Skip to content
2000
Volume 31, Issue 16
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

The metal oxide nanoparticles possess unique properties such as biological compatibility, superior reactivity, and capacity to develop reactive oxygen species, due to this they have drawn significant interest in cancer treatment. The various MONPs such as Cerium oxide, Copper oxide, Iron oxide, Titanium dioxide, and Zinc oxide have been investigated for several types of cancers including brain, breast, cervical, colon, leukemia, liver, lung, melanoma, ovarian, and prostate cancers. However, traditional physiochemical synthetic methods for MONPs commonly include toxic materials, a major concern that raises questions regarding their biocompatibility and safety.

Objective

This study aims to investigate the role of plant phytoconstituents in the development of MONPs green synthesis and explore the therapeutic effectiveness of MONPs in treating several types of cancer. Primarily, it examines the potential of plant phytoconstituents (phenolic compounds, flavonoids, glycosides, alkaloids, .) in the development of MONPs as well as their improved ability to target numerous types of cancer.

Methods

A systemic search was conducted on recent literature, focusing on developing green MONPs by utilizing plants' phytoconstituents (plant extracts). The study of plant phytochemicals (present in different parts of a plant such as leaves, flowers, stems, peels, and roots) and their role in the synthesis of green metal oxide nanoparticles as well as their anticancer activity against several types of cancers was analyzed. Also focusing on their anticancer mechanism that involves ROS production, generates oxidative stress, and apoptosis leads to cancer inhibition.

Results

Phytochemicals-mediated metal oxide nanoparticle synthesis revealed many advantages such as improved biological compatibility and enhanced sensitivity towards cancer cells. Phytochemicals present in plant extracts act as natural capping, reducing, and stabilizing agents, enhancing nanoparticle synthesis which leads to synergistic anticancer activity. Additionally, the natural antioxidant and anticancer activity of various phytochemicals enhances the therapeutic potential of metal oxide nanoparticles, producing them more effective against ROS-generated apoptosis and showing negligible toxicity towards normal cells.

Conclusion

The utilization of plant phytochemicals in metal oxide nanoparticle production presents a safe, eco-friendly, sustainable, and effective approach to developing effective and safer cancer nanomedicines. Green synthesis not only increases anticancer activity but also decreases the biocompatibility problems associated with the physiochemical synthetic approach. Further research needs to concentrate on improving this synergy to create a targeted phytochemical-based metal oxide nanoparticle for cancer therapeutics.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128329342241120105041
2025-01-07
2025-05-28
Loading full text...

Full text loading...

References

  1. AminolroayaeiF. MehriA. Shahbazi-GahroueiD. RostamiM. Polyoxometalates as next-generation of theragnostic gadgets in cancer.Rev. Inorg. Chem.202444227128710.1515/revic‑2023‑0008
    [Google Scholar]
  2. ChhikaraB.S. ParangK. Chemical Biology letters global Cancer Statistics 2022: The trends projection analysis.Chem. Biol. Lett. Chem. Biol. Lett202320231116
    [Google Scholar]
  3. Chahar BeniwalS. VirmaniT. Synthesis, characterization and evaluation of novel carbazole boronic acid derivatives in the treatment of breast cancer.Int. J. Pharm. Sci. Res.20231441992200110.13040/IJPSR.0975‑8232.14(4).1992‑01
    [Google Scholar]
  4. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.21763
    [Google Scholar]
  5. VirmaniT. KumarG. SharmaA. PathakK. AkhtarM.S. AfzalO. AltamimiA.S.A. Amelioration of cancer employing chitosan, its derivatives, and chitosan-based nanoparticles: Recent updates.Polymers (Basel)20231513292810.3390/polym15132928
    [Google Scholar]
  6. KumarM. VirmaniT. KumarG. DeshmukhR. SharmaA. DuarteS. BrandãoP. FonteP. Nanocarriers in tuberculosis treatment: Challenges and delivery strategies.Pharmaceuticals (Basel)20231610136010.3390/ph16101360
    [Google Scholar]
  7. SandujaM. GuptaJ. VirmaniT. Recent advancements in uracil and 5-fluorouracil hybrids as potential anticancer agents: A review.J. Appl. Pharm. Sci.202010212914610.7324/JAPS.2020.102019
    [Google Scholar]
  8. Shahbazi-GahroueiD. ChoghazardiY. KazemzadehA. NaseriP. Shahbazi-GahroueiS. A review of bismuth-based nanoparticles and their applications in radiosensitising and dose enhancement for cancer radiation therapy.IET Nanobiotechnol.20237430231110.1049/nbt2.1213437139612
    [Google Scholar]
  9. SiddiqueS. ChowJ.C.L. Application of nanomaterials in biomedical imaging and cancer therapy.Nanomaterials (Basel)2020109170010.3390/nano10091700
    [Google Scholar]
  10. VirmaniR. SharmaA. SharmaA. KumarG. VirmaniT. MukherjeeS. Nanotechnology in pulmonary tissue engineering.Nanostructured Materials for Tissue EngineeringElsevier202353755610.1016/B978‑0‑323‑95134‑0.00017‑1
    [Google Scholar]
  11. KumarG. VirmaniR. SharmaA. VirmaniT. PathakK. Solid lipid nanoparticles for the management of allergic airway diseases.Understanding Allergic Airway DiseasesSpringerSingapore202418320110.1007/978‑981‑97‑1953‑2_11
    [Google Scholar]
  12. NdabaB. RoopnarainA. RamaH. MaazaM. Biosynthesized metallic nanoparticles as fertilizers: An emerging precision agriculture strategy.J. Integr. Agric.20222151225124210.1016/S2095‑3119(21)63751‑6
    [Google Scholar]
  13. DubeyS. VirmaniT. YadavS.K. SharmaA. KumarG. AlhalmiA. 2023 Breaking barriers in eco-friendly synthesis of plant-mediated metal/metal oxide/bimetallic nanoparticles: Antibacterial, anticancer, mechanism elucidation, and versatile utilizations.J. Nanomater.10.1155/2024/9914079
    [Google Scholar]
  14. KhorasaniA. Shahbazi-GahroueiD. SafariA. Recent metal nanotheranostics for cancer diagnosis and therapy: A review.Diagnostics (Basel)202313583310.3390/diagnostics13050833
    [Google Scholar]
  15. AzmoonfarR. MoslehiM. Shahbazi-GahroueiD. Radioprotective effect of selenium nanoparticles: A mini review.IET Nanobiotechnol.202420241810.1049/2024/5538107
    [Google Scholar]
  16. ShawutiS. BairamC. BeyatlıA. Kariperİ.A. KorkutI.N. AktaşZ. ÖncülM.O. KurucaS.E. Green synthesis and characterization of silver and iron nanoparticles using Nerium oleander extracts and their antibacterial and anticancer activities.Plant Introduction202191/92364910.46341/PI2021010
    [Google Scholar]
  17. HosseinzadehE. ForoumadiA. FiroozpourL. What is the role of phytochemical compounds as capping agents for the inhibition of aggregation in the green synthesis of metal oxide nanoparticles? A DFT molecular level response. Inorg. Chem. Commun.202314711024310.1016/j.inoche.2022.110243
    [Google Scholar]
  18. HawarS.N. Al-ShmganiH.S. Al-KubaisiZ.A. SulaimanG.M. DewirY.H. RikisahedewJ.J. Green synthesis of silver nanoparticles from Alhagi graecorum leaf extract and evaluation of their cytotoxicity and antifungal activity.J. Nanomater.202220221105811910.1155/2022/1058119
    [Google Scholar]
  19. FarooqiM.A. BaeS. KimS. BaeS. KausarF. FarooqiH.M.U. HyunC.G. KangC.U. Eco-friendly synthesis of bioactive silver nanoparticles from black roasted gram (Cicer arietinum) for biomedical applications.Sci. Rep.20241412292210.1038/s41598‑024‑72356‑5
    [Google Scholar]
  20. MaheshS. NarasaiahB.P. MandalB.K. BalajiG.L. Fabrication of titanium dioxide nanoparticles using sunflower leaf extract and their applications towards the synthesis and biological evaluation of some novel phenanthro imidazole derivatives.Biointerface Res. Appl. Chem.20211233372338910.33263/BRIAC123.33723389
    [Google Scholar]
