Skip to content
2000
image of Utilizing Plant Phytoconstituents in Metal Oxide Nanoparticle Synthesis for Cancer Therapies

Abstract

Background

The metal oxide nanoparticles possess unique properties such as biological compatibility, superior reactivity, and capacity to develop reactive oxygen species, due to this they have drawn significant interest in cancer treatment. The various MONPs such as cerium oxide, Copper oxide, Iron oxide, Titanium dioxide, and Zinc oxide have been investigated for several types of cancers including brain, breast, cervical, colon, leukemia, liver, lung, melanoma, ovarian, and prostate cancers. However, traditional physiochemical synthetic methods for MONPs commonly include toxic materials, a major concern that raises questions regarding their biocompatibility and safety.

Objective

This study aims to investigate the role of plant phytoconstituents in the development of MONPs green synthesis and explore the therapeutic effectiveness of MONPs in treating several types of cancer. Primarily, it examines the potential of plant phytoconstituents (phenolic compounds, flavonoids, glycosides, alkaloids, .) in the development of MONPs as well as their improved ability to target numerous types of cancer.

Methods

A systemic search was conducted on recent literature, focusing on developing green MONPs by utilizing plants' phytoconstituents (plant extracts). The study of plant phytochemicals (present in different parts of a plant such as leaves, flowers, stems, peels, and roots) and their role in the synthesis of green metal oxide nanoparticles as well as their anticancer activity against several types of cancers was analyzed. Also focusing on their anticancer mechanism that involves ROS production, generates oxidative stress, and apoptosis leads to cancer inhibition.

Results

Phytochemicals-mediated metal oxide nanoparticle synthesis revealed many advantages such as improved biological compatibility and enhanced sensitivity towards cancer cells. Phytochemicals present in plant extracts act as natural capping, reducing, and stabilizing agents, enhancing nanoparticle synthesis which leads to synergistic anticancer activity. Additionally, the natural antioxidant and anticancer activity of various phytochemicals enhances the therapeutic potential of metal oxide nanoparticles, producing them more effective against ROS-generated apoptosis and showing negligible toxicity towards normal cells.

Conclusion

The utilization of plant phytochemicals in metal oxide nanoparticle production presents a safe, eco-friendly, sustainable, and effective approach to developing effective and safer cancer nanomedicines. Green synthesis not only increases anticancer activity but also decreases the biocompatibility problems associated with the physiochemical synthetic approach. Further research needs to concentrate on improving this synergy to create a targeted phytochemical-based metal oxide nanoparticle for cancer therapeutics.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128329342241120105041
2025-01-07
2025-04-02
Loading full text...

Full text loading...

References

  1. Aminolroayaei F. Mehri A. Shahbazi-Gahrouei D. Rostami M. Polyoxometalates as next-generation of theragnostic gadgets in cancer. Rev. Inorg. Chem. 2024 44 2 271 287 10.1515/revic‑2023‑0008
    [Google Scholar]
  2. Chhikara B.S. Parang K. Chemical Biology letters global Cancer Statistics 2022: the trends projection analysis. Chem. Biol. Lett. Chem. Biol. Lett 2023 2023 1 1 16
    [Google Scholar]
  3. Chahar Beniwal S. Virmani T. Synthesis, characterization and evaluation of novel carbazole boronic acid derivatives in the treatment of breast cancer. Int. J. Pharm. Sci. Res. 2023 14 4 1992 2001 10.13040/IJPSR.0975‑8232.14(4).1992‑01
    [Google Scholar]
  4. Siegel R.L. Miller K.D. Wagle N.S. Jemal A. Cancer statistics, 2023. CA Cancer J. Clin. 2023 73 1 17 48 10.3322/caac.21763
    [Google Scholar]
  5. Virmani T. Kumar G. Sharma A. Pathak K. Akhtar M.S. Afzal O. Altamimi A.S.A. Amelioration of cancer employing chitosan, its derivatives, and chitosan-based nanoparticles: Recent updates. Polymers (Basel) 2023 15 13 2928 10.3390/polym15132928
    [Google Scholar]
  6. Kumar M. Virmani T. Kumar G. Deshmukh R. Sharma A. Duarte S. Brandão P. Fonte P. Nanocarriers in tuberculosis treatment: Challenges and delivery strategies. Pharmaceuticals (Basel) 2023 16 10 1360 10.3390/ph16101360
    [Google Scholar]
  7. Sanduja M. Gupta J. Virmani T. Recent advancements in uracil and 5-fluorouracil hybrids as potential anticancer agents: A review. J. Appl. Pharm. Sci. 2020 10 2 129 146 10.7324/JAPS.2020.102019
    [Google Scholar]
  8. Shahbazi-Gahrouei D. Choghazardi Y. Kazemzadeh A. Naseri P. Shahbazi-Gahrouei S. 2023 A review of bismuth-based nanoparticles and their applications in radiosensitising and dose enhancement for cancer radiation therapy. IET Nanobiotechnol. 7 4 302 311 10.1049/nbt2.12134 37139612
    [Google Scholar]
  9. Siddique S. Chow J.C.L. Application of nanomaterials in biomedical imaging and cancer therapy. Nanomaterials (Basel) 2020 10 9 1700 10.3390/nano10091700
    [Google Scholar]
  10. Virmani R. Sharma A. Sharma A. Kumar G. Virmani T. Mukherjee S. Nanotechnology in pulmonary tissue engineering. Nanostructured Materials for Tissue Engineering Elsevier 2023 537 556 10.1016/B978‑0‑323‑95134‑0.00017‑1
    [Google Scholar]
  11. Kumar G. Virmani R. Sharma A. Virmani T. Pathak K. Solid lipid nanoparticles for the management of allergic airway diseases. Understanding Allergic Airway Diseases Springer Singapore 2024 183 201 10.1007/978‑981‑97‑1953‑2_11
    [Google Scholar]
  12. Ndaba B. Roopnarain A. Rama H. Maaza M. Biosynthesized metallic nanoparticles as fertilizers: An emerging precision agriculture strategy. J. Integr. Agric. 2022 21 5 1225 1242 10.1016/S2095‑3119(21)63751‑6
    [Google Scholar]
  13. Dubey S. Virmani T. Yadav S.K. Sharma A. Kumar G. Alhalmi A. 2023 Breaking barriers in eco-friendly synthesis of plant-mediated metal/metal oxide/bimetallic nanoparticles: Antibacterial, anticancer, mechanism elucidation, and versatile utilizations. J. Nanomater. 10.1155/2024/9914079
    [Google Scholar]
  14. Khorasani A. Shahbazi-Gahrouei D. Safari A. Recent metal nanotheranostics for cancer diagnosis and therapy: A review. Diagnostics (Basel) 2023 13 5 833 10.3390/diagnostics13050833
    [Google Scholar]
  15. Azmoonfar R. Moslehi M. Shahbazi-Gahrouei D. Radioprotective effect of selenium nanoparticles: A mini review. IET Nanobiotechnol. 2024 2024 1 8 10.1049/2024/5538107
    [Google Scholar]
  16. Shawuti S. Bairam C. Beyatlı A. Kariper İ.A. Korkut I.N. Aktaş Z. Öncül M.O. Kuruca S.E. Green synthesis and characterization of silver and iron nanoparticles using Nerium oleander extracts and their antibacterial and anticancer activities. Plant Introduction 2021 91-92 November 36 49 10.46341/PI2021010
    [Google Scholar]
  17. Hosseinzadeh E. Foroumadi A. Firoozpour L. What is the role of phytochemical compounds as capping agents for the inhibition of aggregation in the green synthesis of metal oxide nanoparticles? A DFT molecular level response Inorg. Chem. Commun. 147 110243 2023 10.1016/j.inoche.2022.110243
    [Google Scholar]
  18. Hawar S.N. Al-Shmgani H.S. Al-Kubaisi Z.A. Sulaiman G.M. Dewir Y.H. Rikisahedew J.J. Green synthesis of silver nanoparticles from Alhagi graecorum leaf extract and evaluation of their cytotoxicity and antifungal activity. J. Nanomater. 2022 2022 1 1058119 10.1155/2022/1058119
    [Google Scholar]
  19. Farooqi M.A. Bae S. Kim S. Bae S. Kausar F. Farooqi H.M.U. Hyun C.G. Kang C.U. Eco-friendly synthesis of bioactive silver nanoparticles from black roasted gram (Cicer arietinum) for biomedical applications. Sci. Rep. 2024 14 1 22922 10.1038/s41598‑024‑72356‑5
    [Google Scholar]
  20. Mahesh S. Narasaiah B.P. Mandal B.K. Balaji G.L. Fabrication of titanium dioxide nanoparticles using sunflower leaf extract and their applications towards the synthesis and biological evaluation of some novel phenanthro imidazole derivatives. Biointerface Res. Appl. Chem. 2021 12 3 3372 3389 10.33263/BRIAC123.33723389
    [Google Scholar]
