Skip to content
2000
Volume 30, Issue 42
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Additive manufacturing, sometimes referred to as 3D printing or AM, has numerous applications in industries like manufacturing, aviation, aerospace, vehicles, and education. It has recently made considerable inroads into the healthcare industry, backed by technology breakthroughs such as fused deposition modeling, binder jetting, and inkjet printing. A variety of biomaterials, such as polycaprolactone, polycarbonate, polypropylene, and polylactic acid, have contributed to this increase. This essay delves into the revolutionary possibilities of 3D printing in healthcare, to shed light on the idea of customized medications the improvement of efficiency and cost. Researchers are using polymers and additive manufacturing to make customized medical devices. However, obstacles including bureaucratic hurdles, technological developments, and the choice of appropriate materials and printers stand in the way of widespread implementation. To fully realize the promise of 3D printing in healthcare, these challenges must be overcome. The article highlights the revolutionary potential of 3D printing in healthcare by following its development from art and construction to customized drugs and patient-specific medical equipment. In addition to addressing issues like quality control and technological limitations, it emphasizes its wide range of applications in surgical planning, dentistry, and anatomical models. The necessity of adapting regulations and instructional programs is highlighted by discussing future trends like bioprinting and FDA-approved innovations. In order to properly utilize 3D printing in healthcare, this adaption is essential. Personalized prescriptions and increased efficacy from the incorporation of 3D printing could revolutionize the healthcare industry. But even with these advances, problems like choosing the right materials and getting over administrative roadblocks prevent widespread implementation. These challenges need to be successfully overcome for 3D printing in healthcare to reach its full potential.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128324761240828064443
2024-09-12
2024-11-21
Loading full text...

Full text loading...

References

  1. LitmanT. Personalized medicine-concepts, technologies, and applications in inflammatory skin diseases.Acta Pathol. Microbiol. Scand. Suppl.2019127538642410.1111/apm.1293431124204
    [Google Scholar]
  2. Prodan ŽitnikI. ČerneD. ManciniI. SimiL. PazzagliM. Di RestaC. PodgornikH. Repič LampretB. Trebušak PodkrajšekK. SipekyC. van SchaikR. BrandslundI. VermeerschP. SchwabM. MarcJ. Personalized laboratory medicine: A patient-centered future approach.Clin Chem Lab Med (CCLM)201856121981199110.1515/cclm‑2018‑018129990304
    [Google Scholar]
  3. RuiY. GangX. Shuang-ShuangM. Hua-YuY. Xin-TingS. WeiS. Yi-LeiM. Three-dimensional printing: Review of application in medicine and hepatic surgery.Cancer Biol. Med.201613444345110.20892/j.issn.2095‑3941.2016.007528154775
    [Google Scholar]
  4. ChenG. XuY. Chi Lip KwokP. KangL. Pharmaceutical applications of 3D printing.Addit. Manuf.20203410120910.1016/j.addma.2020.101209
    [Google Scholar]
  5. PandeyM. ChoudhuryH. FernJ.L.C. KeeA.T.K. KouJ. JingJ.L.J. HerH.C. YongH.S. MingH.C. BhattamisraS.K. GorainB. 3D printing for oral drug delivery: A new tool to customize drug delivery.Drug Deliv. Transl. Res.2020104986100110.1007/s13346‑020‑00737‑032207070
    [Google Scholar]
  6. PuglieseR. BeltramiB. RegondiS. LunettaC. Polymeric biomaterials for 3D printing in medicine: An overview.Annal 3D Printed Med20212210001110.1016/j.stlm.2021.100011.