  21. Al-ThaniA.N. JanA.G. AbbasM. GeethaM. SadasivuniK.K. Nanoparticles in cancer theragnostic and drug delivery: A comprehensive review.Life Sci.202435212289910.1016/j.lfs.2024.122899
    [Google Scholar]
  22. HajamY.A. RaniR. GanieS.Y. SheikhT.A. JavaidD. QadriS.S. PramodhS. AlsulimaniA. AlkhananiM.F. HarakehS. HussainA. HaqueS. ReshiM.S. Oxidative stress in human pathology and aging: Molecular mechanisms and perspectives.Cells202211355210.3390/cells11030552
    [Google Scholar]
  23. LiD. YuQ. WuR. TuoZ. WangJ. YeL. ShaoF. ChaipanichkulP. YooK.H. WeiW. OkoliU.A. DengS. KeM. ChoW.C. HeaveyS. FengD. Interactions between oxidative stress and senescence in cancer: Mechanisms, therapeutic implications, and future perspectives.Redox Biol.20247310320810.1016/j.redox.2024.103208
    [Google Scholar]
  24. PostovalovaA.S. Comparison of passive targeted delivery of inorganic and organic nanocarriers among different types of tumours.Nanomed. Nanotechnol. Biol. Med. (Aligarh)20245910275310.1016/j.nano.2024.102753
    [Google Scholar]
  25. HheidariA. MohammadiJ. GhodousiM. MahmoodiM. EbrahimiS. PishbinE. RahdarA. Metal-based nanoparticle in cancer treatment: Lessons learned and challenges.Front. Bioeng. Biotechnol.202412July143629710.3389/fbioe.2024.1436297
    [Google Scholar]
  26. SinghA. TyagiP. RanjanR. Bioremediation of hazardous wastes using green synthesis of nanoparticles.202311114110.3390/pr11010141
    [Google Scholar]
  27. AboyewaJ.A. SibuyiN.R.S. MeyerM. OguntibejuO.O. Green synthesis of metallic nanoparticles using some selected medicinal plants from southern Africa and their biological applications.Plants2021109192910.3390/plants10091929
    [Google Scholar]
  28. DemaremaS. NasrM. OokawaraS. AbdelhaleemA. New insights into green synthesis of metal oxide based photocatalysts for photodegradation of organic pollutants: A bibliometric analysis and techno-economic evaluation.J. Clean. Prod.202446314267910.1016/j.jclepro.2024.142679
    [Google Scholar]
  29. IlavenilK.K. SenthilkumarV. KasthuriA. SivaramanS. Nanoparticles (MgO) utilising Justicia adhatoda and an evaluation of their antimicrobial properties.Mater. Today Proc.202410.1016/j.matpr.2024.05.144
    [Google Scholar]
  30. DhirS. DuttR. SinghR.P. ChauhanM. VirmaniT. KumarG. AlhalmiA. AleissaM.S. RudayniH.A. Al-ZahraniM. Amomum subulatum fruit extract mediated green synthesis of silver and copper oxide nanoparticles: Synthesis, characterization, antibacterial and anticancer activities.Processes (Basel)2023119269810.3390/pr11092698
    [Google Scholar]
  31. BahrulolumH. NooraeiS. JavanshirN. 2021Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector.J. Nanobiotechnol.1918610.1186/s12951‑021‑00834‑3
    [Google Scholar]
  32. GuptaP.K. KimB.S. DasA.K. Green synthesis of metallic nanoparticles: Applications and limitationsCatalysts202111890210.3390/catal11080902
    [Google Scholar]
  33. DejenK.D. KibretD.Y. MengeshaT.H. BekeleE.T. TedlaA. BafaT.A. DeribF.T. Green synthesis and characterisation of silver nanoparticles from leaf and bark extract of Croton macrostachyus for antibacterial activity.Mater. Technol.2023381216464710.1080/10667857.2022.2164647
    [Google Scholar]
  34. VijayaramS. RazafindralamboH. SunY-Z. VasantharajS. GhafarifarsaniH. HoseinifarS.H. RaeeszadehM. Applications of green synthesized metal nanoparticles - A review.Biol. Trace Elem. Res.2024202136038610.1007/s12011‑023‑03645‑9
    [Google Scholar]
  35. ArshadF. NaikooG.A. HassanI.U. ChavaS.R. El-TananiM. AljabaliA.A. TambuwalaM.M. Bioinspired and green synthesis of silver nanoparticles for medical applications: A green perspective.Appl. Biochem. Biotechnol.202419663636366910.1007/s12010‑023‑04719‑z
    [Google Scholar]
  36. FatimaN. BaqriS.S.R. AlsulimaniA. FagooneeS. SlamaP. KesariK.K. RoychoudhuryS. HaqueS. Phytochemicals from Indian ethnomedicines: Promising prospects for the management of oxidative stress and cancer.Antioxidants20211010160610.3390/antiox10101606
    [Google Scholar]
  37. Rufino-PalomaresE.E. Pérez-JiménezA. García-SalgueroL. MokhtariK. Reyes-ZuritaF.J. Peragón-SánchezJ. LupiáñezJ.A. Nutraceutical role of polyphenols and triterpenes present in the extracts of fruits and leaves of Olea europaea as antioxidants, anti-infectives and anticancer agents on healthy growth.Molecules2022277234110.3390/molecules27072341
    [Google Scholar]
  38. LvC. LiH. CuiH. BiQ. WangM. Solid lipid nanoparticle delivery of rhynchophylline enhanced the efficiency of allergic asthma treatment via the upregulation of suppressor of cytokine signaling 1 by repressing the p38 signaling pathway.Bioengineered20211218635864910.1080/21655979.2021.1988364
    [Google Scholar]
  39. MandalM.K. MohammadM. ParvinS.I. IslamM.M. GaziH.A.R. A short review on anticancer phytochemicals.Pharmacogn. Rev.20231733112310.5530/097627870236
    [Google Scholar]
  40. CellC. ProfilingT.P. ZariA. AlharbyH.F. HakeemK.R. Anticancer activity of Cordia dichotoma against a panel of human cancer cell lines and their phytochemical profiling via HPLC and GCMS.Molecules2022277218510.3390/molecules27072185
    [Google Scholar]
  41. KhalilR.R. MustafaY.F. Phytochemical, antioxidant and antitumor studies of coumarins extracted from Granny Smith apple seeds by different methods.Syst. Rev. Pharm.2020112576310.5530/srp.2020.2.10
    [Google Scholar]
  42. RanaS. KumarS. RanaA. PadwadY. BhushanS. Biological activity of phenolics enriched extracts from industrial apple pomace.Ind. Crops Prod.202116011315810.1016/j.indcrop.2020.113158
    [Google Scholar]
  43. RamadanK.M.A. El-BeltagiH.S. MohamedH.I. ShalabyT.A. GalalA. MansourA.T. Aboul FotouhM.M. BendaryE.S.A. Antioxidant, anti-cancer activity and phytochemicals profiling of Kigelia pinnata fruits.Separations202291137910.3390/separations9110379
    [Google Scholar]
  44. RubioJ. AriasG. Robles-KellyC. Silva-MorenoE. EspinozaL. CarrascoH. OleaA.F. Phytochemical profiling and assessment of anticancer activity of Leptocarpha rivularis extracts obtained from in vitro cultures.Plants202211454610.3390/plants11040546
    [Google Scholar]
  45. Unnikrishnan MeenakshiD. NardeG.K. AhujaA. Al BalushiK. FrancisA.P. KhanS.A. Therapeutic applications of nanoformulated resveratrol and quercetin phytochemicals in colorectal cancer - An updated review.Pharmaceutics202416676110.3390/pharmaceutics16060761
    [Google Scholar]
  46. AminiS.M. EmamiT. RashidiM. ZarrinnahadH. Curcumin-gold nanoformulation: Synthesis, characterizations and biomedical application.Food Biosci.20245710344610.1016/j.fbio.2023.103446
    [Google Scholar]
  47. NagS. BhuniaA. MohantoS. AhmedM.G. SubramaniyanV. Rising potentials of epigallocatechin gallate (EGCG) loaded lipid-based delivery platforms for breast cancer.Discover Applied Sciences20246842610.1007/s42452‑024‑05878‑2
    [Google Scholar]
  48. SallamN.G. BoraieN.A. ShetaE. El-HabashyS.E. Targeted delivery of genistein for pancreatic cancer treatment using hyaluronic- coated cubosomes bioactivated with frankincense oil.Int. J. Pharm.202464912363710.1016/j.ijpharm.2023.123637
    [Google Scholar]
  49. KumarG. VirmaniT. SharmaA. PathakK. Codelivery of phytochemicals with conventional anticancer drugs in form of nanocarriers.Pharmaceutics202315388910.3390/pharmaceutics15030889
    [Google Scholar]
  50. JaisonJ.P. BalasubramanianB. GangwarJ. JamesN. PappuswamyM. AnandA.V. Al-DhabiN.A. Valan ArasuM. LiuW-C. SebastianJ.K. Green synthesis of bioinspired nanoparticles mediated from plant extracts of asteraceae family for potential biological applications.Antibiotics (Basel)202312354310.3390/antibiotics12030543
    [Google Scholar]
  51. LouvrierC. PasmantE. Briand-SuleauA. Targeted next-generation sequencing for differential diagnosis of neurofibromatosis type 2, schwannomatosis, and meningiomatosis.Neuro Oncol.201820791792910.1093/neuonc/noy009
    [Google Scholar]