  21. Al-Thani A.N. Jan A.G. Abbas M. Geetha M. Sadasivuni K.K. Nanoparticles in cancer theragnostic and drug delivery: A comprehensive review. Life Sci. 2024 352 122899 10.1016/j.lfs.2024.122899
    [Google Scholar]
  22. Hajam Y.A. Rani R. Ganie S.Y. Sheikh T.A. Javaid D. Qadri S.S. Pramodh S. Alsulimani A. Alkhanani M.F. Harakeh S. Hussain A. Haque S. Reshi M.S. Oxidative stress in human pathology and aging: Molecular mechanisms and perspectives. Cells 2022 11 3 552 10.3390/cells11030552
    [Google Scholar]
  23. Li D. Yu Q. Wu R. Tuo Z. Wang J. Ye L. Shao F. Chaipanichkul P. Yoo K.H. Wei W. Okoli U.A. Deng S. Ke M. Cho W.C. Heavey S. Feng D. Interactions between oxidative stress and senescence in cancer: Mechanisms, therapeutic implications, and future perspectives. Redox Biol. 2024 73 103208 10.1016/j.redox.2024.103208
    [Google Scholar]
  24. Postovalova A.S. Comparison of passive targeted delivery of inorganic and organic nanocarriers among different types of tumours. Nanomed. Nanotechnol. Biol. Med. (Aligarh) 2024 59 102753 10.1016/j.nano.2024.102753
    [Google Scholar]
  25. Hheidari A. Mohammadi J. Ghodousi M. Mahmoodi M. Ebrahimi S. Pishbin E. Rahdar A. Metal-based nanoparticle in cancer treatment: Lessons learned and challenges. Front. Bioeng. Biotechnol. 2024 12 July 1436297 10.3389/fbioe.2024.1436297
    [Google Scholar]
  26. Singh A. Tyagi P. Ranjan R. Bioremediation of hazardous wastes using green synthesis of nanoparticles. 2023 11 1 141 10.3390/pr11010141
    [Google Scholar]
  27. Aboyewa J.A. Sibuyi N.R.S. Meyer M. Oguntibeju O.O. Green synthesis of metallic nanoparticles using some selected medicinal plants from southern Africa and their biological applications. Plants 2021 10 9 1929 10.3390/plants10091929
    [Google Scholar]
  28. Demarema S. Nasr M. Ookawara S. Abdelhaleem A. New insights into green synthesis of metal oxide based photocatalysts for photodegradation of organic pollutants: A bibliometric analysis and techno-economic evaluation. J. Clean. Prod. 2024 463 142679 10.1016/j.jclepro.2024.142679
    [Google Scholar]
  29. Ilavenil K.K. Senthilkumar V. Kasthuri A. Sivaraman S. Nanoparticles (MgO) utilising Justicia adhatoda and an evaluation of their antimicrobial properties. Mater. Today Proc. 2024 ••• 10.1016/j.matpr.2024.05.144
    [Google Scholar]
  30. Dhir S. Dutt R. Singh R.P. Chauhan M. Virmani T. Kumar G. Alhalmi A. Aleissa M.S. Rudayni H.A. Al-Zahrani M. Amomum subulatum fruit extract mediated green synthesis of silver and copper oxide nanoparticles: Synthesis, characterization, antibacterial and anticancer activities. Processes (Basel) 2023 11 9 2698 10.3390/pr11092698
    [Google Scholar]
  31. Bahrulolum H. Nooraei S. Javanshir N. 2021 Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector. J. Nanobiotechnol. 19 1 86 10.1186/s12951‑021‑00834‑3
    [Google Scholar]
  32. Gupta P.K. Kim B.S. Das A.K. Green synthesis of metallic nanoparticles: Applications and limitations Catalysts 11 8 902 2021 10.3390/catal11080902
    [Google Scholar]
  33. Dejen K.D. Kibret D.Y. Mengesha T.H. Bekele E.T. Tedla A. Bafa T.A. Derib F.T. Green synthesis and characterisation of silver nanoparticles from leaf and bark extract of Croton macrostachyus for antibacterial activity. Mater. Technol. 2023 38 1 2164647 10.1080/10667857.2022.2164647
    [Google Scholar]
  34. Vijayaram S. Razafindralambo H. Sun Y-Z. Vasantharaj S. Ghafarifarsani H. Hoseinifar S.H. Raeeszadeh M. Applications of green synthesized metal nanoparticles - A review. Biol. Trace Elem. Res. 2024 202 1 360 386 10.1007/s12011‑023‑03645‑9
    [Google Scholar]
  35. Arshad F. Naikoo G.A. Hassan I.U. Chava S.R. El-Tanani M. Aljabali A.A. Tambuwala M.M. Bioinspired and green synthesis of silver nanoparticles for medical applications: A green perspective. Appl. Biochem. Biotechnol. 2024 196 6 3636 3669 10.1007/s12010‑023‑04719‑z
    [Google Scholar]
  36. Fatima N. Baqri S.S.R. Alsulimani A. Fagoonee S. Slama P. Kesari K.K. Roychoudhury S. Haque S. Phytochemicals from indian ethnomedicines: Promising prospects for the management of oxidative stress and cancer. Antioxidants 2021 10 10 1606 10.3390/antiox10101606
    [Google Scholar]
  37. Rufino-Palomares E.E. Pérez-Jiménez A. García-Salguero L. Mokhtari K. Reyes-Zurita F.J. Peragón-Sánchez J. Lupiáñez J.A. Nutraceutical role of polyphenols and triterpenes present in the extracts of fruits and leaves of olea europaea as antioxidants, anti-infectives and anticancer agents on healthy growth. Molecules 2022 27 7 2341 10.3390/molecules27072341
    [Google Scholar]
  38. Lv C. Li H. Cui H. Bi Q. Wang M. Solid lipid nanoparticle delivery of rhynchophylline enhanced the efficiency of allergic asthma treatment via the upregulation of suppressor of cytokine signaling 1 by repressing the p38 signaling pathway. Bioengineered 2021 12 1 8635 8649 10.1080/21655979.2021.1988364
    [Google Scholar]
  39. Mandal M.K. Mohammad M. Parvin S.I. Islam M.M. Gazi H.A.R. A short review on anticancer phytochemicals. Pharmacogn. Rev. 2023 17 33 11 23 10.5530/097627870236
    [Google Scholar]
  40. Cell C. Profiling T.P. Zari A. Alharby H.F. Hakeem K.R. Anticancer activity of cordia dichotoma against a panel of human cancer cell lines and their phytochemical profiling via HPLC and GCMS. Molecules 2022 27 7 2185 10.3390/molecules27072185
    [Google Scholar]
  41. Khalil R.R. Mustafa Y.F. Phytochemical, antioxidant and antitumor studies of coumarins extracted from Granny Smith apple seeds by different methods. Syst. Rev. Pharm. 2020 11 2 57 63 10.5530/srp.2020.2.10
    [Google Scholar]
  42. Rana S. Kumar S. Rana A. Padwad Y. Bhushan S. Biological activity of phenolics enriched extracts from industrial apple pomace. Ind. Crops Prod. 2021 160 August 113158 10.1016/j.indcrop.2020.113158
    [Google Scholar]
  43. Ramadan K.M.A. El-Beltagi H.S. Mohamed H.I. Shalaby T.A. Galal A. Mansour A.T. Aboul Fotouh M.M. Bendary E.S.A. Antioxidant, anti-cancer activity and phytochemicals profiling of kigelia pinnata fruits. Separations 2022 9 11 379 10.3390/separations9110379
    [Google Scholar]
  44. Rubio J. Arias G. Robles-Kelly C. Silva-Moreno E. Espinoza L. Carrasco H. Olea A.F. Phytochemical profiling and assessment of anticancer activity of Leptocarpha rivularis extracts obtained from in vitro cultures. Plants 2022 11 4 546 10.3390/plants11040546
    [Google Scholar]
  45. Unnikrishnan Meenakshi D. Narde G.K. Ahuja A. Al Balushi K. Francis A.P. Khan S.A. Therapeutic applications of nanoformulated resveratrol and quercetin phytochemicals in colorectal cancer - An updated review. Pharmaceutics 2024 16 6 761 10.3390/pharmaceutics16060761
    [Google Scholar]
  46. Amini S.M. Emami T. Rashidi M. Zarrinnahad H. Curcumin-gold nanoformulation: Synthesis, characterizations and biomedical application. Food Biosci. 2024 57 103446 10.1016/j.fbio.2023.103446
    [Google Scholar]
  47. Nag S. Bhunia A. Mohanto S. Ahmed M.G. Subramaniyan V. Rising potentials of epigallocatechin gallate (EGCG) loaded lipid-based delivery platforms for breast cancer. Discover Applied Sciences 2024 6 8 426 10.1007/s42452‑024‑05878‑2
    [Google Scholar]
  48. Sallam N.G. Boraie N.A. Sheta E. El-Habashy S.E. Targeted delivery of genistein for pancreatic cancer treatment using hyaluronic-coated cubosomes bioactivated with frankincense oil. Int. J. Pharm. 2024 649 123637 10.1016/j.ijpharm.2023.123637
    [Google Scholar]
  49. Kumar G. Virmani T. Sharma A. Pathak K. Codelivery of phytochemicals with conventional anticancer drugs in form of nanocarriers. Pharmaceutics 2023 15 3 889 10.3390/pharmaceutics15030889
    [Google Scholar]
  50. Jaison J.P. Balasubramanian B. Gangwar J. James N. Pappuswamy M. Anand A.V. Al-Dhabi N.A. Valan Arasu M. Liu W-C. Sebastian J.K. Green synthesis of bioinspired nanoparticles mediated from plant extracts of asteraceae family for potential biological applications. Antibiotics (Basel) 2023 12 3 543 10.3390/antibiotics12030543
    [Google Scholar]
  51. Louvrier C. Pasmant E. Briand-Suleau A. Targeted next-generation sequencing for differential diagnosis of neurofibromatosis type 2, schwannomatosis, and meningiomatosis. Neuro Oncol. 20 7 2018 917 929 10.1093/neuonc/noy009
    [Google Scholar]