    [Google Scholar]
  7. DizonJ.R.C. EsperaA.H.Jr ChenQ. AdvinculaR.C. Mechanical characterization of 3D-printed polymers.Addit. Manuf.201820446710.1016/j.addma.2017.12.002
    [Google Scholar]
  8. MillerA.T. SafranskiD.L. WoodC. GuldbergR.E. GallK. Deformation and fatigue of tough 3D printed elastomer scaffolds processed by fused deposition modeling and continuous liquid interface production.J. Mech. Behav. Biomed. Mater.20177511310.1016/j.jmbbm.2017.06.03828689135
    [Google Scholar]
  9. SteyrerB. NeubauerP. LiskaR. StampflJ. Visible light photoinitiator for 3D-printing of tough methacrylate resins.Materials (Basel)20171012144510.3390/ma1012144529257107
    [Google Scholar]
  10. NuseirA. HatamlehM.M. AlnazzawiA. Al-Rabab’ahM. KamelB. JaradatE. Direct 3D printing of flexible nasal prosthesis: Optimized digital workflow from scan to fit.J. Prosthodont.2019281101410.1111/jopr.1300130461125
    [Google Scholar]
  11. ZarekM. LayaniM. CoopersteinI. SachyaniE. CohnD. MagdassiS. 3D printing of shape memory polymers for flexible electronic devices.Adv. Mater.201628224449445410.1002/adma.20150313226402320
    [Google Scholar]
  12. EganP. WangX. GreutertH. SheaK. Wuertz-KozakK. FergusonS. Mechanical and biological characterization of 3D printed lattices.3D Print. Addit. Manuf.10.1089/3dp.2018.0125.20196273-81
    [Google Scholar]
  13. CrumpM.R. BidingerS.L. PavinattoF.J. GongA.T. SweetR.M. MacKenzieJ.D. Sensorized tissue analogues enabled by a 3D-printed conductive organogel.NPJ Flex. Electron.202151710.1038/s41528‑021‑00104‑0.
    [Google Scholar]
  14. EliadesT. PanayiN. PapageorgiouS.N. From biomimetics to smart materials and 3D technology: Applications in orthodontic bonding, debonding, and appliance design or fabrication.Jpn. Dent. Sci. Rev.2023595940341110.1016/j.jdsr.2023.10.00538022388
    [Google Scholar]
  15. KhaledS.A. AlexanderM.R. WildmanR.D. WallaceM.J. SharpeS. YooJ. RobertsC.J. 3D extrusion printing of high drug loading immediate release paracetamol tablets.Int. J. Pharm.20185381-222323010.1016/j.ijpharm.2018.01.02429353082
    [Google Scholar]
  16. TianP. YangF. XuY. LinM.M. YuL.P. LinW. LinQ.F. LvZ.F. HuangS.Y. ChenY.Z. Oral disintegrating patient-tailored tablets of warfarin sodium produced by 3D printing.Drug Dev. Ind. Pharm.201844121918192310.1080/03639045.2018.150329130027774
    [Google Scholar]
  17. KollamaramG. CrokerD.M. WalkerG.M. GoyanesA. BasitA.W. GaisfordS. Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs.Int. J. Pharm.20185451-214415210.1016/j.ijpharm.2018.04.05529705104
    [Google Scholar]
  18. ZeinN.N. HanounehI.A. BishopP.D. SamaanM. EghtesadB. QuintiniC. MillerC. YerianL. KlatteR. Three-dimensional print of a liver for preoperative planning in living donor liver transplantation.Liver Transpl.201319121304131010.1002/lt.2372923959637
    [Google Scholar]
  19. NovakovT. JacksonM.J. RobinsonG.M. AhmedW. PhoenixD.A. Laser sintering of metallic medical materials-A review.Int. J. Adv. Manuf. Technol.2017935-82723275210.1007/s00170‑017‑0705‑3
    [Google Scholar]
  20. NgoT.D. KashaniA. ImbalzanoG. NguyenK.T.Q. HuiD. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges.Compos., Part B Eng.201814314317219610.1016/j.compositesb.2018.02.012
    [Google Scholar]
  21. LeeJ.Y. AnJ. ChuaC.K. Fundamentals and applications of 3D printing for novel materials.Appl. Mater. Today20177712013310.1016/j.apmt.2017.02.004
    [Google Scholar]
  22. ZhangW. WuA.S. SunJ. QuanZ. GuB. SunB. CottonC. HeiderD. ChouT.W. Characterization of residual stress and deformation in additively manufactured ABS polymer and composite specimens.Compos. Sci. Technol.201715010211010.1016/j.compscitech.2017.07.017
    [Google Scholar]
  23. GordeevE.G. GalushkoA.S. AnanikovV.P. Improvement of quality of 3D printed objects by elimination of microscopic structural defects in fused deposition modeling.PLoS One2018136e019837010.1371/journal.pone.019837029879163
    [Google Scholar]
  24. NgT.Y. KoayS.C. ChanM.Y. ChooH.L. OngT.K. Preparation and characterisation of 3D printer filament from post-used styrofoam. AIP Conference Proceedings 2020; 2233(1): 020022.10.1063/5.0001340.