  52. ElkadyA.I. HusseinR.A.E.H. Abu-ZinadahO.A. Effects of crude extracts from medicinal herbs Rhazya stricta and Zingiber officinale on growth and proliferation of human brain cancer cell line in vitro.BioMed Res. Int.2014201411610.1155/2014/260210
    [Google Scholar]
  53. LiuY. ChenZ. LiA. LiuR. YangH. XiaX. The phytochemical potential for brain disease therapy and the possible nanodelivery solutions for brain access.Front. Oncol.202212June93605410.3389/fonc.2022.936054
    [Google Scholar]
  54. MazurakovaA. KoklesovaL. SamecM. KudelaE. KajoK. SkuciovaV. CsizmárS.H. MestanovaV. PecM. AdamkovM. Al-IshaqR.K. SmejkalK. GiordanoF.A. BüsselbergD. BiringerK. GolubnitschajaO. KubatkaP. Anti-breast cancer effects of phytochemicals: Primary, secondary, and tertiary care.EPMA J.202213231533410.1007/s13167‑022‑00277‑2
    [Google Scholar]
  55. SebastianR. JaykarB. GomathiV. Current status of anticancer research in fabaceae family.Pharma Innov. J.2020985260
    [Google Scholar]
  56. WangJ. YuH. YiliA. GaoY. HaoL. AisaH.A. LiuS. Identification of hub genes and potential molecular mechanisms of chickpea isoflavones on MCF-7 breast cancer cells by integrated bioinformatics analysis.Ann. Transl. Med.202084868610.21037/atm.2019.12.141
    [Google Scholar]
  57. RizeqB. GuptaI. IlesanmiJ. AlSafranM. RahmanM.D.M. OuhtitA. The power of phytochemicals combination in cancer chemoprevention.J. Cancer202011154521453310.7150/jca.34374
    [Google Scholar]
  58. PrajapatiK.S. GuptaS. KumarS. Targeting breast cancer-derived stem cells by dietary phytochemicals: A strategy for cancer prevention and treatment.Cancers (Basel)20221412286410.3390/cancers14122864
    [Google Scholar]
  59. AskaryM. BehdaniM.A. MollaeiH. FallahiH.R. Evaluation of the effects of organic and conventional cultivation practices on phytochemical and anti-cancer activities of saffron (Crocus sativus L.).J. Agric. Sci. Technol.202325113915410.52547/jast.25.1.139
    [Google Scholar]
  60. Aedo-AguileraV. Curcumin decreases epithelial-mesenchymal transition by a Pirin-dependent mechanism in cervical cancer cells.Oncol. Rep.20194252139214810.3892/or.2019.7288
    [Google Scholar]
  61. Kedhari SundaramM. RainaR. AfrozeN. BajboujK. HamadM. HaqueS. HussainA. Quercetin modulates signaling pathways and induces apoptosis in cervical cancer cells.Biosci. Rep.2019398BSR2019072010.1042/BSR20190720
    [Google Scholar]
  62. TalibW.H. AwajanD. HamedR.A. AzzamA.O. MahmodA.I. AL-YasariI.H. Combination anticancer therapies using selected phytochemicals.Molecules20222717545210.3390/molecules27175452
    [Google Scholar]
  63. KimJ. LeeJ. OhJ.H. ChangH.J. SohnD.K. KwonO. ShinA. KimJ. Dietary Lutein Plus Zeaxanthin Intake and DICER1 rs3742330 A > G Polymorphism Relative to Colorectal Cancer Risk.Sci. Rep.201991340610.1038/s41598‑019‑39747‑5
    [Google Scholar]
  64. UsmanM. KhanW.R. YousafN. AkramS. MurtazaG. KudusK.A. DittaA. RosliZ. RajparM.N. NazreM. Exploring the phytochemicals and anti-cancer potential of the members of fabaceae family: A comprehensive review.Molecules20222712386310.3390/molecules27123863
    [Google Scholar]
  65. WaniA.K. AkhtarN. MirT.G. SinghR. JhaP.K. MallikS.K. SinhaS. TripathiS.K. JainA. JhaA. DevkotaH.P. PrakashA. Targeting apoptotic pathway of cancer cells with phytochemicals and plant-based nanomaterials.Biomolecules202313219410.3390/biom13020194
    [Google Scholar]
  66. LimJ.H. LeeY.M. ParkS.R. KimD.H. LimB.O. Anticancer activity of hispidin via reactive oxygen species-mediated apoptosis in colon cancer cells.Anticancer Res.201434840874094
    [Google Scholar]
  67. NaqviS.M.A. IslamS.N. KumarA. PatilC.R. KumarA. AhmadA. Enhanced anti-cancer potency of sustainably synthesized anisotropic silver nanoparticles as compared with L-asparaginase.Int. J. Biol. Macromol.202426313023810.1016/j.ijbiomac.2024.130238
    [Google Scholar]
  68. GoswamiS. AliA. PrasadM.E. SinghP. Pharmacological significance of Catharanthus roseus in cancer management: A review.Pharmacol. Res. - Mod. Chin. Med.20241110044410.1016/j.prmcm.2024.100444
    [Google Scholar]
  69. Venmathi MaranB.A. IqbalM. GangadaranP. AhnB-C. RaoP.V. ShahM.D. Hepatoprotective potential of Malaysian medicinal plants: A review on phytochemicals, oxidative stress, and antioxidant mechanisms.Molecules2022275153310.3390/molecules27051533
    [Google Scholar]
  70. KhanS.A. LeeT.K.W. Network-pharmacology-based study on active phytochemicals and molecular mechanism of Cnidium monnieri in treating hepatocellular carcinoma.Int. J. Mol. Sci.20222310540010.3390/ijms23105400
    [Google Scholar]
  71. RodriguezS. SkeetK. Mehmetoglu-GurbuzT. GoldfarbM. KarriS. RochaJ. ShahinianM. YazadiA. PoudelS. SubramaniR. Phytochemicals as an alternative or integrative option, in conjunction with conventional treatments for hepatocellular carcinoma.Cancers (Basel)20211322575310.3390/cancers13225753
    [Google Scholar]
  72. DingY. HouR. YuJ. XingC. ZhuangC. QuZ. Dietary phytochemicals as potential chemopreventive agents against tobacco-induced lung carcinogenesis.Nutrients202315349110.3390/nu15030491
    [Google Scholar]
  73. LagoaR. SilvaJ. RodriguesJ.R. BishayeeA. Advances in phytochemical delivery systems for improved anticancer activity. Biotechnol Adv 2020; 38: 107382. 10.1016/j.biotechadv.2019.04.004
    [Google Scholar]
  74. AyazM. NawazA. AhmadS. MosaO.F. Eisa HamdoonA.A. KhalifaM.A. SadiqA. UllahF. WadoodA. KabraA. Ananda MurthyH.C. Underlying anticancer mechanisms and synergistic combinations of phytochemicals with cancer chemotherapeutics: Potential benefits and risks.J. Food Qual.2022202211510.1155/2022/1189034
    [Google Scholar]
  75. MuhammadT. IkramM. RahatUllah RehmanS. KimM. Hesperetin, a citrus flavonoid, attenuates LPS-induced neuroinflammation, apoptosis and memory impairments by modulating TLR4/NF-κB signaling.Nutrients201911364810.3390/nu11030648
    [Google Scholar]
  76. NathR. SinghaS. NathD. DasG. PatraJ. TalukdarA. Phytochemicals from Allium tuberosum rottler ex spreng show potent inhibitory activity against B-Raf, EGFR, K-Ras, and PI3K of Non-Small Cell Lung Cancer Targets.Appl. Sci. (Basel)202212221174910.3390/app122211749
    [Google Scholar]
  77. Dafa AllahA.A. YousifH.A. HasaballaN.O. ElkhawadE.A. AbdallahR.B. AhmedH.M. AbdelrahmanA.M. HagoS. AbdelgadirA.A. AlzainA.A. AhmedE.M. Identification of phytochemicals from Tundub Capparis decidua (Forssk) Edgew seed oil as potential anticancer agents using gas chromatography- mass spectroscopy analysis, molecular docking, and molecular dynamics studies.Sci. Am.202319e0151710.1016/j.sciaf.2022.e01517
    [Google Scholar]
  78. JobaniB.M. NajafzadehN. MazaniM. ArzanlouM. VardinM.M. Molecular mechanism and cytotoxicity of allicin and all-trans retinoic acid against CD44+ versus CD117+ melanoma cells.Phytomedicine20184816116910.1016/j.phymed.2018.05.013
    [Google Scholar]
  79. WangC. GaoP. XuJ. LiuS. TianW. LiuJ. ZhouL. Natural phytochemicals prevent side effects in BRCA-mutated ovarian cancer and PARP inhibitor treatment.Front. Pharmacol.202213107830310.3389/fphar.2022.1078303
    [Google Scholar]
  80. GhoseA. GullapalliS.V.N. ChohanN. BolinaA. MoschettaM. RassyE. BoussiosS. Applications of proteomics in ovarian cancer: Dawn of a new era.Proteomes20221021610.3390/proteomes10020016
    [Google Scholar]
  81. LiuL. FanJ. AiG. LiuJ. LuoN. LiC. ChengZ. Berberine in combination with cisplatin induces necroptosis and apoptosis in ovarian cancer cells.Biol. Res.20195213710.1186/s40659‑019‑0243‑6
    [Google Scholar]
  82. ShettarP. Withdrawn: Cytotoxic potential of Simarouba glauca leaf extracts on PA1 human ovarian cancer cell lines.Res. Sq.202310.21203/rs.3.rs‑2646995/v1
    [Google Scholar]
  83. WangL. LuB. HeM. WangY. WangZ. DuL. Prostate cancer incidence and mortality: Global status and temporal trends in 89 countries from 2000 to 2019.Front. Public Health202210February81104410.3389/fpubh.2022.811044