  52. Elkady A.I. Hussein R.A.E.H. Abu-Zinadah O.A. Effects of crude extracts from medicinal herbs Rhazya stricta and Zingiber officinale on growth and proliferation of human brain cancer cell line in vitro. BioMed Res. Int. 2014 2014 1 16 10.1155/2014/260210
    [Google Scholar]
  53. Liu Y. Chen Z. Li A. Liu R. Yang H. Xia X. The phytochemical potential for brain disease therapy and the possible nanodelivery solutions for brain access. Front. Oncol. 2022 12 June 936054 10.3389/fonc.2022.936054
    [Google Scholar]
  54. Mazurakova A. Koklesova L. Samec M. Kudela E. Kajo K. Skuciova V. Csizmár S.H. Mestanova V. Pec M. Adamkov M. Al-Ishaq R.K. Smejkal K. Giordano F.A. Büsselberg D. Biringer K. Golubnitschaja O. Kubatka P. Anti-breast cancer effects of phytochemicals: Primary, secondary, and tertiary care. EPMA J. 2022 13 2 315 334 10.1007/s13167‑022‑00277‑2
    [Google Scholar]
  55. Sebastian R. Jaykar B. Gomathi V. Current status of anticancer research in fabaceae family. Pharma Innov. J. 2020 9 8 52 60
    [Google Scholar]
  56. Wang J. Yu H. Yili A. Gao Y. Hao L. Aisa H.A. Liu S. Identification of hub genes and potential molecular mechanisms of chickpea isoflavones on MCF-7 breast cancer cells by integrated bioinformatics analysis. Ann. Transl. Med. 2020 8 4 86 86 10.21037/atm.2019.12.141
    [Google Scholar]
  57. Rizeq B. Gupta I. Ilesanmi J. AlSafran M. Rahman M.D.M. Ouhtit A. The power of phytochemicals combination in cancer chemoprevention. J. Cancer 2020 11 15 4521 4533 10.7150/jca.34374
    [Google Scholar]
  58. Prajapati K.S. Gupta S. Kumar S. Targeting breast cancer-derived stem cells by dietary phytochemicals: A strategy for cancer prevention and treatment. Cancers (Basel) 2022 14 12 2864 10.3390/cancers14122864
    [Google Scholar]
  59. Askary M. Behdani M.A. Mollaei H. Fallahi H.R. Evaluation of the effects of organic and conventional cultivation practices on phytochemical and anti-cancer activities of saffron (Crocus sativus L.). J. Agric. Sci. Technol. 2023 25 1 139 154 10.52547/jast.25.1.139
    [Google Scholar]
  60. Aedo-Aguilera V. Curcumin decreases epithelial-mesenchymal transition by a Pirin-dependent mechanism in cervical cancer cells. Oncol. Rep. 2019 42 5 2139 2148 10.3892/or.2019.7288
    [Google Scholar]
  61. Kedhari Sundaram M. Raina R. Afroze N. Bajbouj K. Hamad M. Haque S. Hussain A. Quercetin modulates signaling pathways and induces apoptosis in cervical cancer cells. Biosci. Rep. 2019 39 8 BSR20190720 10.1042/BSR20190720
    [Google Scholar]
  62. Talib W.H. Awajan D. Hamed R.A. Azzam A.O. Mahmod A.I. AL-Yasari I.H. Combination anticancer therapies using selected phytochemicals. Molecules 2022 27 17 5452 10.3390/molecules27175452
    [Google Scholar]
  63. Kim J. Lee J. Oh J.H. Chang H.J. Sohn D.K. Kwon O. Shin A. Kim J. Dietary Lutein Plus Zeaxanthin Intake and DICER1 rs3742330 A > G Polymorphism Relative to Colorectal Cancer Risk. Sci. Rep. 2019 9 1 3406 10.1038/s41598‑019‑39747‑5
    [Google Scholar]
  64. Usman M. Khan W.R. Yousaf N. Akram S. Murtaza G. Kudus K.A. Ditta A. Rosli Z. Rajpar M.N. Nazre M. Exploring the phytochemicals and anti-cancer potential of the members of fabaceae family: A comprehensive review. Molecules 2022 27 12 3863 10.3390/molecules27123863
    [Google Scholar]
  65. Wani A.K. Akhtar N. Mir T.G. Singh R. Jha P.K. Mallik S.K. Sinha S. Tripathi S.K. Jain A. Jha A. Devkota H.P. Prakash A. Targeting apoptotic pathway of cancer cells with phytochemicals and plant-based nanomaterials. Biomolecules 2023 13 2 194 10.3390/biom13020194
    [Google Scholar]
  66. Lim J.H. Lee Y.M. Park S.R. Kim D.H. Lim B.O. Anticancer activity of hispidin via reactive oxygen species-mediated apoptosis in colon cancer cells. Anticancer Res. 2014 34 8 4087 4094
    [Google Scholar]
  67. Naqvi S.M.A. Islam S.N. Kumar A. Patil C.R. Kumar A. Ahmad A. Enhanced anti-cancer potency of sustainably synthesized anisotropic silver nanoparticles as compared with L-asparaginase. Int. J. Biol. Macromol. 2024 263 130238 10.1016/j.ijbiomac.2024.130238
    [Google Scholar]
  68. Goswami S. Ali A. Prasad M.E. Singh P. Pharmacological significance of Catharanthus roseus in cancer management: A review. Pharmacol. Res. - Mod. Chin. Med. 2024 11 100444 10.1016/j.prmcm.2024.100444
    [Google Scholar]
  69. Venmathi Maran B.A. Iqbal M. Gangadaran P. Ahn B-C. Rao P.V. Shah M.D. Hepatoprotective potential of malaysian medicinal plants: A review on phytochemicals, oxidative stress, and antioxidant mechanisms. Molecules 2022 27 5 1533 10.3390/molecules27051533
    [Google Scholar]
  70. Khan S.A. Lee T.K.W. Network-pharmacology-based study on active phytochemicals and molecular mechanism of Cnidium monnieri in treating hepatocellular carcinoma. Int. J. Mol. Sci. 2022 23 10 5400 10.3390/ijms23105400
    [Google Scholar]
  71. Rodriguez S. Skeet K. Mehmetoglu-Gurbuz T. Goldfarb M. Karri S. Rocha J. Shahinian M. Yazadi A. Poudel S. Subramani R. Phytochemicals as an alternative or integrative option, in conjunction with conventional treatments for hepatocellular carcinoma. Cancers (Basel) 2021 13 22 5753 10.3390/cancers13225753
    [Google Scholar]
  72. Ding Y. Hou R. Yu J. Xing C. Zhuang C. Qu Z. Dietary phytochemicals as potential chemopreventive agents against tobacco-induced lung carcinogenesis. Nutrients 2023 15 3 491 10.3390/nu15030491
    [Google Scholar]
  73. Lagoa R. Silva J. Rodrigues J.R. Bishayee A. Advances in phytochemical delivery systems for improved anticancer activity. Biotechnol. Adv. 38 107382 2020 10.1016/j.biotechadv.2019.04.004
    [Google Scholar]
  74. Ayaz M. Nawaz A. Ahmad S. Mosa O.F. Eisa Hamdoon A.A. Khalifa M.A. Sadiq A. Ullah F. Wadood A. Kabra A. Ananda Murthy H.C. Underlying anticancer mechanisms and synergistic combinations of phytochemicals with cancer chemotherapeutics: Potential benefits and risks. J. Food Qual. 2022 2022 1 15 10.1155/2022/1189034
    [Google Scholar]
  75. Muhammad T. Ikram M. Ullah R. Rehman S. Kim M. Hesperetin, a citrus flavonoid, attenuates LPS-induced neuroinflammation, apoptosis and memory impairments by modulating TLR4/NF-κB signaling. Nutrients 2019 11 3 648 10.3390/nu11030648
    [Google Scholar]
  76. Nath R. Singha S. Nath D. Das G. Patra J. Talukdar A. Phytochemicals from Allium tuberosum Rottler ex Spreng Show Potent Inhibitory Activity against B-Raf, EGFR, K-Ras, and PI3K of Non-Small Cell Lung Cancer Targets. Appl. Sci. (Basel) 2022 12 22 11749 10.3390/app122211749
    [Google Scholar]
  77. Allah A.A.D. Yousif H.A. Hasaballa N.O. Elkhawad E.A. Abdallah R.B. Ahmed H.M. Abdelrahman A.M. Hago S. Abdelgadir A.A. Alzain A.A. Ahmed E.M. Identification of phytochemicals from Tundub Capparis decidua (Forssk) Edgew seed oil as potential anticancer agents using gas chromatography-mass spectroscopy analysis, molecular docking, and molecular dynamics studies. Sci. Am. 2023 19 e01517 10.1016/j.sciaf.2022.e01517
    [Google Scholar]
  78. Jobani B.M. Najafzadeh N. Mazani M. Arzanlou M. Vardin M.M. Molecular mechanism and cytotoxicity of allicin and all-trans retinoic acid against CD44+ versus CD117+ melanoma cells. Phytomedicine 2018 48 161 169 10.1016/j.phymed.2018.05.013
    [Google Scholar]
  79. Wang C. Gao P. Xu J. Liu S. Tian W. Liu J. Zhou L. Natural phytochemicals prevent side effects in BRCA-mutated ovarian cancer and PARP inhibitor treatment. Front. Pharmacol. 2022 13 December 1078303 10.3389/fphar.2022.1078303
    [Google Scholar]
  80. Ghose A. Gullapalli S.V.N. Chohan N. Bolina A. Moschetta M. Rassy E. Boussios S. Applications of proteomics in ovarian cancer: Dawn of a new era. Proteomes 2022 10 2 16 10.3390/proteomes10020016
    [Google Scholar]
  81. Liu L. Fan J. Ai G. Liu J. Luo N. Li C. Cheng Z. Berberine in combination with cisplatin induces necroptosis and apoptosis in ovarian cancer cells. Biol. Res. 2019 52 1 37 10.1186/s40659‑019‑0243‑6
    [Google Scholar]
  82. Shettar P. Withdrawn: Cytotoxic potential of Simarouba glauca leaf extracts on PA1 human ovarian cancer cell lines. Res. Sq. 2023 10.21203/rs.3.rs‑2646995/v1
    [Google Scholar]
  83. Wang L. Lu B. He M. Wang Y. Wang Z. Du L. Prostate cancer incidence and mortality: Global status and temporal trends in 89 countries from 2000 to 2019. Front. Public Health 2022 10 February 811044 10.3389/fpubh.2022.811044