    [Google Scholar]
  25. TofailS.A.M. KoumoulosE.P. BandyopadhyayA. BoseS. O’DonoghueL. CharitidisC. Additive manufacturing: Scientific and technological challenges, market uptake and opportunities.Mater. Today2018211223710.1016/j.mattod.2017.07.001
    [Google Scholar]
  26. JiangJ. XuX. StringerJ. Support structures for additive manufacturing: A review.J. manuf. mater.2018246410.3390/jmmp2040064
    [Google Scholar]
  27. MiedzińskaD. GieletaR. PopławskiA. Experimental study on the influence of curing time on strength behavior of SLA-printed samples loaded with different strain rates.Materials (Basel)20201324582510.3390/ma1324582533371299
    [Google Scholar]
  28. PlaconeJ.K. MahadikB. FisherJ.P. Addressing present pitfalls in 3D printing for tissue engineering to enhance future potential.APL Bioeng.20204101090110.1063/1.512786032072121
    [Google Scholar]
  29. WoodruffM.A. HutmacherD.W. The return of a forgotten polymer-polycaprolactone in the 21st century.Prog. Polym. Sci.201035101217125610.1016/j.progpolymsci.2010.04.002
    [Google Scholar]
  30. DziadekM. PawlikJ. MenaszekE. Stodolak-ZychE. Cholewa-KowalskaK. Effect of the preparation methods on architecture, crystallinity, hydrolytic degradation, bioactivity, and biocompatibility of PCL/bioglass composite scaffolds.J. Biomed. Mater. Res. B Appl. Biomater.201510381580159310.1002/jbm.b.3335025533304
    [Google Scholar]
  31. AlaboodiA.S. SivasankaranS. Experimental design and investigation on the mechanical behavior of novel 3D printed biocompatibility polycarbonate scaffolds for medical applications.J. Manuf. Process.20183547949110.1016/j.jmapro.2018.08.035
    [Google Scholar]
  32. WangL. SandersJ.E. GardnerD.J. HanY. Effect of fused deposition modeling process parameters on the mechanical properties of a filled polypropylene.Prog. Addit. Manuf.20183420521410.1007/s40964‑018‑0053‑3
    [Google Scholar]
  33. TripathiN. MisraM. MohantyA.K. Durable polylactic acid (PLA)-based sustainable engineered blends and biocomposites: Recent developments, challenges, and opportunities.ACS Engineering Au2021117-3810.1021/acsengineeringau.1c00011.
    [Google Scholar]
  34. ValergaA.P. BatistaM. Fernandez-VidalS.R. GamezA.J. Impact of chemical post-processing in fused deposition modeling (FDM) on polylactic acid (PLA) surface quality and structure.Polymers (Basel)201911356610.3390/polym1103056630960550
    [Google Scholar]
  35. RosenzweigD. CarelliE. SteffenT. JarzemP. HaglundL. 3D-printed ABS and PLA scaffolds for cartilage and nucleus pulposus tissue regeneration.Int. J. Mol. Sci.2015167151181513510.3390/ijms16071511826151846
    [Google Scholar]
  36. KurtzS.M. Chemical and radiation stability of PEEK.PEEK biomaterials handbook.William Andrew Publishing2012757910.1016/B978‑1‑4377‑4463‑7.10006‑5
    [Google Scholar]
  37. KangJ. ZhangJ. ZhengJ. WangL. LiD. LiuS. 3D-printed PEEK implant for mandibular defects repair - A new method.J. Mech. Behav. Biomed. Mater.202111610433510.1016/j.jmbbm.2021.10433533494021
    [Google Scholar]
  38. MostafaeiA. KimesK.A. StevensE.L. TomanJ. KrimerY.L. UllakkoK. ChmielusM. Microstructural evolution and magnetic properties of binder jet additive manufactured Ni-Mn-Ga magnetic shape memory alloy foam.Acta Mater.201713148249010.1016/j.actamat.2017.04.010
    [Google Scholar]
  39. ZiaeeM. CraneN.B. Binder jetting: A review of process, materials, and methods.Addit. Manuf.2019282878180110.1016/j.addma.2019.05.031
    [Google Scholar]
  40. JandyalA. ChaturvediI. WazirI. RainaA. Ul HaqM.I. 3D printing – A review of processes, materials and applications in industry 4.0.SUSOC202233334210.1016/j.susoc.2021.09.004