    [Google Scholar]
  84. SalehiB. FokouP.V.T. YamtheL.R.T. Phytochemicals in prostate cancer: From bioactive molecules to upcoming therapeutic agents.Nutrients2019117148310.3390/nu11071483
    [Google Scholar]
  85. GanoC.A. FatimaS. FailesT.W. Anti-cancer potential of synergistic phytochemical combinations is influenced by the genetic profile of prostate cancer cell lines.Front. Nutr.202310111927410.3389/fnut.2023.1119274
    [Google Scholar]
  86. ShabanA.S. OwdaM.E. BasuoniM.M. MousaM.A. RadwanA.A. SalehA.K. Punica granatum peel extract mediated green synthesis of zinc oxide nanoparticles: Structure and evaluation of their biological applications.Biomass Convers. Biorefin.2024141112265-8110.1007/s13399‑022‑03185‑7
    [Google Scholar]
  87. SinghT.A. DasJ. SilP.C. Zinc oxide nanoparticles: A comprehensive review on its synthesis, anticancer and drug delivery applications as well as health risks.Adv. Colloid Interface Sci.202028610231710.1016/j.cis.2020.102317
    [Google Scholar]
  88. DuanX. LiaoY. LiuT. YangH. LiuY. ChenY. UllahR. WuT. Zinc oxide nanoparticles synthesized from Cardiospermum halicacabum and its anticancer activity in human melanoma cells (A375) through the modulation of apoptosis pathway.J. Photochem. Photobiol. B202020211171810.1016/j.jphotobiol.2019.111718
    [Google Scholar]
  89. SelimY.A. AzbM.A. RagabI. Abd El-AzimM.H.M. Green synthesis of zinc oxide nanoparticles using aqueous extract of Deverra tortuosa and their cytotoxic activities.Sci. Rep.20201011910.1038/s41598‑020‑60541‑1
    [Google Scholar]
  90. WelliaD.V. SyuadiA.F. RahmaR.M. SyafawiA. HabibillahM.R. AriefS. KurniaK.A. Saepurahman KusumawatiY. SaefumillahA. Rind of Aloe vera (L.) Burm. f extract for the synthesis of titanium dioxide nanoparticles: Properties and application in model dye pollutant degradation.Case Stud. Chem. Environ. Eng.2024910062710.1016/j.cscee.2024.100627
    [Google Scholar]
  91. AjmalN. SaraswatK. BakhtM.A. RiadiY. AhsanM.J. NoushadM. Cost-effective and eco-friendly synthesis of titanium dioxide (TiO2) nanoparticles using fruit’s peel agro-waste extracts: Characterization, in vitro antibacterial, antioxidant activities.Green Chem. Lett. Rev.201912324425410.1080/17518253.2019.1629641
    [Google Scholar]
  92. KarmousI. PandeyA. HajK.B. ChaouiA. Efficiency of the green synthesized nanoparticles as new tools in cancer therapy: Insights on plant-based bioengineered nanoparticles, biophysical properties, and anticancer roles.Biol. Trace Elem. Res.2020196133034210.1007/s12011‑019‑01895‑0
    [Google Scholar]
  93. RehmanS. FarooqR. JermyR. Mousa AsiriS. RavinayagamV. Al JindanR. AlsalemZ. ShahM.A. ReshiZ. SabitH. Alam KhanF. A wild Fomes fomentarius for biomediation of one pot synthesis of titanium oxide and silver nanoparticles for antibacterial and anticancer application.Biomolecules202010462210.3390/biom10040622
    [Google Scholar]
  94. SalahM. AkasakaH. ShimizuY. MoritaK. NishimuraY. KubotaH. KawaguchiH. SogawaT. MukumotoN. OginoC. SasakiR. Reactive oxygen species-inducing titanium peroxide nanoparticles as promising radiosensitizers for eliminating pancreatic cancer stem cells.J. Exp. Clin. Cancer Res.202241114610.1186/s13046‑022‑02358‑6
    [Google Scholar]
  95. ZhuX. PathakotiK. HwangH-M. Chapter 10 - Green synthesis of titanium dioxide and zinc oxide nanoparticles and their usage for antimicrobial applications and environmental remediation.Green Synthesis, Characterization and Applications of NanoparticlesElsevier201922326310.1016/B978‑0‑08‑102579‑6.00010‑1
    [Google Scholar]
  96. Syamsol BahriS. HarunZ. HubadillahS.K. Review on recent advance biosynthesis of TiO2 nanoparticles from plant-mediated materials: Characterization, mechanism and application.IOP Conf. Ser. Mater. Sci. Eng.2021114201200510.1088/1757‑899X/1142/1/012005
    [Google Scholar]
  97. CuongH.N. PansambalS. GhotekarS. New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: A review.Environ. Res.202220311185810.1016/j.envres.2021.111858
    [Google Scholar]
  98. JadhavM.S. KulkarniS. RaikarP. BarrettoD.A. VootlaS.K. RaikarU.S. Green biosynthesis of CuO & Ag–CuO nanoparticles from Malus domestica leaf extract and evaluation of antibacterial, antioxidant and DNA cleavage activities.New J. Chem.201842120421310.1039/C7NJ02977B
    [Google Scholar]
  99. NazS. GulA. ZiaM. JavedR. Synthesis, biomedical applications, and toxicity of CuO nanoparticles.Appl. Microbiol. Biotechnol.202310741039106110.1007/s00253‑023‑12364‑z
    [Google Scholar]
  100. WarisA. DinM. AliA. AliM. AfridiS. BasetA. Ullah KhanA. A comprehensive review of green synthesis of copper oxide nanoparticles and their diverse biomedical applications.Inorg. Chem. Commun.202112310836910.1016/j.inoche.2020.108369
    [Google Scholar]
  101. MahmoodR.I. KadhimA.A. IbraheemS. AlbukhatyS. Mohammed-SalihH.S. AbbasR.H. JabirM.S. MohammedM.K.A. NayefU.M. AlMalkiF.A. SulaimanG.M. Al-KaragolyH. Biosynthesis of copper oxide nanoparticles mediated Annona muricata as cytotoxic and apoptosis inducer factor in breast cancer cell lines.Sci. Rep.20221211616510.1038/s41598‑022‑20360‑y
    [Google Scholar]
  102. TabrezS. KhanA.U. MirzaA.A. SuhailM. JabirN.R. ZughaibiT.A. AlamM. Biosynthesis of copper oxide nanoparticles and its therapeutic efficacy against colon cancer.Nanotechnol. Rev.20221111322133110.1515/ntrev‑2022‑0081
    [Google Scholar]
  103. YugandharP. VasaviT. Uma Maheswari DeviP. SavithrammaN. Bioinspired green synthesis of copper oxide nanoparticles from Syzygium alternifolium (Wt.) Walp: Characterization and evaluation of its synergistic antimicrobial and anticancer activity.Appl. Nanosci.2017741742710.1007/s13204‑017‑0584‑9
    [Google Scholar]
  104. AkinteluS.A. FolorunsoA.S. FolorunsoF.A. OyebamijiA.K. Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation.Heliyon202067e0450810.1016/j.heliyon.2020.e04508
    [Google Scholar]
  105. Hernández-HernándezA.A. Aguirre-ÁlvarezG. Cariño-CortésR. Mendoza-HuizarL.H. Jiménez-AlvaradoR. Iron oxide nanoparticles: Synthesis, functionalization, and applications in diagnosis and treatment of cancer.Chem. Pap.202074113809382410.1007/s11696‑020‑01229‑8
    [Google Scholar]
  106. RaniN. SainiK. Biogenic metal and metal oxides nanoparticles as anticancer agent: A review.IOP Conf. Ser. Mater. Sci. Eng.2022122501204310.1088/1757‑899X/1225/1/012043
    [Google Scholar]
  107. AlphandéryE. Bio-synthesized iron oxide nanoparticles for cancer treatment.Int. J. Pharm.202058611947210.1016/j.ijpharm.2020.119472
    [Google Scholar]
  108. IzadiyanZ. ShameliK. MiyakeM. HaraH. MohamadS.E.B. KalantariK. TaibS.H.M. RasouliE. Cytotoxicity assay of plant-mediated synthesized iron oxide nanoparticles using Juglans regia green husk extract.Arab. J. Chem.20201312011202310.1016/j.arabjc.2018.02.019
    [Google Scholar]
  109. AbbasiB.A. IqbalJ. ZahraS.A. Bioinspired synthesis and activity characterization of iron oxide nanoparticles made using Rhamnus triquetra leaf extract.Mater. Res. Express20206121250e710.1088/2053‑1591/ab664d
    [Google Scholar]
  110. WaniN. KhandayW. TirumaleS. Biosynthesis of iron oxide nanoparticles using ethyl acetate extract of Chaetomium cupreum and their anticancer activity.Matrix Science Pharma2020422310.4103/MTSP.MTSP_6_20
    [Google Scholar]
  111. BharathiD. PreethiS. AbarnaK. NithyasriM. KishoreP. DeepikaK. Bio-inspired synthesis of flower shaped iron oxide nanoparticles (FeO NPs) using phytochemicals of Solanum lycopersicum leaf extract for biomedical applications.Biocatal. Agric. Biotechnol.20202710169810.1016/j.bcab.2020.101698
    [Google Scholar]
  112. YoonusJ. ResmiR. BeenaB. Evaluation of antibacterial and anticancer activity of green synthesized iron oxide (α-Fe2O3) nanoparticles.Mater. Today202146Part 82969297410.1016/j.matpr.2020.12.426
    [Google Scholar]