    [Google Scholar]
  84. Salehi B. Fokou P.V.T. Yamthe L.R.T. Phytochemicals in prostate cancer: From bioactive molecules to upcoming therapeutic agents. Nutrients 11 7 2019 10.3390/nu11071483
    [Google Scholar]
  85. Gano C.A. Fatima S. Failes T.W. Anti-cancer potential of synergistic phytochemical combinations is influenced by the genetic profile of prostate cancer cell lines. Front. Nutr. 10 1119274 2023 10.3389/fnut.2023.1119274
    [Google Scholar]
  86. Shaban A.S. Owda M.E. Basuoni M.M. Mousa M.A. Radwan A.A. Saleh A.K. Punica granatum peel extract mediated green synthesis of zinc oxide nanoparticles: Structure and evaluation of their biological applications. Biomass Convers. Biorefin. 2022 0123456789 10.1007/s13399‑022‑03185‑7
    [Google Scholar]
  87. Singh T.A. Das J. Sil P.C. Zinc oxide nanoparticles: A comprehensive review on its synthesis, anticancer and drug delivery applications as well as health risks. Adv. Colloid Interface Sci. 286 102317 2020 10.1016/j.cis.2020.102317
    [Google Scholar]
  88. Duan X. Liao Y. Liu T. Yang H. Liu Y. Chen Y. Ullah R. Wu T. Zinc oxide nanoparticles synthesized from Cardiospermum halicacabum and its anticancer activity in human melanoma cells (A375) through the modulation of apoptosis pathway. J. Photochem. Photobiol. B 2020 202 111718 10.1016/j.jphotobiol.2019.111718
    [Google Scholar]
  89. Selim Y.A. Azb M.A. Ragab I. Abd El-Azim M.H.M. Green synthesis of zinc oxide nanoparticles using aqueous extract of Deverra tortuosa and their cytotoxic activities. Sci. Rep. 2020 10 1 1 9 10.1038/s41598‑020‑60541‑1
    [Google Scholar]
  90. Wellia D.V. Syuadi A.F. Rahma R.M. Syafawi A. Habibillah M.R. Arief S. Kurnia K.A. Saepurahman Kusumawati Y. Saefumillah A. Rind of Aloe vera (L.) Burm. f extract for the synthesis of titanium dioxide nanoparticles: Properties and application in model dye pollutant degradation. Case Stud. Chem. Environ. Eng. 2024 9 100627 10.1016/j.cscee.2024.100627
    [Google Scholar]
  91. Ajmal N. Saraswat K. Bakht M.A. Riadi Y. Ahsan M.J. Noushad M. Cost-effective and eco-friendly synthesis of titanium dioxide (TiO 2 ) nanoparticles using fruit’s peel agro-waste extracts: characterization, in vitro antibacterial, antioxidant activities. Green Chem. Lett. Rev. 2019 12 3 244 254 10.1080/17518253.2019.1629641
    [Google Scholar]
  92. Karmous I. Pandey A. Haj K.B. Chaoui A. Efficiency of the green synthesized nanoparticles as new tools in cancer therapy: Insights on plant-based bioengineered nanoparticles, biophysical properties, and anticancer roles. Biol. Trace Elem. Res. 2020 196 1 330 342 10.1007/s12011‑019‑01895‑0
    [Google Scholar]
  93. Rehman S. Farooq R. Jermy R. Mousa Asiri S. Ravinayagam V. Al Jindan R. Alsalem Z. Shah M.A. Reshi Z. Sabit H. Alam Khan F. A wild fomes fomentarius for biomediation of one pot synthesis of titanium oxide and silver nanoparticles for antibacterial and anticancer application. Biomolecules 2020 10 4 622 10.3390/biom10040622
    [Google Scholar]
  94. Salah M. Akasaka H. Shimizu Y. Morita K. Nishimura Y. Kubota H. Kawaguchi H. Sogawa T. Mukumoto N. Ogino C. Sasaki R. Reactive oxygen species-inducing titanium peroxide nanoparticles as promising radiosensitizers for eliminating pancreatic cancer stem cells. J. Exp. Clin. Cancer Res. 2022 41 1 146 10.1186/s13046‑022‑02358‑6
    [Google Scholar]
  95. Zhu X. Pathakoti K. Hwang H-M. Chapter 10 - Green synthesis of titanium dioxide and zinc oxide nanoparticles and their usage for antimicrobial applications and environmental remediation. Green Synthesis, Characterization and Applications of Nanoparticles Elsevier 2019 223 263 10.1016/B978‑0‑08‑102579‑6.00010‑1
    [Google Scholar]
  96. Syamsol Bahri S. Harun Z. Hubadillah S.K. Review on recent advance biosynthesis of TiO 2 nanoparticles from plant-mediated materials: Characterization, mechanism and application. IOP Conf. Ser. Mater. Sci. Eng. 1142 012005 2021 10.1088/1757‑899X/1142/1/012005
    [Google Scholar]
  97. Cuong H.N. Pansambal S. Ghotekar S. New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: A review. Environ. Res. 2022 203 111858 10.1016/j.envres.2021.111858
    [Google Scholar]
  98. Jadhav M.S. Kulkarni S. Raikar P. Barretto D.A. Vootla S.K. Raikar U.S. Green biosynthesis of CuO & Ag–CuO nanoparticles from Malus domestica leaf extract and evaluation of antibacterial, antioxidant and DNA cleavage activities. New J. Chem. 2018 42 1 204 213 10.1039/C7NJ02977B
    [Google Scholar]
  99. Naz S. Gul A. Zia M. Javed R. Synthesis, biomedical applications, and toxicity of CuO nanoparticles. Appl. Microbiol. Biotechnol. 2023 107 4 1039 1061 10.1007/s00253‑023‑12364‑z
    [Google Scholar]
  100. Waris A. Din M. Ali A. Ali M. Afridi S. Baset A. Ullah Khan A. A comprehensive review of green synthesis of copper oxide nanoparticles and their diverse biomedical applications. Inorg. Chem. Commun. 2021 123 108369 10.1016/j.inoche.2020.108369
    [Google Scholar]
  101. Mahmood R.I. Kadhim A.A. Ibraheem S. Albukhaty S. Mohammed-Salih H.S. Abbas R.H. Jabir M.S. Mohammed M.K.A. Nayef U.M. AlMalki F.A. Sulaiman G.M. Al-Karagoly H. Biosynthesis of copper oxide nanoparticles mediated Annona muricata as cytotoxic and apoptosis inducer factor in breast cancer cell lines. Sci. Rep. 2022 12 1 16165 10.1038/s41598‑022‑20360‑y
    [Google Scholar]
  102. Tabrez S. Khan A.U. Mirza A.A. Suhail M. Jabir N.R. Zughaibi T.A. Alam M. Biosynthesis of copper oxide nanoparticles and its therapeutic efficacy against colon cancer. Nanotechnol. Rev. 2022 11 1 1322 1331 10.1515/ntrev‑2022‑0081
    [Google Scholar]
  103. Yugandhar P. Vasavi T. Uma Maheswari Devi P. Savithramma N. Bioinspired green synthesis of copper oxide nanoparticles from Syzygium alternifolium (Wt.) Walp: characterization and evaluation of its synergistic antimicrobial and anticancer activity. Appl. Nanosci. 7 417 427 10.1007/s13204‑017‑0584‑9
    [Google Scholar]
  104. Akintelu S.A. Folorunso A.S. Folorunso F.A. Oyebamiji A.K. Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation. Heliyon 2020 6 7 e04508 10.1016/j.heliyon.2020.e04508
    [Google Scholar]
  105. Hernández-Hernández A.A. Aguirre-Álvarez G. Cariño-Cortés R. Mendoza-Huizar L.H. Jiménez-Alvarado R. Iron oxide nanoparticles: Synthesis, functionalization, and applications in diagnosis and treatment of cancer. Chem. Pap. 2020 74 11 3809 3824 10.1007/s11696‑020‑01229‑8
    [Google Scholar]
  106. Rani N. Saini K. Biogenic metal and metal oxides nanoparticles as anticancer agent: A review. IOP Conf. Ser. Mater. Sci. Eng. 1225 012043 2022 10.1088/1757‑899X/1225/1/012043
    [Google Scholar]
  107. Alphandéry E. Bio-synthesized iron oxide nanoparticles for cancer treatment. Int. J. Pharm. 2020 586 119472 10.1016/j.ijpharm.2020.119472
    [Google Scholar]
  108. Izadiyan Z. Shameli K. Miyake M. Hara H. Mohamad S.E.B. Kalantari K. Taib S.H.M. Rasouli E. Cytotoxicity assay of plant-mediated synthesized iron oxide nanoparticles using Juglans regia green husk extract. Arab. J. Chem. 2020 13 1 2011 2023 10.1016/j.arabjc.2018.02.019
    [Google Scholar]
  109. Abbasi B.A. Iqbal J. Zahra S.A. Bioinspired synthesis and activity characterization of iron oxide nanoparticles made using Rhamnus triquetra leaf extract. Mater. Res. Express 2020 6 1250e7 10.1088/2053‑1591/ab664d
    [Google Scholar]
  110. Wani N. Khanday W. Tirumale S. Biosynthesis of iron oxide nanoparticles using ethyl acetate extract of Chaetomium cupreum and their anticancer activity. Matrix Science Pharma 2020 4 2 23 10.4103/MTSP.MTSP_6_20
    [Google Scholar]
  111. Bharathi D. Preethi S. Abarna K. Nithyasri M. Kishore P. Deepika K. Bio-inspired synthesis of flower shaped iron oxide nanoparticles (FeONPs) using phytochemicals of Solanum lycopersicum leaf extract for biomedical applications. Biocatal. Agric. Biotechnol. 2020 27 101698 10.1016/j.bcab.2020.101698
    [Google Scholar]
  112. Yoonus J. Resmi R. Beena B. Evaluation of antibacterial and anticancer activity of green synthesized iron oxide (α-Fe2O3) nanoparticles. Mater. Today 46 Part 8 2969 2974 2021 10.1016/j.matpr.2020.12.426
    [Google Scholar]
