-based regimen rescues endometrial fibrosis in intrauterine adhesions via targeting clinical fibrosis biomarkers. Stem Cells Transl. Med. 2023 12 3 154 168 10.1093/stcltm/szad007 36893290
    [Google Scholar]
  53. Shi Y. Yang X. Wang S. Wu Y. Zheng L. Tang Y. Gao Y. Niu J. Human umbilical cord mesenchymal stromal cell-derived exosomes protect against MCD-induced NASH in a mouse model. Stem Cell Res. Ther. 2022 13 1 517 10.1186/s13287‑022‑03201‑7 36371344
    [Google Scholar]
  54. Wang J. Hu R. Xing Q. Feng X. Jiang X. Xu Y. Wei Z. Exosomes derived from umbilical cord mesenchymal stem cells alleviate mifepristone-induced human endometrial stromal cell injury. Stem Cells Int. 2020 2020 1 9 10.1155/2020/6091269 32399046
    [Google Scholar]
  55. Bosholm C.C. Zhu H. Yu P. Cheng K. Murphy S.V. McNutt P.M. Zhang Y. Therapeutic benefits of stem cells and exosomes for sulfur-mustard-induced tissue damage. Int. J. Mol. Sci. 2023 24 12 9947 10.3390/ijms24129947 37373093
    [Google Scholar]
  56. Chen J. Huang Q. Zhao Y. Chen W. Lin S. Shi Q. The latest developments in immunomodulation of mesenchymal stem cells in the treatment of intrauterine adhesions, both allogeneic and autologous. Front. Immunol. 2021 12 785717 10.3389/fimmu.2021.785717 34868069
    [Google Scholar]
  57. Jin Y. Li S. Yu Q. Chen T. Liu D. Application of stem cells in regeneration medicine. MedComm 2023 4 4 e291 10.1002/mco2.291
    [Google Scholar]
  58. Gao M. Yu Z. Yao D. Qian Y. Wang Q. Jia R. Mesenchymal stem cells therapy: A promising method for the treatment of uterine scars and premature ovarian failure. Tissue Cell 2022 74 101676 10.1016/j.tice.2021.101676 34798583
    [Google Scholar]
  59. Wang J. Zhu M. Hu Y. Chen R. Hao Z. Wang Y. Li J. Exosome‐hydrogel system in bone tissue engineering: A promising therapeutic strategy. Macromol. Biosci. 2023 23 4 2200496 10.1002/mabi.202200496 36573715
    [Google Scholar]
  60. Wang L. Wang J. Zhou X. Sun J. Zhu B. Duan C. Chen P. Guo X. Zhang T. Guo H. A new self-healing hydrogel containing hucMSC-derived exosomes promotes bone regeneration. Front. Bioeng. Biotechnol. 2020 8 564731 10.3389/fbioe.2020.564731 33042966
    [Google Scholar]
  61. Yang J. Chen Z. Pan D. Li H. Shen J. Umbilical cord-derived mesenchymal stem cell-derived exosomes combined pluronic F127 hydrogel promote chronic diabetic wound healing and complete skin regeneration. Int. J. Nanomedicine 2020 15 5911 5926 10.2147/IJN.S249129 32848396
    [Google Scholar]
  62. Zhou Y. Zhang X.L. Lu S.T. Zhang N.Y. Zhang H.J. Zhang J. Zhang J. Human adipose-derived mesenchymal stem cells-derived exosomes encapsulated in pluronic F127 hydrogel promote wound healing and regeneration. Stem Cell Res. Ther. 2022 13 1 407 10.1186/s13287‑022‑02980‑3 35941707
    [Google Scholar]
  63. Wang C. Wang M. Xu T. Zhang X. Lin C. Gao W. Xu H. Lei B. Mao C. Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration. Theranostics 2019 9 1 65 76 10.7150/thno.29766 30662554
    [Google Scholar]
  64. Zhao S. Qi W. Zheng J. Tian Y. Qi X. Kong D. Zhang J. Huang X. Exosomes derived from adipose mesenchymal stem cells restore functional endometrium in a rat model of intrauterine adhesions. Reprod. Sci. 2020 27 6 1266 1275 10.1007/s43032‑019‑00112‑6 31933162
    [Google Scholar]
  65. Saribas G.S. Ozogul C. Tiryaki M. Alpaslan Pinarli F. Hamdemir Kilic S. Effects of uterus derived mesenchymal stem cells and their exosomes on asherman’s syndrome. Acta Histochem. 2020 122 1 151465 10.1016/j.acthis.2019.151465 31776004
    [Google Scholar]
  66. Chang Y. Liu Y. Li X. Exosomes derived from human umbilical cord mesenchymal stem cells promote proliferation of endometrial stromal cell. Fertil. Steril. 2020 114 3 e530 10.1016/j.fertnstert.2020.09.035
    [Google Scholar]