  113. NagajyothiP.C. PanduranganM. KimD.H. SreekanthT.V.M. ShimJ. Green synthesis of iron oxide nanoparticles and their catalytic and in vitro anticancer activities.J. Cluster Sci.201728124525710.1007/s10876‑016‑1082‑z
    [Google Scholar]
  114. KarthikeyanC. SisubalanN. SrideviM. Biocidal chitosan- magnesium oxide nanoparticles via a green precipitation process.J. Hazard. Mater.202141112488410.1016/j.jhazmat.2020.124884
    [Google Scholar]
  115. FoudaA. EidA.M. Abdel-RahmanM.A. EL-BelelyE.F. AwadM.A. HassanS.E-D. AL-FaifiZ.E. HamzaM.F. Enhanced antimicrobial, cytotoxicity, larvicidal, and repellence activities of brown algae, cystoseira crinita-mediated green synthesis of magnesium oxide nanoparticles.Front. Bioeng. Biotechnol.20221084992110.3389/fbioe.2022.849921
    [Google Scholar]
  116. MahmoudA. EzgiÖ. MerveA. ÖzhanG. In vitro toxicological assessment of magnesium oxide nanoparticle exposure in several mammalian cell types.Int. J. Toxicol.201635442943710.1177/1091581816648624
    [Google Scholar]
  117. AlaviM. RaiM. MartinezF. KahriziD. KhanH. Rose Alencar de MenezesI. Douglas Melo CoutinhoH. CostaJ. The efficiency of metal, metal oxide, and metalloid nanoparticles against cancer cells and bacterial pathogens: Different mechanisms of action.Cell., Mol. Biomed. Rep.202221102110.55705/cmbr.2022.147090.1023
    [Google Scholar]
  118. FathyR.M. MahfouzA.Y. Eco-friendly graphene oxide-based magnesium oxide nanocomposite synthesis using fungal fermented by-products and gamma rays for outstanding antimicrobial, antioxidant, and anticancer activities.J. Nanostructure Chem.202111230132110.1007/s40097‑020‑00369‑3
    [Google Scholar]
  119. MajeedS. DanishM. MuhadiN.F.B.B. Genotoxicity and apoptotic activity of biologically synthesized magnesium oxide nanoparticles against human lung cancer A-549 cell line.Adv. Nat. Sci.: Nanosci. Nanotechnol.20189202501110.1088/2043‑6254/aac42c
    [Google Scholar]
  120. Al-RadadiN.S. Laboratory scale medicinal plants mediated green synthesis of biocompatible nanomaterials and their versatile biomedical applications.Saudi J. Biol. Sci.20222953848387010.1016/j.sjbs.2022.02.042
    [Google Scholar]
  121. GroverM. BehlT. SehgalA. In vitro phytochemical screening, cytotoxicity studies of Curcuma longa extracts with isolation and characterisation of their isolated compounds.Molecules20212624750910.3390/molecules26247509
    [Google Scholar]
  122. BurlacuE. TanaseC. ComanN.A. BertaL. A review of bark-extract-mediated green synthesis of metallic nanoparticles and their applications.Molecules20192423435410.3390/molecules24234354
    [Google Scholar]
  123. AshourM. MansourA.T. AbdelwahabA.M. AlprolA.E. Metal oxide nanoparticles’ green synthesis by plants: Prospects in phyto- and bioremediation and photocatalytic degradation of organic pollutants.Processes (Basel)20231112335610.3390/pr11123356
    [Google Scholar]
  124. MthanaM.S. MthiyaneD.M.N. OnwudiweD.C. SinghM. Biosynthesis of ZnO nanoparticles using Capsicum chinense fruit extract and their in vitro cytotoxicity and antioxidant assay.Appl. Sci. (Basel)2022129445110.3390/app12094451
    [Google Scholar]
  125. RajendranA. AlsawalhaM. AlomayriT. Biogenic synthesis of husked rice-shaped iron oxide nanoparticles using coconut pulp (Cocos nucifera L.) extract for photocatalytic degradation of Rhodamine B dye and their in vitro antibacterial and anticancer activity.J. Saudi Chem. Soc.202125910130710.1016/j.jscs.2021.101307
    [Google Scholar]
  126. SrinivasaC. KumarS.R.S. PradeepS. PrasadS.K. VeerapurR. AnsariM.A. AlomaryM.N. AlghamdiS. AlmehmadiM. GcK. DaphedarA.B. KakkalameliS.B. ShivamalluC. KollurS.P. Eco-friendly synthesis of MnO2 nanorods using Gmelina arborea fruit extract and its anticancer potency against MCF-7 breast cancer cell line.Int. J. Nanomedicine20221790190710.2147/IJN.S335848
    [Google Scholar]
  127. RajasekarK. MuthukumaravelK. AshokK. BabuM. Phytosynthesis of copper oxide nanoparticles from Opuntia ficus and its antibreast cancer activity against MCF-7 cell line (invasive ductal carcinoma).Malaya J. Matematik2020S21610.26637/MJM0S20/1139
    [Google Scholar]
  128. MeerB. AndleebA. IqbalJ. AshrafH. MeerK. AliJ.S. DrouetS. AnjumS. MehmoodA. KhanT. AliM. HanoC. AbbasiB.H. Bio-assisted synthesis and characterization of zinc oxide nanoparticles from Lepidium sativum and their potent antioxidant, antibacterial and anticancer activities.Biomolecules202212685510.3390/biom12060855
    [Google Scholar]
  129. SaeedF. YounasM. FazalH. MushtaqS. RahmanF. ShahM. AnjumS. AhmadN. AliM. HanoC. AbbasiB.H. Green and chemically synthesized zinc oxide nanoparticles: Effects on in vitro seedlings and callus cultures of Silybum marianum and evaluation of their antimicrobial and anticancer potential.Artif. Cells Nanomed. Biotechnol.202149145046010.1080/21691401.2021.1926274
    [Google Scholar]
  130. TamminaS.K. MandalB.K. RanjanS. DasguptaN. Cytotoxicity study of Piper nigrum seed mediated synthesized SnO2 nanoparticles towards colorectal (HCT116) and lung cancer (A549) cell lines.J. Photochem. Photobiol. B201716615816810.1016/j.jphotobiol.2016.11.017
    [Google Scholar]
  131. RadwanA.M. AboelfetohE.F. KimuraT. MohamedT.M. El-KeiyM.M. Fenugreek-mediated synthesis of zinc oxide nanoparticles and evaluation of its in vitro and in vivo antitumor potency.Biomed. Res. Ther.2021884483449610.15419/bmrat.v8i8.687
    [Google Scholar]
  132. MohamedH.Y.G. IsmailE.H. ElaasserM.M. KhalilM.M.H. Green synthesis of zinc oxide nanoparticles using Portulaca oleracea (regla seeds) extract and its biomedical applications.Egypt. J. Chem.202164266167210.21608/ejchem.2020.45592.2930
    [Google Scholar]
  133. MalaikozhundanB. VaseeharanB. VijayakumarS. PandiselviK. KalanjiamM.A.R. MuruganK. BenelliG. Biological therapeutics of Pongamia pinnata coated zinc oxide nanoparticles against clinically important pathogenic bacteria, fungi and MCF-7 breast cancer cells.Microb. Pathog.201710426827710.1016/j.micpath.2017.01.029
    [Google Scholar]
  134. LiJ. LiY. WuH. NaragintiS. WuY. Facile synthesis of ZnO nanoparticles by Actinidia deliciosa fruit peel extract: Bactericidal, anticancer and detoxification properties.Environ. Res.202120011143310.1016/j.envres.2021.111433
    [Google Scholar]
  135. Mohamad SukriS.N.A. ShameliK. Mei-Theng WongM. TeowS.Y. ChewJ. IsmailN.A. Cytotoxicity and antibacterial activities of plant-mediated synthesized zinc oxide (ZnO) nanoparticles using Punica granatum (pomegranate) fruit peels extract.J. Mol. Struct.20191189576510.1016/j.molstruc.2019.04.026
    [Google Scholar]
  136. RenukaM. SoundhariC. Antibacterial and anticancer activity of green synthesised titanium dioxide nanoparticle from Terminalia chebula.World J. Pharm. Res.2017721164117910.20959/wjpr20182‑10751
    [Google Scholar]
  137. Mobeen AmanullaA. SundaramR. Green synthesis of TiO2 nanoparticles using orange peel extract for antibacterial, cytotoxicity and humidity sensor applications.Mater. Today Proc.2019832333110.1016/j.matpr.2019.02.118
    [Google Scholar]
  138. YusefiM. ShameliK. AliR.R. PangS.W. TeowS.Y. Evaluating anticancer activity of plant-mediated synthesized iron oxide nanoparticles using Punica granatum fruit peel extract.J. Mol. Struct.2020120412753910.1016/j.molstruc.2019.127539
    [Google Scholar]
  139. AhnE.Y. ShinS.W. KimK. ParkY. Facile green synthesis of titanium dioxide nanoparticles by upcycling mangosteen (Garcinia mangostana) pericarp extract.Nanoscale Res. Lett.20221714010.1186/s11671‑022‑03678‑4
    [Google Scholar]
  140. RuangtongJ. T-ThienprasertJ. T-ThienprasertN.P. Green synthesized ZnO nanosheets from banana peel extract possess anti-bacterial activity and anti-cancer activity.Mater. Today Commun.20202410122410.1016/j.mtcomm.2020.101224
    [Google Scholar]
  141. HariharanD. SrinivasanK. LcN. Synthesis and characterization of TiO2 nanoparticles using Cynodon dactylon leaf extract for antibacterial and anticancer (A549 cell lines) activity.J. Nanomed. Res.2017561384210.15406/jnmr.2017.05.00138