  113. Nagajyothi P.C. Pandurangan M. Kim D.H. Sreekanth T.V.M. Shim J. Green synthesis of iron oxide nanoparticles and their catalytic and in vitro anticancer activities. J. Cluster Sci. 2017 28 1 245 257 10.1007/s10876‑016‑1082‑z
    [Google Scholar]
  114. Karthikeyan C. Sisubalan N. Sridevi M. Biocidal chitosan- magnesium oxide nanoparticles via a green precipitation process. J. Hazard. Mater. 2021 411 124884 10.1016/j.jhazmat.2020.124884
    [Google Scholar]
  115. Fouda A. Eid A.M. Abdel-Rahman M.A. EL-Belely E.F. Awad M.A. Hassan S.E-D. AL-Faifi Z.E. Hamza M.F. Enhanced antimicrobial, cytotoxicity, larvicidal, and repellence activities of brown algae, cystoseira crinita-mediated green synthesis of magnesium oxide nanoparticles. Front. Bioeng. Biotechnol. 2022 10 February 849921 10.3389/fbioe.2022.849921
    [Google Scholar]
  116. Mahmoud A. Ezgi Ö. Merve A. Özhan G. In vitro toxicological assessment of magnesium oxide nanoparticle exposure in several mammalian cell types. Int. J. Toxicol. 2016 35 4 429 437 10.1177/1091581816648624
    [Google Scholar]
  117. Alavi M. Rai M. Martinez F. Kahrizi D. Khan H. Rose Alencar de Menezes I. Douglas Melo Coutinho H. Costa J. The efficiency of metal, metal oxide, and metalloid nanoparticles against cancer cells and bacterial pathogens: Different mechanisms of action. Cell., Mol. Biomed. Rep. 2022 2 1 10 21 10.55705/cmbr.2022.147090.1023
    [Google Scholar]
  118. Fathy R.M. Mahfouz A.Y. Eco-friendly graphene oxide-based magnesium oxide nanocomposite synthesis using fungal fermented by-products and gamma rays for outstanding antimicrobial, antioxidant, and anticancer activities. J. Nanostructure Chem. 2021 11 2 301 321 10.1007/s40097‑020‑00369‑3
    [Google Scholar]
  119. Majeed S. Danish M. Muhadi N.F.B.B. Genotoxicity and apoptotic activity of biologically synthesized magnesium oxide nanoparticles against human lung cancer A-549 cell line. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2018 9 2 025011 10.1088/2043‑6254/aac42c
    [Google Scholar]
  120. Al-Radadi N.S. Laboratory scale medicinal plants mediated green synthesis of biocompatible nanomaterials and their versatile biomedical applications. Saudi J. Biol. Sci. 2022 29 5 3848 3870 10.1016/j.sjbs.2022.02.042
    [Google Scholar]
  121. Grover M. Behl T. Sehgal A. 2021 In vitro phytochemical screening, cytotoxicity studies of Curcuma longa extracts with isolation and characterisation of their isolated compounds. Molecules 26 24 7509 10.3390/molecules26247509
    [Google Scholar]
  122. Burlacu E. Tanase C. Coman N.A. Berta L. A review of bark-extract-mediated green synthesis of metallic nanoparticles and their applications. Molecules 2019 24 23 4354 10.3390/molecules24234354
    [Google Scholar]
  123. Ashour M. Mansour A.T. Abdelwahab A.M. Alprol A.E. Metal oxide nanoparticles’ green synthesis by plants: Prospects in phyto- and bioremediation and photocatalytic degradation of organic pollutants. Processes (Basel) 2023 11 12 3356 10.3390/pr11123356
    [Google Scholar]
  124. Mthana M.S. Mthiyane D.M.N. Onwudiwe D.C. Singh M. Biosynthesis of ZnO nanoparticles using capsicum chinense fruit extract and their in vitro cytotoxicity and antioxidant assay. Appl. Sci. (Basel) 2022 12 9 4451 10.3390/app12094451
    [Google Scholar]
  125. Rajendran A. Alsawalha M. Alomayri T. Biogenic synthesis of husked rice-shaped iron oxide nanoparticles using coconut pulp (Cocos nucifera L.) extract for photocatalytic degradation of Rhodamine B dye and their in vitro antibacterial and anticancer activity. J. Saudi Chem. Soc. 2021 25 9 101307 10.1016/j.jscs.2021.101307
    [Google Scholar]
  126. Srinivasa C. Kumar S.R.S. Pradeep S. Prasad S.K. Veerapur R. Ansari M.A. Alomary M.N. Alghamdi S. Almehmadi M. Gc K. Daphedar A.B. Kakkalameli S.B. Shivamallu C. Kollur S.P. Eco-friendly synthesis of MnO2 nanorods using gmelina arborea fruit extract and its anticancer potency against MCF-7 breast cancer cell line. Int. J. Nanomedicine 2022 17 January 901 907 10.2147/IJN.S335848
    [Google Scholar]
  127. Rajasekar K. Muthukumaravel K. Ashok K. Babu M. Phytosynthesis of copper oxide nanoparticles from Opuntia ficus and its antibreast cancer activity against MCF-7 cell line (invasive ductal carcinoma). Malaya J. Matematik S 2 1 6 2020 10.26637/MJM0S20/1139
    [Google Scholar]
  128. Meer B. Andleeb A. Iqbal J. Ashraf H. Meer K. Ali J.S. Drouet S. Anjum S. Mehmood A. Khan T. Ali M. Hano C. Abbasi B.H. Bio-assisted synthesis and characterization of zinc oxide nanoparticles from Lepidium sativum and their potent antioxidant, antibacterial and anticancer activities. Biomolecules 2022 12 6 855 10.3390/biom12060855
    [Google Scholar]
  129. Saeed F. Younas M. Fazal H. Mushtaq S. Rahman F. Shah M. Anjum S. Ahmad N. Ali M. Hano C. Abbasi B.H. Green and chemically synthesized zinc oxide nanoparticles: effects on in-vitro seedlings and callus cultures of Silybum marianum and evaluation of their antimicrobial and anticancer potential. Artif. Cells Nanomed. Biotechnol. 2021 49 1 450 460 10.1080/21691401.2021.1926274
    [Google Scholar]
  130. Tammina S.K. Mandal B.K. Ranjan S. Dasgupta N. Cytotoxicity study of Piper nigrum seed mediated synthesized SnO2 nanoparticles towards colorectal (HCT116) and lung cancer (A549) cell lines. J. Photochem. Photobiol. B 2017 166 158 168 10.1016/j.jphotobiol.2016.11.017
    [Google Scholar]
  131. Radwan A.M. Aboelfetoh E.F. Kimura T. Mohamed T.M. El-Keiy M.M. Fenugreek-mediated synthesis of zinc oxide nanoparticles and evaluation of its in vitro and in vivo antitumor potency. Biomed. Res. Ther. 2021 8 8 4483 4496 10.15419/bmrat.v8i8.687
    [Google Scholar]
  132. Mohamed H.Y.G. Ismail E.H. Elaasser M.M. Khalil M.M.H. Green synthesis of zinc oxide nanoparticles using portulaca oleracea (regla seeds) extract and its biomedical applications. Egypt. J. Chem. 2021 64 2 661 672 10.21608/ejchem.2020.45592.2930
    [Google Scholar]
  133. Malaikozhundan B. Vaseeharan B. Vijayakumar S. Pandiselvi K. Kalanjiam M.A.R. Murugan K. Benelli G. Biological therapeutics of Pongamia pinnata coated zinc oxide nanoparticles against clinically important pathogenic bacteria, fungi and MCF-7 breast cancer cells. Microb. Pathog. 2017 104 268 277 10.1016/j.micpath.2017.01.029
    [Google Scholar]
  134. Li J. Li Y. Wu H. Naraginti S. Wu Y. Facile synthesis of ZnO nanoparticles by Actinidia deliciosa fruit peel extract: Bactericidal, anticancer and detoxification properties. Environ. Res. 2021 200 April 111433 10.1016/j.envres.2021.111433
    [Google Scholar]
  135. Mohamad Sukri S.N.A. Shameli K. Mei-Theng Wong M. Teow S.Y. Chew J. Ismail N.A. Cytotoxicity and antibacterial activities of plant-mediated synthesized zinc oxide (ZnO) nanoparticles using Punica granatum (pomegranate) fruit peels extract. J. Mol. Struct. 2019 1189 57 65 10.1016/j.molstruc.2019.04.026
    [Google Scholar]
  136. Renuka M. Soundhari C. Antibacterial and anticancer activity of green synthesised titanium dioxide nanoparticle from Terminalia chebula. World J. Pharm. Res. 2017 7 2 1164 1179 10.20959/wjpr20182‑10751
    [Google Scholar]
  137. Mobeen Amanulla A. Sundaram R. Green synthesis of TiO2 nanoparticles using orange peel extract for antibacterial, cytotoxicity and humidity sensor applications. Mater. Today Proc. 2019 8 323 331 10.1016/j.matpr.2019.02.118
    [Google Scholar]
  138. Yusefi M. Shameli K. Ali R.R. Pang S.W. Teow S.Y. Evaluating anticancer activity of plant-mediated synthesized iron oxide nanoparticles using Punica granatum fruit peel extract. J. Mol. Struct. 2020 1204 127539 10.1016/j.molstruc.2019.127539
    [Google Scholar]
  139. Ahn E.Y. Shin S.W. Kim K. Park Y. Facile green synthesis of titanium dioxide nanoparticles by upcycling mangosteen (Garcinia mangostana) pericarp extract. Nanoscale Res. Lett. 2022 17 1 40 10.1186/s11671‑022‑03678‑4
    [Google Scholar]
  140. Ruangtong J. T-Thienprasert J. T-Thienprasert N.P. Green synthesized ZnO nanosheets from banana peel extract possess anti-bacterial activity and anti-cancer activity. Mater. Today Commun. 2020 24 101224 10.1016/j.mtcomm.2020.101224
    [Google Scholar]