    [Google Scholar]
  41. MostafaeiA. ElliottA.M. BarnesJ.E. LiF. TanW. CramerC.L. NandwanaP. ChmielusM. Binder jet 3D printing-process parameters, materials, properties, modeling, and challenges.Prog. Mater. Sci.202111910070710.1016/j.pmatsci.2020.100707
    [Google Scholar]
  42. UtelaB. StortiD. AndersonR. GanterM. A review of process development steps for new material systems in three dimensional printing (3DP).J. Manuf. Process.20081029610410.1016/j.jmapro.2009.03.002
    [Google Scholar]
  43. SivarupanT. BalasubramaniN. SaxenaP. NagarajanD. El MansoriM. SalonitisK. JollyM. DarguschM.S. A review on the progress and challenges of binder jet 3D printing of sand moulds for advanced casting.Addit. Manufact.2021401210188910.1016/j.addma.2021.101889.
    [Google Scholar]
  44. MostafaeiA. StevensE.L. FerenceJ.J. SchmidtD.E. ChmielusM. Binder jet printing of partial denture metal framework from metal powder.Mater. Sci. Technol.2017289291
    [Google Scholar]
  45. MarczykJ. OstrowskaK. HebdaM. Influence of binder jet 3D printing process parameters from irregular feedstock powder on final properties of Al parts.Adv. Powd. Technol.202210376810.1016/j.apt.2022.103768.
    [Google Scholar]
  46. MiyanajiH. Binder jetting additive manufacturing process fundamentals and the resultant influences on part quality.Master's Thesis-University of Louisville201810.18297/etd/3058
    [Google Scholar]
  47. NandwanaP. ElliottA.M. SiddelD. MerrimanA. PeterW.H. BabuS.S. Powder bed binder jet 3D printing of Inconel 718: Densification, microstructural evolution and challenges.Curr. Opin. Solid State Mater. Sci.201721420721810.1016/j.cossms.2016.12.002
    [Google Scholar]
  48. ParanthamanM.P. ShaferC.S. ElliottA.M. SiddelD.H. McGuireM.A. SpringfieldR.M. MartinJ. FredetteR. OrmerodJ. Binder jetting: A novel NdFeB bonded magnet fabrication process.J. Miner. Met. Mater. Soc.20166871978198210.1007/s11837‑016‑1883‑4
    [Google Scholar]
  49. EnnetiR.K. ProughK.C. WolfeT.A. KleinA. StudleyN. TrasorrasJ.L. Sintering of WC-12% Co processed by binder jet 3D printing (BJ3DP) technology.Int. J. Refract. Hard Met.201871283510.1016/j.ijrmhm.2017.10.023
    [Google Scholar]
  50. GarzónE.O. AlvesJ.L. NetoR.J. Post-process influence of infiltration on binder jetting technology.Mat Design Appl201723325610.1007/978‑3‑319‑50784‑2_19
    [Google Scholar]
  51. LevyA. MiriyevA. ElliottA. BabuS.S. FrageN. Additive manufacturing of complex-shaped graded TiC/steel composites.Mater. Des.201711819820310.1016/j.matdes.2017.01.024
    [Google Scholar]
  52. SamesW.J. ListF.A. PannalaS. DehoffR.R. BabuS.S. The metallurgy and processing science of metal additive manufacturing.Int. Mater. Rev.201661531536010.1080/09506608.2015.1116649
    [Google Scholar]
  53. KumbharN.N. MulayA.V. Post-processing methods used to improve the surface finish of products which are manufactured by additive manufacturing technologies: A review.J. Inst. Eng. (India)2018994481-710.1007/s40032‑016‑0340‑z
    [Google Scholar]
  54. CastroM.A. Rodríguez-GonzálezP. BarreiroJ. Fernández-AbiaA.I. Behaviour of infiltrating materials on calcium sulphate hemihydrate parts made by 3D printing.Procedia Manuf.20171384885510.1016/j.promfg.2017.09.190
    [Google Scholar]
  55. CorderoZ. ElliottA. Collaboration for the advancement of indirect 3d printing technology.2016Available from: https://www.ornl.gov/sites/default/files/2019-06/web_The_ExOne_Company_MDF.pdf
  56. Konda GokuldossP. KollaS. EckertJ. Additive manufacturing processes: Selective laser melting, electron beam melting and binder jetting-selection guidelines.Materials (Basel).201710667210.3390/ma10060672.