  67. Xin L. Lin X. Zhou F. Li C. Wang X. Yu H. Pan Y. Fei H. Ma L. Zhang S. A scaffold laden with mesenchymal stem cell-derived exosomes for promoting endometrium regeneration and fertility restoration through macrophage immunomodulation. Acta Biomater. 2020 113 252 266 10.1016/j.actbio.2020.06.029 32574858
    [Google Scholar]
  68. Gowen A. Shahjin F. Chand S. Odegaard K.E. Yelamanchili S.V. Mesenchymal stem cell-derived extracellular vesicles: Challenges in clinical applications. Front. Cell Dev. Biol. 2020 8 149 10.3389/fcell.2020.00149 32226787
    [Google Scholar]
  69. Wu J. Song D. Li Z. Guo B. Xiao Y. Liu W. Liang L. Feng C. Gao T. Chen Y. Li Y. Wang Z. Wen J. Yang S. Liu P. Wang L. Wang Y. Peng L. Stacey G.N. Hu Z. Feng G. Li W. Huo Y. Jin R. Shyh-Chang N. Zhou Q. Wang L. Hu B. Dai H. Hao J. Immunity-and-matrix-regulatory cells derived from human embryonic stem cells safely and effectively treat mouse lung injury and fibrosis. Cell Res. 2020 30 9 794 809 10.1038/s41422‑020‑0354‑1 32546764
    [Google Scholar]
  70. Liu L. Liu Y. Feng C. Chang J. Fu R. Wu T. Yu F. Wang X. Xia L. Wu C. Fang B. Lithium-containing biomaterials stimulate bone marrow stromal cell-derived exosomal miR-130a secretion to promote angiogenesis. Biomaterials 2019 192 523 536 10.1016/j.biomaterials.2018.11.007 30529871
    [Google Scholar]
  71. Gong M. Yu B. Wang J. Wang Y. Liu M. Paul C. Millard R.W. Xiao D.S. Ashraf M. Xu M. Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis. Oncotarget 2017 8 28 45200 45212 10.18632/oncotarget.16778 28423355
    [Google Scholar]
  72. Liang X. Zhang L. Wang S. Han Q. Zhao R.C. Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a. J. Cell Sci. 2016 129 11 2182 2189 10.1242/jcs.170373 27252357
    [Google Scholar]
  73. Han Y. Ren J. Bai Y. Pei X. Han Y. Exosomes from hypoxia-treated human adipose-derived mesenchymal stem cells enhance angiogenesis through VEGF/VEGF-R. Int. J. Biochem. Cell Biol. 2019 109 59 68 10.1016/j.biocel.2019.01.017 30710751
    [Google Scholar]
  74. Tooi M. Komaki M. Morioka C. Honda I. Iwasaki K. Yokoyama N. Ayame H. Izumi Y. Morita I. Placenta mesenchymal stem cell derived exosomes confer plasticity on Fibroblasts. J. Cell. Biochem. 2016 117 7 1658 1670 10.1002/jcb.25459 26640165
    [Google Scholar]
  75. Wang J. Xia J. Huang R. Hu Y. Fan J. Shu Q. Xu J. Mesenchymal stem cell-derived extracellular vesicles alter disease outcomes via endorsement of macrophage polarization. Stem Cell Res. Ther. 2020 11 1 424 10.1186/s13287‑020‑01937‑8 32993783
    [Google Scholar]
  76. Del Fattore A. Luciano R. Pascucci L. Goffredo B.M. Giorda E. Scapaticci M. Fierabracci A. Muraca M. Immunoregulatory effects of mesenchymal stem cell-derived extracellular Vesicles on T Lymphocytes. Cell Transplant. 2015 24 12 2615 2627 10.3727/096368915X687543 25695896
    [Google Scholar]
  77. Crain S.K. Robinson S.R. Thane K.E. Davis A.M. Meola D.M. Barton B.A. Yang V.K. Hoffman A.M. Extracellular vesicles from Wharton’s Jelly mesenchymal stem cells suppress CD4 expressing T cells through transforming growth factor beta and Adenosine signaling in a Canine model. Stem Cells Dev. 2019 28 3 212 226 10.1089/scd.2018.0097 30412034
    [Google Scholar]
  78. Perrini C. Strillacci M.G. Bagnato A. Esposti P. Marini M.G. Corradetti B. Bizzaro D. Idda A. Ledda S. Capra E. Pizzi F. Lange-Consiglio A. Cremonesi F. Microvesicles secreted from equine amniotic-derived cells and their potential role in reducing inflammation in endometrial cells in an in-vitro model. Stem Cell Res. Ther. 2016 7 1 169 10.1186/s13287‑016‑0429‑6 27863532
    [Google Scholar]