  141. Hariharan D. Srinivasan K. Lc N. Synthesis and characterization of TiO2 nanoparticles using Cynodon dactylon leaf extract for antibacterial and anticancer (A549 cell lines) activity. J. Nanomed. Res. 2017 5 6 10.15406/jnmr.2017.05.00138
    [Google Scholar]
  142. Jayappa M.D. Ramaiah C.K. Kumar M.A.P. Suresh D. Prabhu A. Devasya R.P. Sheikh S. Green synthesis of zinc oxide nanoparticles from the leaf, stem and in vitro grown callus of Mussaenda frondosa L.: characterization and their applications. Appl. Nanosci. 2020 10 8 3057 3074 10.1007/s13204‑020‑01382‑2
    [Google Scholar]
  143. Jan H. Shah M. Andleeb A. Faisal S. Khattak A. Rizwan M. Drouet S. Hano C. Abbasi B.H. Plant‐based synthesis of zinc oxide nanoparticles (zno‐nps) using aqueous leaf extract of Aquilegia pubiflora: Their antiproliferative activity against HepG2 cells inducing reactive oxygen species and other in vitro properties. Oxid. Med. Cell. Longev. 2021 2021 1 4786227 10.1155/2021/4786227
    [Google Scholar]
  144. Resmi R. Yoonus J. Beena B. A novel greener synthesis of ZnO nanoparticles from Nilgiriantusciliantus leaf extract and evaluation of its biomedical applications. Mater. Today 2020 46 Part 8 3062 3068 10.1016/j.matpr.2021.02.498
    [Google Scholar]
  145. Rao T.N. Riyazuddin Babji P. Ahmad N. Khan R.A. Hassan I. Shahzad S.A. Husain F.M. Green synthesis and structural classification of Acacia nilotica mediated-silver doped titanium oxide (Ag/TiO2) spherical nanoparticles: Assessment of its antimicrobial and anticancer activity. Saudi J. Biol. Sci. 2019 26 7 1385 1391 10.1016/j.sjbs.2019.09.005
    [Google Scholar]
  146. Iqbal H. Razzaq A. Uzair B. Ul Ain N. Sajjad S. Althobaiti N.A. Albalawi A.E. Menaa B. Haroon M. Khan M. Khan N.U. Menaa F. Breast cancer inhibition by biosynthesized titanium dioxide nanoparticles is comparable to free doxorubicin but appeared safer in balb/c mice. Materials (Basel) 2021 14 12 3155 10.3390/ma14123155
    [Google Scholar]
  147. Chinnathambi A. Ali Alharbi S. Joshi D. Lenin H. [Retracted] Anticancer and free radical scavenging competence of zinc oxide nanoparticles synthesized by aqueous leaf extract of Phyllanthus acidus. Bioinorg. Chem. Appl. 2022 2022 1 9493816 10.1155/2022/9493816
    [Google Scholar]
  148. He F. Yu W. Fan X. Jin B. in vitro cytotoxicity of biosynthesized titanium dioxide nanoparticles in human prostate cancer cell lines. Trop. J. Pharm. Res. 2018 16 12 2793 2799 10.4314/tjpr.v16i12.2
    [Google Scholar]
  149. Sharmila G. Thirumarimurugan M. Muthukumaran C. Green synthesis of ZnO nanoparticles using Tecoma castanifolia leaf extract: Characterization and evaluation of its antioxidant, bactericidal and anticancer activities. Microchem. J. 2019 145 578 587 10.1016/j.microc.2018.11.022
    [Google Scholar]
  150. Suresh J. Pradheesh G. Alexramani V. Sundrarajan M. Hong S.I. Green synthesis and characterization of zinc oxide nanoparticle using insulin plant (Costus pictus D. Don) and investigation of its antimicrobial as well as anticancer activities. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2018 9 1 015008 10.1088/2043‑6254/aaa6f1
    [Google Scholar]
  151. Burlacu E. Tanase C. Anticancer potential of natural bark products—a review. Plants 2021 10 9 1895 10.3390/plants10091895
    [Google Scholar]
  152. Jayarambabu N. Venkatappa Rao T. Rakesh Kumar R. Akshaykranth A. Shanker K. Suresh V. Anti-hyperglycemic, pathogenic and anticancer activities of Bambusa arundinacea mediated Zinc Oxide nanoparticles. Mater. Today Commun. 2021 26 May 101688 10.1016/j.mtcomm.2020.101688
    [Google Scholar]
  153. Sathappan S. Kirubakaran N. Gunasekaran D. Gupta P.K. Verma R.S. Sundaram J. Green synthesis of zinc oxide nanoparticles (ZnO NPs) using Cissus quadrangularis: Characterization, antimicrobial and anticancer studies. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 2021 91 2 289 296 10.1007/s40011‑020‑01215‑w
    [Google Scholar]
  154. Umar H. Kavaz D. Rizaner N. Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines. Int. J. Nanomedicine 2018 14 87 100 10.2147/IJN.S186888
    [Google Scholar]
  155. Al-Harbi L.N. Al-Shammari G.M. Subash-Babu P. Mohammed M.A. Alkreadees R.A. Yagoub A.E.A. Cinchona officinalis phytochemicals-loaded iron oxide nanoparticles induce cytotoxicity and stimulate apoptosis in MCF-7 human breast cancer cells. Nanomaterials (Basel) 2022 12 19 3393 10.3390/nano12193393
    [Google Scholar]
  156. Manasa D.J. Chandrashekar K.R. Madhu Kumar D.J. Niranjana M. Navada K.M. Mussaenda frondosa L. mediated facile green synthesis of Copper oxide nanoparticles – Characterization, photocatalytic and their biological investigations. Arab. J. Chem. 2021 14 6 103184 10.1016/j.arabjc.2021.103184
    [Google Scholar]
  157. Norouzi Jobie F. Ranjbar M. Hajizadeh Moghaddam A. Kiani M. Green synthesis of zinc oxide nanoparticles using Amygdalus scoparia Spach stem bark extract and their applications as an alternative antimicrobial, anticancer, and anti-diabetic agent. Adv. Powder Technol. 2021 32 6 2043 2052 10.1016/j.apt.2021.04.014
    [Google Scholar]
  158. Naser R. Abu-Huwaij R. Al-khateeb I. Abbas M.M. Atoom A.M. Green synthesis of zinc oxide nanoparticles using the root hair extract of Phoenix dactylifera: Antimicrobial and anticancer activity. Appl. Nanosci. 2021 11 5 1747 1757 10.1007/s13204‑021‑01837‑0
    [Google Scholar]
  159. Aswini R. Murugesan S. Kannan K. Bio-engineered TiO 2 nanoparticles using Ledebouria revoluta extract: Larvicidal, histopathological, antibacterial and anticancer activity. Int. J. Environ. Anal. Chem. 2021 101 15 2926 2936 10.1080/03067319.2020.1718668
    [Google Scholar]
  160. Maheswari P. Harish S. Navaneethan M. Muthamizhchelvan C. Ponnusamy S. Hayakawa Y. Bio-modified TiO2 nanoparticles with Withania somnifera, Eclipta prostrata and Glycyrrhiza glabra for anticancer and antibacterial applications. 108 110457 Mater. Sci. Eng.: C 2020 10.1016/j.msec.2019.110457
    [Google Scholar]
  161. Zhang H. Liang Z. Zhang J. Wang W. Zhang H. Lu Q. Zinc oxide nanoparticle synthesized from Euphorbia fischeriana root inhibits the cancer cell growth through modulation of apoptotic signaling pathways in lung cancer cells. Arab. J. Chem. 2020 13 7 6174 6183 10.1016/j.arabjc.2020.05.020
    [Google Scholar]
  162. Saravanakumar K. Wang M.H. Biogenic silver embedded magnesium oxide nanoparticles induce the cytotoxicity in human prostate cancer cells. Adv. Powder Technol. 2019 30 4 786 794 10.1016/j.apt.2019.01.007
    [Google Scholar]
  163. Faisal S. Abdullah Jan H. Shah S.A. Shah S. Rizwan M. Zaman N. Hussain Z. Uddin M.N. Bibi N. Khattak A. Khan W. Iqbal A. Idrees M. Masood R. Bio-catalytic activity of novel mentha arvensis intervened biocompatible magnesium oxide nanomaterials. Catalysts 2021 11 7 780 10.3390/catal11070780
    [Google Scholar]
  164. Alavi M. Varma R.S. Phytosynthesis and modification of metal and metal oxide nanoparticles/nanocomposites for antibacterial and anticancer activities: Recent advances. Sustain. Chem. Pharm. 2021 21 March 100412 10.1016/j.scp.2021.100412
    [Google Scholar]
  165. Hembram K.C. Kumar R. Kandha L. Parhi P.K. Kundu C.N. Bindhani B.K. Therapeutic prospective of plant-induced silver nanoparticles: Application as antimicrobial and anticancer agent. Artif. Cells Nanomed. Biotechnol. 46 Suppl 3 38 51 2018 10.1080/21691401.2018.1489262
    [Google Scholar]
  166. Sivakumar P. Lee M. Kim Y.S. Shim M.S. Photo-triggered antibacterial and anticancer activities of zinc oxide nanoparticles. J. Mater. Chem. B 6 4852 4871 2018 10.1039/C8TB00948A
    [Google Scholar]
  167. Gour A. Jain N.K. Advances in green synthesis of nanoparticles. Artif. Cells Nanomed. Biotechnol. 2019 47 1 844 851 10.1080/21691401.2019.1577878
    [Google Scholar]
  168. Salem S.S. Fouda A. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: An overview. Biol. Trace Elem. Res. 2021 199 1 344 370 10.1007/s12011‑020‑02138‑3
    [Google Scholar]
  169. Jamkhande P.G. Ghule N.W. Bamer A.H. Kalaskar M.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol. 2019 53 July 101174 10.1016/j.jddst.2019.101174
    [Google Scholar]
  170. Subashini K. Prakash S. Sujatha V. Polymer nanocomposite prepared using copper oxide nanoparticles derived from Sterculia foetida leaf extract with biological applications. Mater. Res. Express 2020 7 11 115308 10.1088/2053‑1591/abc979