    [Google Scholar]
  57. MusazziU.M. KhalidG.M. SelminF. MinghettiP. CilurzoF. Trends in the production methods of orodispersible films.Int. J. Pharm.202057611896310.1016/j.ijpharm.2019.11896331857185
    [Google Scholar]
  58. PietrzakK. IsrebA. AlhnanM.A. A flexible-dose dispenser for immediate and extended release 3D printed tablets.Eur. J. Pharm. Biopharm.20159638038710.1016/j.ejpb.2015.07.02726277660
    [Google Scholar]
  59. GültekinH.E. TortS. AcartürkF. An effective technology for the development of immediate release solid dosage forms containing low-dose drug: Fused deposition modeling 3D printing.Pharm. Res.201936912810.1007/s11095‑019‑2655‑y31250313
    [Google Scholar]
  60. KhaledS.A. AlexanderM.R. IrvineD.J. WildmanR.D. WallaceM.J. SharpeS. YooJ. RobertsC.J. Extrusion 3D printing of paracetamol tablets from a single formulation with tunable release profiles through control of tablet geometry.AAPS PharmSciTech20181983403341310.1208/s12249‑018‑1107‑z30097806
    [Google Scholar]
  61. KatstraW.E. PalazzoloR.D. RoweC.W. GiritliogluB. TeungP. CimaM.J. Oral dosage forms fabricated by three dimensional printing.J. Control. Release20006611910.1016/S0168‑3659(99)00225‑410708873
    [Google Scholar]
  62. KhaledS.A. BurleyJ.C. AlexanderM.R. YangJ. RobertsC.J. 3D printing of tablets containing multiple drugs with defined release profiles.Int. J. Pharm.2015494264365010.1016/j.ijpharm.2015.07.06726235921
    [Google Scholar]
  63. VazV.M. KumarL. 3D printing as a promising tool in personalized medicine.AAPS PharmSciTech20212214910.1208/s12249‑020‑01905‑833458797
    [Google Scholar]
  64. PereiraB.C. IsrebA. IsrebM. ForbesR.T. OgaE.F. AlhnanM.A. Additive manufacturing of a point-of-care “Polypill:” Fabrication of concept capsules of complex geometry with bespoke release against cardiovascular disease.Adv. Healthc. Mater.2020913200023610.1002/adhm.20200023632510859
    [Google Scholar]
  65. AwadA. FinaF. TrenfieldS.J. PatelP. GoyanesA. GaisfordS. BasitA.W. 3D printed pellets (miniprintlets): A novel, multi-drug, controlled release platform technology.Pharmaceutics201911414810.3390/pharmaceutics1104014830934899
    [Google Scholar]
  66. PereiraB.C. IsrebA. ForbesR.T. DoresF. HabashyR. PetitJ.B. AlhnanM.A. OgaE.F. ‘Temporary Plasticiser’: A novel solution to fabricate 3D printed patient-centred cardiovascular ‘Polypill’ architectures.Eur. J. Pharm. Biopharm.20191359410310.1016/j.ejpb.2018.12.00930579852
    [Google Scholar]
  67. BaumgartnerA. DrameK. GeutjensS. AiraksinenM. Does the polypill improve patient adherence compared to its individual formulations? A systematic review.Pharmaceutics.202012219010.3390/pharmaceutics12020190.
    [Google Scholar]
  68. AlgahtaniM.S. MohammedA.A. AhmadJ. Extrusion-based 3D printing for pharmaceuticals: Contemporary research and applications.Curr Pharm Des.201824424991500810.2174/1381612825666190110155931.