    [Google Scholar]
  142. JayappaM.D. RamaiahC.K. KumarM.A.P. SureshD. PrabhuA. DevasyaR.P. SheikhS. Green synthesis of zinc oxide nanoparticles from the leaf, stem and in vitro grown callus of Mussaenda frondosa L.: Characterization and their applications.Appl. Nanosci.20201083057307410.1007/s13204‑020‑01382‑2
    [Google Scholar]
  143. JanH. ShahM. AndleebA. FaisalS. KhattakA. RizwanM. DrouetS. HanoC. AbbasiB.H. Plant-based synthesis of zinc oxide nanoparticles (ZnO NPs) using aqueous leaf extract of Aquilegia pubiflora: Their antiproliferative activity against HepG2 cells inducing reactive oxygen species and other in vitro properties.Oxid. Med. Cell. Longev.202120211478622710.1155/2021/4786227
    [Google Scholar]
  144. ResmiR. YoonusJ. BeenaB. A novel greener synthesis of ZnO nanoparticles from Nilgiriantusciliantus leaf extract and evaluation of its biomedical applications.Mater. Today202046Part 83062306810.1016/j.matpr.2021.02.498
    [Google Scholar]
  145. RaoT.N. Riyazuddin BabjiP. AhmadN. KhanR.A. HassanI. ShahzadS.A. HusainF.M. Green synthesis and structural classification of Acacia nilotica mediated-silver doped titanium oxide (Ag/TiO2) spherical nanoparticles: Assessment of its antimicrobial and anticancer activity.Saudi J. Biol. Sci.20192671385139110.1016/j.sjbs.2019.09.005
    [Google Scholar]
  146. IqbalH. RazzaqA. UzairB. Ul AinN. SajjadS. AlthobaitiN.A. AlbalawiA.E. MenaaB. HaroonM. KhanM. KhanN.U. MenaaF. Breast cancer inhibition by biosynthesized titanium dioxide nanoparticles is comparable to free doxorubicin but appeared safer in balb/c mice.Materials (Basel)20211412315510.3390/ma14123155
    [Google Scholar]
  147. ChinnathambiA. Ali AlharbiS. JoshiD. LeninH. Anticancer and free radical scavenging competence of zinc oxide nanoparticles synthesized by aqueous leaf extract of Phyllanthus acidus.Bioinorg. Chem. Appl.202220221949381610.1155/2022/9493816
    [Google Scholar]
  148. HeF. YuW. FanX. JinB. In vitro cytotoxicity of biosynthesized titanium dioxide nanoparticles in human prostate cancer cell lines.Trop. J. Pharm. Res.201816122793279910.4314/tjpr.v16i12.2
    [Google Scholar]
  149. SharmilaG. ThirumarimuruganM. MuthukumaranC. Green synthesis of ZnO nanoparticles using Tecoma castanifolia leaf extract: Characterization and evaluation of its antioxidant, bactericidal and anticancer activities.Microchem. J.201914557858710.1016/j.microc.2018.11.022
    [Google Scholar]
  150. SureshJ. PradheeshG. AlexramaniV. SundrarajanM. HongS.I. Green synthesis and characterization of zinc oxide nanoparticle using insulin plant (Costus pictus D. Don) and investigation of its antimicrobial as well as anticancer activities.Adv. Nat. Sci.: Nanosci. Nanotechnol.20189101500810.1088/2043‑6254/aaa6f1
    [Google Scholar]
  151. BurlacuE. TanaseC. Anticancer potential of natural bark products- a review.Plants2021109189510.3390/plants10091895
    [Google Scholar]
  152. JayarambabuN. Venkatappa RaoT. Rakesh KumarR. AkshaykranthA. ShankerK. SureshV. Anti-hyperglycemic, pathogenic and anticancer activities of Bambusa arundinacea mediated Zinc Oxide nanoparticles.Mater. Today Commun.202126May10168810.1016/j.mtcomm.2020.101688
    [Google Scholar]
  153. SathappanS. KirubakaranN. GunasekaranD. GuptaP.K. VermaR.S. SundaramJ. Green synthesis of zinc oxide nanoparticles (ZnO NPs) using Cissus quadrangularis: Characterization, antimicrobial and anticancer studies.Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci.202191228929610.1007/s40011‑020‑01215‑w
    [Google Scholar]
  154. UmarH. KavazD. RizanerN. Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines.Int. J. Nanomedicine2018148710010.2147/IJN.S186888
    [Google Scholar]
  155. Al-HarbiL.N. Al-ShammariG.M. Subash-BabuP. MohammedM.A. AlkreadeesR.A. YagoubA.E.A. Cinchona officinalis phytochemicals-loaded iron oxide nanoparticles induce cytotoxicity and stimulate apoptosis in MCF-7 human breast cancer cells.Nanomaterials (Basel)20221219339310.3390/nano12193393
    [Google Scholar]
  156. ManasaD.J. ChandrashekarK.R. Madhu KumarD.J. NiranjanaM. NavadaK.M. Mussaenda frondosa L. mediated facile green synthesis of Copper oxide nanoparticles – Characterization, photocatalytic and their biological investigations.Arab. J. Chem.202114610318410.1016/j.arabjc.2021.103184
    [Google Scholar]
  157. Norouzi JobieF. RanjbarM. Hajizadeh MoghaddamA. KianiM. Green synthesis of zinc oxide nanoparticles using Amygdalus scoparia Spach stem bark extract and their applications as an alternative antimicrobial, anticancer, and anti-diabetic agent.Adv. Powder Technol.20213262043205210.1016/j.apt.2021.04.014
    [Google Scholar]
  158. NaserR. Abu-HuwaijR. Al-khateebI. AbbasM.M. AtoomA.M. Green synthesis of zinc oxide nanoparticles using the root hair extract of Phoenix dactylifera: Antimicrobial and anticancer activity.Appl. Nanosci.20211151747175710.1007/s13204‑021‑01837‑0
    [Google Scholar]
  159. AswiniR. MurugesanS. KannanK. Bio-engineered TiO 2 nanoparticles using Ledebouria revoluta extract: Larvicidal, histopathological, antibacterial and anticancer activity.Int. J. Environ. Anal. Chem.2021101152926293610.1080/03067319.2020.1718668
    [Google Scholar]
  160. MaheswariP. HarishS. NavaneethanM. MuthamizhchelvanC. PonnusamyS. HayakawaY. Bio-modified TiO2 nanoparticles with Withania somnifera, Eclipta prostrata and Glycyrrhiza glabra for anticancer and antibacterial applications.Mater. Sci. Eng.: C202010811045710.1016/j.msec.2019.110457
    [Google Scholar]
  161. ZhangH. LiangZ. ZhangJ. WangW. ZhangH. LuQ. Zinc oxide nanoparticle synthesized from Euphorbia fischeriana root inhibits the cancer cell growth through modulation of apoptotic signaling pathways in lung cancer cells.Arab. J. Chem.20201376174618310.1016/j.arabjc.2020.05.020
    [Google Scholar]
  162. SaravanakumarK. WangM.H. Biogenic silver embedded magnesium oxide nanoparticles induce the cytotoxicity in human prostate cancer cells.Adv. Powder Technol.201930478679410.1016/j.apt.2019.01.007
    [Google Scholar]
  163. FaisalS, Abdullah JanH. ShahS.A. ShahS. RizwanM. ZamanN. HussainZ. UddinM.N. BibiN. KhattakA. KhanW. IqbalA. IdreesM. MasoodR. Bio-catalytic activity of novel mentha arvensis intervened biocompatible magnesium oxide nanomaterials.Catalysts202111778010.3390/catal11070780
    [Google Scholar]
  164. AlaviM. VarmaR.S. Phytosynthesis and modification of metal and metal oxide nanoparticles/nanocomposites for antibacterial and anticancer activities: Recent advances.Sustain. Chem. Pharm.20212110041210.1016/j.scp.2021.100412
    [Google Scholar]
  165. HembramK.C. KumarR. KandhaL. ParhiP.K. KunduC.N. BindhaniB.K. Therapeutic prospective of plant-induced silver nanoparticles: Application as antimicrobial and anticancer agent.Artif. Cells Nanomed. Biotechnol.201846Suppl 3385110.1080/21691401.2018.1489262
    [Google Scholar]
  166. SivakumarP. LeeM. KimY.S. ShimM.S. Photo-triggered antibacterial and anticancer activities of zinc oxide nanoparticles.J. Mater. Chem. B201864852487110.1039/C8TB00948A
    [Google Scholar]
  167. GourA. JainN.K. Advances in green synthesis of nanoparticles.Artif. Cells Nanomed. Biotechnol.201947184485110.1080/21691401.2019.1577878
    [Google Scholar]
  168. SalemS.S. FoudaA. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: An overview.Biol. Trace Elem. Res.2021199134437010.1007/s12011‑020‑02138‑3
    [Google Scholar]
  169. JamkhandeP.G. GhuleN.W. BamerA.H. KalaskarM.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications.J. Drug Deliv. Sci. Technol.201953July10117410.1016/j.jddst.2019.101174
    [Google Scholar]
  170. SubashiniK. PrakashS. SujathaV. Polymer nanocomposite prepared using copper oxide nanoparticles derived from Sterculia foetida leaf extract with biological applications.Mater. Res. Express202071111530810.1088/2053‑1591/abc979