    [Google Scholar]
  171. Hussain I. Singh N.B. Singh A. Singh H. Singh S.C. Green synthesis of nanoparticles and its potential application. Biotechnol. Lett. 2016 38 4 545 560 10.1007/s10529‑015‑2026‑7
    [Google Scholar]
  172. Roy A. Ananda Murthy H.C. Ahmed H.M. Islam M.N. Prasad R. Phytogenic synthesis of metal/metal oxide nanoparticles for degradation of dyes. J. Renew. Mater. 2022 10 7 1911 1930 10.32604/jrm.2022.019410
    [Google Scholar]
  173. Patil S.P. Chaudhari R.Y. Nemade M.S. Azadirachta indica leaves mediated green synthesis of metal oxide nanoparticles: A review. Talanta Open 2022 5 January 100083 10.1016/j.talo.2022.100083
    [Google Scholar]
  174. Ataei N. Soodi M. Hajimehdipoor H. Akbari S. Alimohammadi M. Cerasus microcarpa and amygdalus scoparia methanolic extract protect cultured cerebellar granule neurons against β-amyloid-induced toxicity and oxidative stress. J. Adv. Med. Biomed. Res. 2020 28 126 23 32 10.30699/jambs.28.126.23
    [Google Scholar]
  175. Mohd Zaini H. Roslan J. Saallah S. Munsu E. Sulaiman N. S. Pindi W. Banana peels as a bioactive ingredient and its potential application in the food industry. J. Funct. Foods 92 105054 2022 10.1016/j.jff.2022.105054
    [Google Scholar]
  176. Jayakar V. Lokapur V. Nityasree B.R. Chalannavar R.K. Lasrado L.D. Shantaram M. Optimization and green synthesis of zinc oxide nanoparticle using Garcinia cambogia leaf and evaluation of their antioxidant and anticancer property in kidney cancer (A498) cell lines. Biomedicine (Taipei) 2021 41 2 206 222 10.51248/.v41i2.785
    [Google Scholar]
  177. Che Hassan N.K.N. Taher M. Susanti D. Phytochemical constituents and pharmacological properties of Garcinia xanthochymus - A review. Biomed. Pharmacother. 2018 106 April 1378 1389 10.1016/j.biopha.2018.07.087
    [Google Scholar]
  178. Sana S.S. Kumbhakar D.V. Pasha A. Pawar S.C. Grace A.N. Singh R.P. Nguyen V-H. Le Q.V. Peng W. Crotalaria verrucosa leaf extract mediated synthesis of zinc oxide nanoparticles: Assessment of antimicrobial and anticancer activity. Molecules 2020 25 21 4896 10.3390/molecules25214896
    [Google Scholar]
  179. Kolahalam L.A. Prasad K.R.S. Murali Krishna P. Supraja N. Saussurea lappa plant rhizome extract-based zinc oxide nanoparticles: Synthesis, characterization and its antibacterial, antifungal activities and cytotoxic studies against Chinese Hamster Ovary (CHO) cell lines. Heliyon 2021 7 6 e07265 10.1016/j.heliyon.2021.e07265
    [Google Scholar]
  180. Thao T.T. Green synthesis of ZnO dopped Piper chaudocanum leaf extract by co-precipitation method: Characterization, antibacterial and anticancer activity. Res. Sq. 2023 10.21203/rs.3.rs‑2686273/v1
    [Google Scholar]
  181. Ahmar Rauf M. Oves M. Ur Rehman F. Rauf Khan A. Husain N. Bougainvillea flower extract mediated zinc oxide’s nanomaterials for antimicrobial and anticancer activity. Biomed. Pharmacother. 2019 116 May 108983 10.1016/j.biopha.2019.108983
    [Google Scholar]
  182. Dhatwalia J. Dhatwalia J. Kumari A. Rubus ellipticus Sm. fruit extract mediated zinc oxide nanoparticles: A green approach for dye degradation and biomedical applications. 2022 Materials 15 10 3470 10.3390/ma15103470
    [Google Scholar]
  183. Iqbal J. Abbasi B.A. Mahmood T. Kanwal S. Ahmad R. Ashraf M. Plant-extract mediated green approach for the synthesis of ZnONPs: Characterization and evaluation of cytotoxic, antimicrobial and antioxidant potentials. J. Mol. Struct. 2019 1189 315 327 10.1016/j.molstruc.2019.04.060
    [Google Scholar]
  184. Khan A.K. Renouard S. Drouet S. Blondeau J-P. Anjum I. Hano C. Abbasi B.H. Anjum S. Effect of uv irradiation (A and c) on casuarina equisetifolia-mediated biosynthesis and characterization of antimicrobial and anticancer activity of biocompatible zinc oxide nanoparticles. Pharmaceutics 2021 13 11 1977 10.3390/pharmaceutics13111977
    [Google Scholar]
  185. Chinnathambi A. Alahmadi T.A. Zinc nanoparticles green-synthesized by Alhagi maurorum leaf aqueous extract: Chemical characterization and cytotoxicity, antioxidant, and anti-osteosarcoma effects. Arab. J. Chem. 2021 14 4 103083 10.1016/j.arabjc.2021.103083
    [Google Scholar]
  186. Sen M. Dash B. A review on phytochemical and pharmacological aspects of Cissus quadrangularis L. Int. J. Green Pharm. 2012 6 3 169 173 10.4103/0973‑8258.104924
    [Google Scholar]
  187. Dobrucka R. Romaniuk-Drapała A. Kaczmarek M. Biologically synthesized of Au/Pt/ZnO nanoparticles using Arctium lappa extract and cytotoxic activity against leukemia. Biomed. Microdevices 2020 22 4 72 10.1007/s10544‑020‑00526‑z
    [Google Scholar]
  188. Al-Shabib N.A. Husain F.M. Qais F.A. Ahmad N. Khan A. Alyousef A.A. Arshad M. Noor S. Khan J.M. Alam P. Albalawi T.H. Shahzad S.A. Phyto-mediated synthesis of porous titanium dioxide nanoparticles from Withania somnifera root extract: Broad-spectrum attenuation of biofilm and cytotoxic properties against HepG2 cell lines. Front. Microbiol. 2020 11 1680 10.3389/fmicb.2020.01680
    [Google Scholar]
  189. Arya P. Chauhan R.S. Phytochemical evaluation of Withania somnifera extracts. J. Pharmacogn. Phytochem. 2019 8 5 2422 2424 10.13140/RG.2.2.26969.67687
    [Google Scholar]
  190. Kumar R. Rani R. Hajam Y.A. Rai S. Phytochemical profiling and antioxidant activity of cinnamomum tamala methanolic leaf extract. 2022
    [Google Scholar]
  191. Manimaran K. Natarajan D. Balasubramani G. Murugesan S. Pleurotus sajor caju Mediated TiO2 Nanoparticles: A Novel Source for Control of Mosquito Larvae, Human Pathogenic Bacteria and Bone Cancer Cells. J. Cluster Sci. 2022 33 4 1489 1499 10.1007/s10876‑021‑02073‑w
    [Google Scholar]
  192. Oikeh E.I. Oviasogie F.E. Omoregie E.S. Quantitative phytochemical analysis and antimicrobial activities of fresh and dry ethanol extracts of Citrus sinensis (L.) Osbeck (sweet Orange) peels. Clinical Phytoscience 2020 6 1 46 10.1186/s40816‑020‑00193‑w
    [Google Scholar]
  193. Narayanan M. Vigneshwari P. Natarajan D. Kandasamy S. Alsehli M. Elfasakhany A. Pugazhendhi A. Synthesis and characterization of TiO2 NPs by aqueous leaf extract of Coleus aromaticus and assess their antibacterial, larvicidal, and anticancer potential. Environ. Res. 2021 200 April 111335 10.1016/j.envres.2021.111335
    [Google Scholar]
  194. Wei X. Liu Y. El-kott A. Ahmed A.E. Khames A. Calendula officinalis-based green synthesis of titanium nanoparticle: Fabrication, characterization, and evaluation of human colorectal carcinoma. J. Saudi Chem. Soc. 2021 25 11 101343 10.1016/j.jscs.2021.101343
    [Google Scholar]
  195. Vemuri P.K. Dronavalli L. Nayakudugari P. Kunta A. Challagulla R. Phytochemical analysis and biochemical characterization of terminalia chebula extracts for its medicinal use. Biomed. Pharmacol. J. 2019 12 3 1525 1529 10.13005/bpj/1783
    [Google Scholar]
  196. Gamedze N.P. Mthiyane D.M.N. Babalola O.O. Singh M. Onwudiwe D.C. Physico-chemical characteristics and cytotoxicity evaluation of CuO and TiO2 nanoparticles biosynthesized using extracts of Mucuna pruriens utilis seeds. Heliyon 2022 8 8 e10187 10.1016/j.heliyon.2022.e10187
    [Google Scholar]
  197. Rehman S. Jermy R. Mousa Asiri S. Shah M.A. Farooq R. Ravinayagam V. Azam Ansari M. Alsalem Z. Al Jindan R. Reshi Z. Khan F.A. Using Fomitopsis pinicola for bioinspired synthesis of titanium dioxide and silver nanoparticles, targeting biomedical applications. RSC Advances 2020 10 53 32137 32147 10.1039/D0RA02637A
    [Google Scholar]
  198. Maheswari P. Harish S. Ponnusamy S. Muthamizhchelvan C. A novel strategy of nanosized herbal Plectranthus amboinicus, Phyllanthus niruri and Euphorbia hirta treated TiO2 nanoparticles for antibacterial and anticancer activities. Bioprocess Biosyst. Eng. 2021 44 8 1593 1616 10.1007/s00449‑020‑02491‑6
    [Google Scholar]
  199. Bhuiyan M.S.H. Miah M.Y. Paul S.C. Aka T.D. Saha O. Rahaman M.M. Sharif M.J.I. Habiba O. Ashaduzzaman M. Green synthesis of iron oxide nanoparticle using Carica papaya leaf extract: Application for photocatalytic degradation of remazol yellow RR dye and antibacterial activity. Heliyon 2020 6 8 e04603 10.1016/j.heliyon.2020.e04603