  79. Park K.S. Svennerholm K. Shelke G.V. Bandeira E. Lässer C. Jang S.C. Chandode R. Gribonika I. Lötvall J. Mesenchymal stromal cell-derived nanovesicles ameliorate bacterial outer membrane vesicle-induced sepsis via IL-10. Stem Cell Res. Ther. 2019 10 1 231 10.1186/s13287‑019‑1352‑4 31370884
    [Google Scholar]
  80. Chaubey S. Thueson S. Ponnalagu D. Alam M.A. Gheorghe C.P. Aghai Z. Singh H. Bhandari V. Early gestational mesenchymal stem cell secretome attenuates experimental bronchopulmonary dysplasia in part via exosome-associated factor TSG-6. Stem Cell Res. Ther. 2018 9 1 173 10.1186/s13287‑018‑0903‑4 29941022
    [Google Scholar]
  81. Shabbir A. Cox A. Rodriguez-Menocal L. Salgado M. Badiavas E.V. Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound Fibroblasts, and enhance Angiogenesis in vitro. Stem Cells Dev. 2015 24 14 1635 1647 10.1089/scd.2014.0316 25867197
    [Google Scholar]
  82. Wu F. Lei N. Yang S. Zhou J. Chen M. Chen C. Qiu L. Guo R. Li Y. Chang L. Treatment strategies for intrauterine adhesion: Focus on the exosomes and hydrogels. Front. Bioeng. Biotechnol. 2023 11 1264006 10.3389/fbioe.2023.1264006 37720318
    [Google Scholar]
  83. Elahi F.M. Farwell D.G. Nolta J.A. Anderson J.D. Preclinical translation of exosomes derived from mesenchymal stem/stromal cells. Stem Cells 2020 38 1 15 21 10.1002/stem.3061 31381842
    [Google Scholar]
  84. Koh H.B. Kim H.J. Kang S.W. Yoo T.H. Exosome-based drug delivery: Translation from bench to clinic. Pharmaceutics 2023 15 8 2042 10.3390/pharmaceutics15082042 37631256
    [Google Scholar]
  85. Wang C.K. Tsai T.H. Lee C.H. Regulation of exosomes as biologic medicines: Regulatory challenges faced in exosome development and manufacturing processes. Clin. Transl. Sci. 2024 17 8 e13904 10.1111/cts.13904 39115257
    [Google Scholar]
  86. Chen Y.S. Lin E.Y. Chiou T.W. Harn H.J. Exosomes in clinical trial and their production in compliance with good manufacturing practice. Tzu-Chi Med. J. 2019 32 2 113 120 32269942
    [Google Scholar]
  87. Lou G. Chen Z. Zheng M. Liu Y. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases. Exp. Mol. Med. 2017 49 6 e346 10.1038/emm.2017.63 28620221
    [Google Scholar]
  88. Guo M. Yin Z. Chen F. Lei P. Mesenchymal stem cell-derived exosome: A promising alternative in the therapy of Alzheimer’s disease. Alzheimers Res. Ther. 2020 12 1 109 10.1186/s13195‑020‑00670‑x 32928293
    [Google Scholar]
  89. Kimiz-Gebologlu I. Oncel SS. Exosomes: Large-scale production, isolation, drug loading efficiency, and biodistribution and uptake. J Control Release 2022 347 533 543
    [Google Scholar]
  90. Xiong M. Zhang Q. Hu W. Zhao C. Lv W. Yi Y. Wang Y. Tang H. Wu M. Wu Y. The novel mechanisms and applications of exosomes in dermatology and cutaneous medical aesthetics. Pharmacol. Res. 2021 166 105490 10.1016/j.phrs.2021.105490 33582246
    [Google Scholar]
  91. Xiong M. Zhang Q. Hu W. Zhao C. Lv W. Yi Y. Wu Y. Wu M. Exosomes from adipose-derived stem cells: The emerging roles and applications in tissue regeneration of plastic and cosmetic surgery. Front. Cell Dev. Biol. 2020 8 574223 10.3389/fcell.2020.574223 33015067
    [Google Scholar]
  92. Kaminska A. Wedzinska A. Kot M. Sarnowska A. Effect of long-term 3D spheroid culture on WJ-MSC. Cells 2021 10 4 719 10.3390/cells10040719 33804895
    [Google Scholar]
  93. Haraszti R.A. Miller R. Stoppato M. Sere Y.Y. Coles A. Didiot M.C. Exosomes produced from 3D cultures of mscs by tangential flow filtration show higher yield and improved activity. Mol. Ther. 2018 26 12 2838 2847
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128337236241210080728
Loading
/content/journals/cpd/10.2174/0113816128337236241210080728
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: extracellular vesicles ; exosomes ; Mesenchymal stem cells ; Intrauterine adhesion
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test