    [Google Scholar]
  69. ParkB.J. ChoiH.J. MoonS.J. KimS.J. BajracharyaR. MinJ.Y. HanH.K. Pharmaceutical applications of 3D printing technology: Current understanding and future perspectives.J. Pharm. Investig.201949575585
    [Google Scholar]
  70. LiQ. GuanX. CuiM. ZhuZ. ChenK. WenH. JiaD. HouJ. XuW. YangX. PanW. Preparation and investigation of novel gastro-floating tablets with 3D extrusion-based printing.Int. J. Pharm.20185351-232533210.1016/j.ijpharm.2017.10.03729051121
    [Google Scholar]
  71. HuanbuttaK. SangnimT. Design and development of zero-order drug release gastroretentive floating tablets fabricated by 3D printing technology.J. Drug Deliv. Sci. Technol.20195283183710.1016/j.jddst.2019.06.004
    [Google Scholar]
  72. SabbaghF. KimB.S. Recent advances in polymeric transdermal drug delivery systems.J. Control. Release202234134113214610.1016/j.jconrel.2021.11.02534813879
    [Google Scholar]
  73. SachdevaV. K. BangaA. Microneedles and their applications.Recent Pat Drug Deliv Formul.2011529513210.2174/187221111795471445
    [Google Scholar]
  74. EconomidouS.N. PereC.P.P. ReidA. UddinM.J. WindmillJ.F.C. LamprouD.A. DouroumisD. 3D printed microneedle patches using stereolithography (SLA) for intradermal insulin delivery.Mater. Sci. Eng. C201910274375510.1016/j.msec.2019.04.06331147046
    [Google Scholar]
  75. TarfaouiM. NachtaneM. GodaI. QureshiY. BenyahiaH. 3D printing to support the shortage in personal protective equipment caused by COVID-19 pandemic.Materials (Basel).20201315333910.3390/ma13153339.
    [Google Scholar]
  76. SwennenG.R.J. PottelL. HaersP.E. Custom-made 3D-printed face masks in case of pandemic crisis situations with a lack of commercially available FFP2/3 masks.Int. J. Oral Maxillofac. Surg.202049567367710.1016/j.ijom.2020.03.01532265088
    [Google Scholar]
  77. CuiL. KiernanS. GilchristM.D. Designing the energy absorption capacity of functionally graded foam materials.Mater. Sci. Eng. A20095071-221522510.1016/j.msea.2008.12.011
    [Google Scholar]
  78. GrajewskiD. GórskiF. ZawadzkiP. HamrolA. Application of virtual reality techniques in design of ergonomic manufacturing workplaces.Procedia Comput. Sci.2013252528930110.1016/j.procs.2013.11.035
    [Google Scholar]
  79. AttaranM. The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing.Bus. Horiz.2017605677-8810.1016/j.bushor.2017.05.011.
    [Google Scholar]
  80. LinL. FangY. LiaoY. ChenG. GaoC. ZhuP. 3D printing and digital processing techniques in dentistry: A review of literature.Adv. Eng. Mater.2019216180101310.1002/adem.201801013
    [Google Scholar]
  81. TrenfieldS.J. AwadA. MadlaC.M. HattonG.B. FirthJ. GoyanesA. GaisfordS. BasitA.W. Shaping the future: Recent advances of 3D printing in drug delivery and healthcare.Expert Opin. Drug Deliv.201916101081109410.1080/17425247.2019.166031831478752
    [Google Scholar]
  82. VentolaC.L. Medical applications for 3D printing: Current and projected uses.P.T2014391070471125336867
    [Google Scholar]
  83. BallardD.H. TraceA.P. AliS. HodgdonT. ZygmontM.E. DeBenedectisC.M. SmithS.E. RichardsonM.L. PatelM.J. DeckerS.J. LenchikL. Clinical applications of 3D printing: Primer for radiologists.Acad. Radiol.2018251526510.1016/j.acra.2017.08.00429030285
    [Google Scholar]
  84. ZeidlerH. KlemmD. Böttger-HillerF. FritschS. Le GuenM.J. SingamneniS. 3D printing of biodegradable parts using renewable biobased materials.Procedia Manuf.20182111712410.1016/j.promfg.2018.02.101
    [Google Scholar]
  85. ShahrubudinN. KoshyP. AlipalJ. KadirM.H.A. LeeT.C. Challenges of 3D printing technology for manufacturing biomedical products: A case study of Malaysian manufacturing firms.Heliyon202064e0373410.1016/j.heliyon.2020.e0373432322726
    [Google Scholar]
  86. TetsukaH. ShinS.R. Materials and technical innovations in 3D printing in biomedical applications.J. Mater. Chem. B Mater. Biol. Med.20208152930295010.1039/D0TB00034E32239017
    [Google Scholar]
  87. BegS. AlmalkiW.H. MalikA. FarhanM. AatifM. RahmanZ. AlruwailiN.K. AlrobaianM. TariqueM. RahmanM. 3D printing for drug delivery and biomedical applications.Drug Discov Today.20202591668168110.1016/j.drudis.2020.07.007.