    [Google Scholar]
  200. El-Rafie H.M. El-Aziz S.M.A. Zahran M.K. in vitro cytotoxicity against breast cancer using biogenically synthesized gold and iron oxide nanoparticles derived from the hydroethanolic extract of Salvia officinalis L. Chem. Zvesti 2023 77 1 361 373 10.1007/s11696‑022‑02464‑x
    [Google Scholar]
  201. Sathishkumar G. Logeshwaran V. Sarathbabu S. Jha P.K. Jeyaraj M. Rajkuberan C. Senthilkumar N. Sivaramakrishnan S. Green synthesis of magnetic Fe 3 O 4 nanoparticles using Couroupita guianensis Aubl. fruit extract for their antibacterial and cytotoxicity activities. Artif. Cells Nanomed. Biotechnol. 2018 46 3 589 598 10.1080/21691401.2017.1332635
    [Google Scholar]
  202. Abbasi B.A. Iqbal J. Mahmood T. Qyyum A. Kanwal S. Biofabrication of iron oxide nanoparticles by leaf extract of Rhamnus virgata: Characterization and evaluation of cytotoxic, antimicrobial and antioxidant potentials. Appl. Organomet. Chem. 2019 33 7 e4947 10.1002/aoc.4947
    [Google Scholar]
  203. Ahmadi S. Fazilati M. Nazem H. Mousavi S.M. Green synthesis of magnetic nanoparticles using satureja hortensis essential oil toward superior antibacterial/fungal and anticancer performance. BioMed Res. Int. 2021 2021 1 14 10.1155/2021/8822645
    [Google Scholar]
  204. Abdollahzadeh H. Pazhang Y. Zamani A. Sharafi Y. Green synthesis of copper oxide nanoparticles using walnut shell and their size dependent anticancer effects on breast and colorectal cancer cell lines. Sci. Rep. 2024 14 1 20323 10.1038/s41598‑024‑71234‑4
    [Google Scholar]
  205. Jahanban-Esfahlan A. Ostadrahimi A. Tabibiazar M. Amarowicz R. A comprehensive review on the chemical constituents and functional uses of walnut (Juglans spp.) husk. Int. J. Mol. Sci. 2019 20 16 3920 10.3390/ijms20163920
    [Google Scholar]
  206. Zughaibi T.A. Mirza A.A. Suhail M. Jabir N.R. Zaidi S.K. Wasi S. Zawawi A. Tabrez S. Evaluation of anticancer potential of biogenic copper oxide nanoparticles (CuO NPs) against breast cancer. J. Nanomater. 2022 2022 1 5326355 10.1155/2022/5326355
    [Google Scholar]
  207. Gnanavel V. Palanichamy V. Roopan S.M. Biosynthesis and characterization of copper oxide nanoparticles and its anticancer activity on human colon cancer cell lines (HCT-116). J. Photochem. Photobiol. B 2017 171 133 138 10.1016/j.jphotobiol.2017.05.001
    [Google Scholar]
  208. Chinnathambi A. Awad Alahmadi T. Ali Alharbi S. Biogenesis of copper nanoparticles (Cu-NPs) using leaf extract of Allium noeanum, antioxidant and in-vitro cytotoxicity. Artif. Cells Nanomed. Biotechnol. 2021 49 1 500 510 10.1080/21691401.2021.1926275
    [Google Scholar]
  209. Dou L. Zhang X. Zangeneh M.M. Zhang Y. Efficient biogenesis of Cu2O nanoparticles using extract of Camellia sinensis leaf: Evaluation of catalytic, cytotoxicity, antioxidant, and anti-human ovarian cancer properties. Bioorg. Chem. 106 104468 2021 10.1016/j.bioorg.2020.104468
    [Google Scholar]
  210. Nagajyothi P.C. Muthuraman P. Sreekanth T.V.M. Kim D.H. Shim J. Green synthesis: In-vitro anticancer activity of copper oxide nanoparticles against human cervical carcinoma cells. Arab. J. Chem. 2017 10 2 215 225 10.1016/j.arabjc.2016.01.011
    [Google Scholar]
  211. Sivaraj R. Rahman P.K.S.M. Rajiv P. Narendhran S. Venckatesh R. Biosynthesis and characterization of Acalypha indica mediated copper oxide nanoparticles and evaluation of its antimicrobial and anticancer activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014 129 255 258 10.1016/j.saa.2014.03.027
    [Google Scholar]
  212. Priya V.T. Balasubramanian N. Shanmugaiah V. Karunakaran C. Phyotochemical properties of acalypha indica (L), and its antimicrobial potential against human pathogens. J. Pure Appl. Microbiol. 2020 14 1 319 326 10.22207/JPAM.14.1.33
    [Google Scholar]
  213. Agila A. Vimala J.D.R. Bharathy M.S. Dayana Jeyaleela G. Sheela S.A.M. Anti-Oxidant and anti-cancer activities of biogenic synthesized copper oxide nanoparticles. Biomed. Biotechnol. Res. J. 2022 6 3 341 348 10.4103/bbrj.bbrj_136_22
    [Google Scholar]
  214. Vasantharaj S. Sathiyavimal S. Bharathi D. Pannerselvam B. Jeon S. Srituravanich W. Biosynthesis of copper oxide nanoparticles using Tecoma stans flower extract and its antibacterial, anticancer, and photocatalytic activities. Biocatal. Agric. Biotechnol. 2024 58 103137 10.1016/j.bcab.2024.103137
    [Google Scholar]
  215. Amina M. Al Musayeib N.M. Alarfaj N.A. El-Tohamy M.F. Oraby H.F. Al Hamoud G.A. Bukhari S.I. Moubayed N.M.S. Biogenic green synthesis of MgO nanoparticles using Saussurea costus biomasses for a comprehensive detection of their antimicrobial, cytotoxicity against MCF-7 breast cancer cells and photocatalysis potentials. PLoS One 2020 15 8 e0237567 10.1371/journal.pone.0237567
    [Google Scholar]
  216. Ali S. Sudha K.G. Thirumalaivasan N. Ahamed M. Pandiaraj S. Rajeswari V.D. Vinayagam Y. Thiruvengadam M. Govindasamy R. Green synthesis of magnesium oxide nanoparticles by using Abrus precatorius bark extract and their photocatalytic, antioxidant, antibacterial, and cytotoxicity activities. Bioengineering (Basel) 2023 10 3 302 10.3390/bioengineering10030302
    [Google Scholar]
  217. Winthachai V. Green synthesis of magnesium oxide nanoparticles using Brassica oleracea and Punica granatum peels and their anticancer and photocatalytic activity. Asian J. Chem. 2015 27 9 3507 3510 10.14233/ajchem.2015.19131
    [Google Scholar]
  218. Pugazhendhi A. Prabhu R. Muruganantham K. Shanmuganathan R. Natarajan S. Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgONPs) using aqueous extract of Sargassum wightii. J. Photochem. Photobiol. B 2019 190 86 97 10.1016/j.jphotobiol.2018.11.014
    [Google Scholar]
  219. Mahlawat G. Virmani T. Arif M. Enhancement of therapeutic action of anti-hyperlipidemic drugs by using a novel nanosuspension-based approach. Int. J. Pharm. Sci. Res. 2023 14 4 1679 1690 10.13040/IJPSR.0975‑8232.14(4).1679‑90
    [Google Scholar]
  220. Summer M. Ashraf R. Ali S. Bach H. Noor S. Noor Q. Riaz S. Khan R.R.M. Inflammatory response of nanoparticles: Mechanisms, consequences, and strategies for mitigation. Chemosphere 2024 363 142826 10.1016/j.chemosphere.2024.142826
    [Google Scholar]
  221. Morgan R.N. Aboshanab K.M. Green biologically synthesized metal nanoparticles: Biological applications, optimizations and future prospects. Future Sci. OA 2024 10 1 FSO935 10.2144/fsoa‑2023‑0196
    [Google Scholar]
  222. Ghosh S. Sarkar B. Ranadheera C.S. Thongmee S. Chapter 6 - Synergistic effects of plant extracts and nanoparticles for therapy. Nanotechnology and In Silico Tools Elsevier 2024 75 87 10.1016/B978‑0‑443‑15457‑7.00003‑4
    [Google Scholar]
  223. Sharma A. Virmani T. Kumar G. Sharma A. Virmani R. Gugulothu D. Singh K. Misra S.K. Pathak K. Chitranshi N. Coutinho H.D.M. Jain D. Mitochondrial signaling pathways and their role in cancer drug resistance. Cell. Signal. 2024 122 111329 10.1016/j.cellsig.2024.111329
    [Google Scholar]
  224. Virmani R. Virmani T. Pathak K. Chapter 17 - Nanovesicles for delivery of central nervous system drugs. Applications of Nanovesicular Drug Delivery Academic Press 2022 315 339 10.1016/B978‑0‑323‑91865‑7.00004‑3
    [Google Scholar]
  225. Chavda V.P. Nalla L.V. Balar P. Bezbaruah R. Apostolopoulos V. Singla R.K. Khadela A. Vora L. Uversky V.N. Advanced phytochemical-based nanocarrier systems for the treatment of breast cancer. Cancers (Basel) 2023 15 4 1023 10.3390/cancers15041023
    [Google Scholar]
  226. Alam M.S. Javed M.N. Ansari J.R. Metallic Nanoparticles for Health and the Environment CRC Press Boca Raton 2023 1st ed 10.1201/9781003317319
    [Google Scholar]
  227. Sameer R. Nidhi S. Tarun V. Charan S. Jyoti G. A review on naturally derived compounds for potential anticancer activity. Indian J. drugs 2016 4 3 75 86
    [Google Scholar]
  228. Vinardell M. Mitjans M. Antitumor activities of metal oxide nanoparticles. Nanomaterials (Basel) 2015 5 2 1004 1021 10.3390/nano5021004
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128329342241120105041
Loading
/content/journals/cpd/10.2174/0113816128329342241120105041
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test