    [Google Scholar]
  171. HussainI. SinghN.B. SinghA. SinghH. SinghS.C. Green synthesis of nanoparticles and its potential application.Biotechnol. Lett.201638454556010.1007/s10529‑015‑2026‑7
    [Google Scholar]
  172. RoyA. Ananda MurthyH.C. AhmedH.M. IslamM.N. PrasadR. Phytogenic synthesis of metal/metal oxide nanoparticles for degradation of dyes.J. Renew. Mater.20221071911193010.32604/jrm.2022.019410
    [Google Scholar]
  173. PatilS.P. ChaudhariR.Y. NemadeM.S. Azadirachta indica leaves mediated green synthesis of metal oxide nanoparticles: A review.Talanta Open2022510008310.1016/j.talo.2022.100083
    [Google Scholar]
  174. AtaeiN. SoodiM. HajimehdipoorH. AkbariS. AlimohammadiM. Cerasus microcarpa and Amygdalus scoparia methanolic extract protect cultured cerebellar granule neurons against β-amyloid-induced toxicity and oxidative stress.J. Adv. Med. Biomed. Res.202028126233210.30699/jambs.28.126.23
    [Google Scholar]
  175. Mohd ZainiH. RoslanJ. SaallahS. MunsuE. SulaimanN. S. PindiW. Banana peels as a bioactive ingredient and its potential application in the food industry.J. Funct. Foods20229210505410.1016/j.jff.2022.105054
    [Google Scholar]
  176. JayakarV. LokapurV. NityasreeB.R. ChalannavarR.K. LasradoL.D. ShantaramM. Optimization and green synthesis of zinc oxide nanoparticle using Garcinia cambogia leaf and evaluation of their antioxidant and anticancer property in kidney cancer (A498) cell lines.Biomedicine (Taipei)202141220622210.51248/.v41i2.785
    [Google Scholar]
  177. Che HassanN.K.N. TaherM. SusantiD. Phytochemical constituents and pharmacological properties of Garcinia xanthochymus - A review.Biomed. Pharmacother.20181061378138910.1016/j.biopha.2018.07.087
    [Google Scholar]
  178. SanaS.S. KumbhakarD.V. PashaA. PawarS.C. GraceA.N. SinghR.P. NguyenV-H. LeQ.V. PengW. Crotalaria verrucosa leaf extract mediated synthesis of zinc oxide nanoparticles: Assessment of antimicrobial and anticancer activity.Molecules20202521489610.3390/molecules25214896
    [Google Scholar]
  179. KolahalamL.A. PrasadK.R.S. Murali KrishnaP. SuprajaN. Saussurea lappa plant rhizome extract-based zinc oxide nanoparticles: Synthesis, characterization and its antibacterial, antifungal activities and cytotoxic studies against Chinese Hamster Ovary (CHO) cell lines.Heliyon202176e0726510.1016/j.heliyon.2021.e07265
    [Google Scholar]
  180. ThaoT.T. Green synthesis of ZnO dopped Piper chaudocanum leaf extract by co-precipitation method: Characterization, antibacterial and anticancer activity.Res. Sq.202310.21203/rs.3.rs‑2686273/v1
    [Google Scholar]
  181. Ahmar RaufM. OvesM. Ur RehmanF. Rauf KhanA. HusainN. Bougainvillea flower extract mediated zinc oxide’s nanomaterials for antimicrobial and anticancer activity.Biomed. Pharmacother.201911610898310.1016/j.biopha.2019.108983
    [Google Scholar]
  182. DhatwaliaJ. DhatwaliaJ. KumariA. Rubus ellipticus Sm. fruit extract mediated zinc oxide nanoparticles: A green approach for dye degradation and biomedical applications.Materials20221510347010.3390/ma15103470
    [Google Scholar]
  183. IqbalJ. AbbasiB.A. MahmoodT. KanwalS. AhmadR. AshrafM. Plant-extract mediated green approach for the synthesis of ZnO NPs: Characterization and evaluation of cytotoxic, antimicrobial and antioxidant potentials.J. Mol. Struct.2019118931532710.1016/j.molstruc.2019.04.060
    [Google Scholar]
  184. KhanA.K. RenouardS. DrouetS. BlondeauJ-P. AnjumI. HanoC. AbbasiB.H. AnjumS. Effect of uv irradiation (A and c) on Casuarina equisetifolia-mediated biosynthesis and characterization of antimicrobial and anticancer activity of biocompatible zinc oxide nanoparticles.Pharmaceutics20211311197710.3390/pharmaceutics13111977
    [Google Scholar]
  185. ChinnathambiA. AlahmadiT.A. Zinc nanoparticles green-synthesized by Alhagi maurorum leaf aqueous extract: Chemical characterization and cytotoxicity, antioxidant, and anti-osteosarcoma effects.Arab. J. Chem.202114410308310.1016/j.arabjc.2021.103083
    [Google Scholar]
  186. SenM. DashB. A review on phytochemical and pharmacological aspects of Cissus quadrangularis L.Int. J. Green Pharm.20126316917310.4103/0973‑8258.104924
    [Google Scholar]
  187. DobruckaR. Romaniuk-DrapałaA. KaczmarekM. Biologically synthesized of Au/Pt/ZnO nanoparticles using Arctium lappa extract and cytotoxic activity against leukemia.Biomed. Microdevices20202247210.1007/s10544‑020‑00526‑z
    [Google Scholar]
  188. Al-ShabibN.A. HusainF.M. QaisF.A. AhmadN. KhanA. AlyousefA.A. ArshadM. NoorS. KhanJ.M. AlamP. AlbalawiT.H. ShahzadS.A. Phyto-mediated synthesis of porous titanium dioxide nanoparticles from Withania somnifera root extract: Broad-spectrum attenuation of biofilm and cytotoxic properties against HepG2 cell lines.Front. Microbiol.202011168010.3389/fmicb.2020.01680
    [Google Scholar]
  189. AryaP. ChauhanR.S. Phytochemical evaluation of Withania somnifera extracts.J. Pharmacogn. Phytochem.2019852422242410.13140/RG.2.2.26969.67687
    [Google Scholar]
  190. KumarR. RaniR. HajamY.A. RaiS. Phytochemical profiling and antioxidant activity of Cinnamomum tamala methanolic leaf extract.2022
    [Google Scholar]
  191. ManimaranK. NatarajanD. BalasubramaniG. MurugesanS. Pleurotus sajor caju mediated TiO2 nanoparticles: A novel source for control of mosquito larvae, human pathogenic bacteria and bone cancer cells.J. Cluster Sci.20223341489149910.1007/s10876‑021‑02073‑w
    [Google Scholar]
  192. OikehE.I. OviasogieF.E. OmoregieE.S. Quantitative phytochemical analysis and antimicrobial activities of fresh and dry ethanol extracts of Citrus sinensis (L.) Osbeck (sweet Orange) peels.Clinical Phytoscience2020614610.1186/s40816‑020‑00193‑w
    [Google Scholar]
  193. NarayananM. VigneshwariP. NatarajanD. KandasamyS. AlsehliM. ElfasakhanyA. PugazhendhiA. Synthesis and characterization of TiO2 NPs by aqueous leaf extract of Coleus aromaticus and assess their antibacterial, larvicidal, and anticancer potential.Environ. Res.202120011133510.1016/j.envres.2021.111335
    [Google Scholar]
  194. WeiX. LiuY. El-kottA. AhmedA.E. KhamesA. Calendula officinalis-based green synthesis of titanium nanoparticle: Fabrication, characterization, and evaluation of human colorectal carcinoma.J. Saudi Chem. Soc.2021251110134310.1016/j.jscs.2021.101343
    [Google Scholar]
  195. VemuriP.K. DronavalliL. NayakudugariP. KuntaA. ChallagullaR. Phytochemical analysis and biochemical characterization of Terminalia chebula extracts for its medicinal use.Biomed. Pharmacol. J.20191231525152910.13005/bpj/1783
    [Google Scholar]
  196. GamedzeN.P. MthiyaneD.M.N. BabalolaO.O. SinghM. OnwudiweD.C. Physico-chemical characteristics and cytotoxicity evaluation of CuO and TiO2 nanoparticles biosynthesized using extracts of Mucuna pruriens utilis seeds.Heliyon202288e1018710.1016/j.heliyon.2022.e10187
    [Google Scholar]
  197. RehmanS. JermyR. Mousa AsiriS. ShahM.A. FarooqR. RavinayagamV. Azam AnsariM. AlsalemZ. Al JindanR. ReshiZ. KhanF.A. Using Fomitopsis pinicola for bioinspired synthesis of titanium dioxide and silver nanoparticles, targeting biomedical applications.RSC Advances20201053321373214710.1039/D0RA02637A
    [Google Scholar]
  198. MaheswariP. HarishS. PonnusamyS. MuthamizhchelvanC. A novel strategy of nanosized herbal Plectranthus amboinicus, Phyllanthus niruri and Euphorbia hirta treated TiO2 nanoparticles for antibacterial and anticancer activities.Bioprocess Biosyst. Eng.20214481593161610.1007/s00449‑020‑02491‑6
    [Google Scholar]
  199. BhuiyanM.S.H. MiahM.Y. PaulS.C. AkaT.D. SahaO. RahamanM.M. SharifM.J.I. HabibaO. AshaduzzamanM. Green synthesis of iron oxide nanoparticle using Carica papaya leaf extract: Application for photocatalytic degradation of remazol yellow RR dye and antibacterial activity.Heliyon202068e0460310.1016/j.heliyon.2020.e04603