    [Google Scholar]
  88. MostafaeiA. Rodriguez De VecchisP. NettleshipI. ChmielusM. Effect of powder size distribution on densification and microstructural evolution of binder-jet 3D-printed alloy 625.Mater. Des.201916237538310.1016/j.matdes.2018.11.051
    [Google Scholar]
  89. RiclesL.M. CoburnJ.C. Di PrimaM. OhS.S. Regulating 3D-printed medical products.Sci. Transl. Med.201810461eaan652110.1126/scitranslmed.aan652130282697
    [Google Scholar]
  90. LohJ.M. LimY.J.L. TayJ.T. ChengH.M. TeyH.L. LiangK. Design and fabrication of customizable microneedles enabled by 3D printing for biomedical applications.Bioact. Mater.2023323222224137869723
    [Google Scholar]
  91. KucukdegerE. JohnsonB.N. Closed-loop controlled conformal 3D printing on moving objects via tool-localized object position sensing.J. Manuf. Process.20238989394910.1016/j.jmapro.2023.01.020
    [Google Scholar]
  92. LaoW. LiM. MasiaL. TanM.J. Approaching rectangular extrudate in 3D printing for building and construction by experimental iteration of nozzle design.Proceedings of Solid Freeform Fabrication (SFF) Symposium2017 Austin, Texas, USA10.32656/sff.2017.208.
    [Google Scholar]
  93. SimpsonT.W. WilliamsC.B. HripkoM. Preparing industry for additive manufacturing and its applications: Summary recommendations from a National Science Foundation workshop.Addit. Manuf.2017131316617810.1016/j.addma.2016.08.002
    [Google Scholar]
  94. IftekarS.F. AabidA. AmirA. BaigM. Advancements and limitations in 3D printing materials and technologies: A critical review.Polymers (Basel).20231511251910.3390/polym15112519.
    [Google Scholar]
  95. PandaS.K. RathK.C. MishraS. KhangA. Revolutionizing product development: The growing importance of 3D printing technology.Mater. Today Proc.202331
    [Google Scholar]
  96. AbdullahN. HanafiH. NawangN.I. Digital era and intellectual property challenges in Malaysia.Pertanika J. Soc. Sci. Humanit.202129
    [Google Scholar]
  97. PahlevanzadehF. EmadiR. ValianiA. KharazihaM. PoursamarSA. IsmailAF. RamaKrishnaS. BertoF. Bakhsheshi-RadHR. Three-dimensional printing constructs based on the chitosan for tissue regeneration: State of the art, developing directions and prospect trends.Materials (Basel).20201311266310.3390/ma13112663.
    [Google Scholar]
  98. GanguliA. Pagan-DiazG.J. GrantL. CvetkovicC. BramletM. VozenilekJ. KesavadasT. BashirR. 3D printing for preoperative planning and surgical training: A review.Biomed. Microdevices20182036510.1007/s10544‑018‑0301‑930078059
    [Google Scholar]
  99. JakusA.E. An Introduction to 3D printing-past, present, and future promise.3D Printing in Orthopaedic Surgery Elsevier201911510.1016/B978‑0‑323‑58118‑9.00001‑4.
    [Google Scholar]
  100. TijingL.D. DizonJ.R. IbrahimI. NisayA.R. ShonH.K. AdvinculaR.C. 3D printing for membrane separation, desalination and water treatment.Appl. Mater.202018810048610.1016/j.apmt.2019.100486.
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128324761240828064443
Loading
/content/journals/cpd/10.2174/0113816128324761240828064443
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test