    [Google Scholar]
  200. El-RafieH.M. El-AzizS.M.A. ZahranM.K. In vitro cytotoxicity against breast cancer using biogenically synthesized gold and iron oxide nanoparticles derived from the hydroethanolic extract of Salvia officinalis L.Chem. Zvesti202377136137310.1007/s11696‑022‑02464‑x
    [Google Scholar]
  201. SathishkumarG. LogeshwaranV. SarathbabuS. JhaP.K. JeyarajM. RajkuberanC. SenthilkumarN. SivaramakrishnanS. Green synthesis of magnetic Fe3O4 nanoparticles using Couroupita guianensis Aubl. fruit extract for their antibacterial and cytotoxicity activities.Artif. Cells Nanomed. Biotechnol.201846358959810.1080/21691401.2017.1332635
    [Google Scholar]
  202. AbbasiB.A. IqbalJ. MahmoodT. QyyumA. KanwalS. Biofabrication of iron oxide nanoparticles by leaf extract of Rhamnus virgata: Characterization and evaluation of cytotoxic, antimicrobial and antioxidant potentials.Appl. Organomet. Chem.2019337e494710.1002/aoc.4947
    [Google Scholar]
  203. AhmadiS. FazilatiM. NazemH. MousaviS.M. Green synthesis of magnetic nanoparticles using Satureja hortensis essential oil toward superior antibacterial/fungal and anticancer performance.BioMed Res. Int.2021202111410.1155/2021/8822645
    [Google Scholar]
  204. AbdollahzadehH. PazhangY. ZamaniA. SharafiY. Green synthesis of copper oxide nanoparticles using walnut shell and their size dependent anticancer effects on breast and colorectal cancer cell lines.Sci. Rep.20241412032310.1038/s41598‑024‑71234‑4
    [Google Scholar]
  205. Jahanban-EsfahlanA. OstadrahimiA. TabibiazarM. AmarowiczR. A comprehensive review on the chemical constituents and functional uses of walnut (Juglans spp.) husk.Int. J. Mol. Sci.20192016392010.3390/ijms20163920
    [Google Scholar]
  206. ZughaibiT.A. MirzaA.A. SuhailM. JabirN.R. ZaidiS.K. WasiS. ZawawiA. TabrezS. Evaluation of anticancer potential of biogenic copper oxide nanoparticles (CuO NPs) against breast cancer.J. Nanomater.202220221532635510.1155/2022/5326355
    [Google Scholar]
  207. GnanavelV. PalanichamyV. RoopanS.M. Biosynthesis and characterization of copper oxide nanoparticles and its anticancer activity on human colon cancer cell lines (HCT-116).J. Photochem. Photobiol. B201717113313810.1016/j.jphotobiol.2017.05.001
    [Google Scholar]
  208. ChinnathambiA. Awad AlahmadiT. Ali AlharbiS. Biogenesis of copper nanoparticles (Cu-NPs) using leaf extract of Allium noeanum, antioxidant and in vitro cytotoxicity.Artif. Cells Nanomed. Biotechnol.202149150051010.1080/21691401.2021.1926275
    [Google Scholar]
  209. DouL. ZhangX. ZangenehM.M. ZhangY. Efficient biogenesis of CuO nanoparticles using extract of Camellia sinensis leaf: Evaluation of catalytic, cytotoxicity, antioxidant, and anti-human ovarian cancer properties.Bioorg. Chem.106104468202110.1016/j.bioorg.2020.104468
    [Google Scholar]
  210. NagajyothiP.C. MuthuramanP. SreekanthT.V.M. KimD.H. ShimJ. Green synthesis: In vitro anticancer activity of copper oxide nanoparticles against human cervical carcinoma cells.Arab. J. Chem.201710221522510.1016/j.arabjc.2016.01.011
    [Google Scholar]
  211. SivarajR. RahmanP.K.S.M. RajivP. NarendhranS. VenckateshR. Biosynthesis and characterization of Acalypha indica mediated copper oxide nanoparticles and evaluation of its antimicrobial and anticancer activity.Spectrochim. Acta A Mol. Biomol. Spectrosc.201412925525810.1016/j.saa.2014.03.027
    [Google Scholar]
  212. PriyaV.T. BalasubramanianN. ShanmugaiahV. KarunakaranC. Phyotochemical properties of Acalypha indica (L), and its antimicrobial potential against human pathogens.J. Pure Appl. Microbiol.202014131932610.22207/JPAM.14.1.33
    [Google Scholar]
  213. AgilaA. VimalaJ.D.R. BharathyM.S. Dayana JeyaleelaG. SheelaS.A.M. Anti-Oxidant and anti-cancer activities of biogenic synthesized copper oxide nanoparticles.Biomed. Biotechnol. Res. J.20226334134810.4103/bbrj.bbrj_136_22
    [Google Scholar]
  214. VasantharajS. SathiyavimalS. BharathiD. PannerselvamB. JeonS. SrituravanichW. Biosynthesis of copper oxide nanoparticles using Tecoma stans flower extract and its antibacterial, anticancer, and photocatalytic activities.Biocatal. Agric. Biotechnol.20245810313710.1016/j.bcab.2024.103137
    [Google Scholar]
  215. AminaM. Al MusayeibN.M. AlarfajN.A. El-TohamyM.F. OrabyH.F. Al HamoudG.A. BukhariS.I. MoubayedN.M.S. Biogenic green synthesis of MgO nanoparticles using Saussurea costus biomasses for a comprehensive detection of their antimicrobial, cytotoxicity against MCF-7 breast cancer cells and photocatalysis potentials.PLoS One2020158e023756710.1371/journal.pone.0237567
    [Google Scholar]
  216. AliS. SudhaK.G. ThirumalaivasanN. AhamedM. PandiarajS. RajeswariV.D. VinayagamY. ThiruvengadamM. GovindasamyR. Green synthesis of magnesium oxide nanoparticles by using Abrus precatorius bark extract and their photocatalytic, antioxidant, antibacterial, and cytotoxicity activities.Bioengineering (Basel)202310330210.3390/bioengineering10030302
    [Google Scholar]
  217. WinthachaiV. Green synthesis of magnesium oxide nanoparticles using Brassica oleracea and Punica granatum peels and their anticancer and photocatalytic activity.Asian J. Chem.20152793507351010.14233/ajchem.2015.19131
    [Google Scholar]
  218. PugazhendhiA. PrabhuR. MurugananthamK. ShanmuganathanR. NatarajanS. Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgO NPs) using aqueous extract of Sargassum wightii.J. Photochem. Photobiol. B2019190869710.1016/j.jphotobiol.2018.11.014
    [Google Scholar]
  219. MahlawatG. VirmaniT. ArifM. Enhancement of therapeutic action of anti-hyperlipidemic drugs by using a novel nanosuspension-based approach.Int. J. Pharm. Sci. Res.20231441679169010.13040/IJPSR.0975‑8232.14(4).1679‑90
    [Google Scholar]
  220. SummerM. AshrafR. AliS. BachH. NoorS. NoorQ. RiazS. KhanR.R.M. Inflammatory response of nanoparticles: Mechanisms, consequences, and strategies for mitigation.Chemosphere202436314282610.1016/j.chemosphere.2024.142826
    [Google Scholar]
  221. MorganR.N. AboshanabK.M. Green biologically synthesized metal nanoparticles: Biological applications, optimizations and future prospects.Future Sci. OA2024101FSO93510.2144/fsoa‑2023‑0196
    [Google Scholar]
  222. GhoshS. SarkarB. RanadheeraC.S. ThongmeeS. Chapter 6 - Synergistic effects of plant extracts and nanoparticles for therapy. Nanotechnology and In Silico Tools.Elsevier2024758710.1016/B978‑0‑443‑15457‑7.00003‑4
    [Google Scholar]
  223. SharmaA. VirmaniT. KumarG. SharmaA. VirmaniR. GugulothuD. SinghK. MisraS.K. PathakK. ChitranshiN. CoutinhoH.D.M. JainD. Mitochondrial signaling pathways and their role in cancer drug resistance.Cell. Signal.202412211132910.1016/j.cellsig.2024.111329
    [Google Scholar]
  224. VirmaniR. VirmaniT. PathakK. Chapter 17 - Nanovesicles for delivery of central nervous system drugs.Applications of Nanovesicular Drug DeliveryAcademic Press202231533910.1016/B978‑0‑323‑91865‑7.00004‑3
    [Google Scholar]
  225. ChavdaV.P. NallaL.V. BalarP. BezbaruahR. ApostolopoulosV. SinglaR.K. KhadelaA. VoraL. UverskyV.N. Advanced phytochemical-based nanocarrier systems for the treatment of breast cancer.Cancers (Basel)2023154102310.3390/cancers15041023
    [Google Scholar]
  226. AlamM.S. JavedM.N. AnsariJ.R. Metallic Nanoparticles for Health and the EnvironmentCRC PressBoca Raton20231st ed10.1201/9781003317319
    [Google Scholar]
  227. SameerR. NidhiS. TarunV. CharanS. JyotiG. A review on naturally derived compounds for potential anticancer activity.Indian J. drugs2016437586
    [Google Scholar]
  228. VinardellM. MitjansM. Antitumor activities of metal oxide nanoparticles.Nanomaterials (Basel)2015521004102110.3390/nano5021004
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128329342241120105041
Loading
/content/journals/cpd/10.2174/0113816128329342241120105041
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test