Skip to content
2000
Volume 30, Issue 39
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

Sirolimus, one of the immunosuppressive drugs administered to renal transplant recipients, is metabolized by cytochrome P450 (CYP) 3A5. Accordingly, polymorphism is a genetic factor affecting sirolimus pharmacokinetics (PK). Therefore, we conducted a systematic review and meta-analysis on the association between sirolimus PK and polymorphism.

Methods

We searched for studies published up to 13 June 2024 from PubMed, Embase, Cochrane Library, and Web of Science. We reviewed studies on the relationship between polymorphism and weight-adjusted trough concentration/dose (C/D) ratio and dosage of sirolimus in renal transplant recipients, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We evaluated mean differences (MDs) and 95% confidence intervals (CIs).

Results

A total of seven studies were included. The weight-adjusted C/D ratio of sirolimus was significantly higher in patients with the rather than or genotype (MD 95.27 ng/mL per mg/kg; 95% CI: 58.06, 132.47; I2 = 74%; < 0.00001). Also, the weight-adjusted dosage of sirolimus was significantly lower in patients with the rather than or genotype (MD -2.60 × 10-3 mg/kg; 95% CI: -4.52, -0.69; I2 = 44%; = 0.008).

Conclusion

Our meta-analysis showed a significant effect for the genotype on weight-adjusted C/D ratio and dosage of sirolimus in adult renal transplant recipients.

PROSPERO Register Number

CRD42022354330.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128324199240730093415
2024-08-21
2025-01-01
Loading full text...

Full text loading...

References

  1. SuthanthiranM. StromT.B. Renal transplantation.N. Engl. J. Med.1994331636537610.1056/NEJM1994081133106067832839
    [Google Scholar]
  2. ChadbanS.J. AhnC. AxelrodD.A. FosterB.J. KasiskeB.L. KherV. KumarD. OberbauerR. PascualJ. PilmoreH.L. RodrigueJ.R. SegevD.L. SheerinN.S. TinckamK.J. WongG. BalkE.M. GordonC.E. EarleyA. RofebergV. KnollG.A. Summary of the kidney disease: Improving global outcomes (KDIGO) clinical practice guideline on the evaluation and management of candidates for kidney transplantation.Transplantation2020104470871410.1097/TP.000000000000313732224812
    [Google Scholar]
  3. OweiraH. RamouzA. GhamarnejadO. KhajehE. Ali-Hasan-Al-SaeghS. NikbakhshR. ReißfelderC. RahbariN. MehrabiA. SadeghiM. Risk factors of rejection in renal transplant recipients: A narrative review.J. Clin. Med.2022115139210.3390/jcm1105139235268482
    [Google Scholar]
  4. HalloranP.F. Immunosuppressive drugs for kidney transplantation.N. Engl. J. Med.2004351262715272910.1056/NEJMra03354015616206
    [Google Scholar]
  5. DentonM.D. MageeC.C. SayeghM.H. Immunosuppressive strategies in transplantation.Lancet199935391581083109110.1016/S0140‑6736(98)07493‑510199367
    [Google Scholar]
  6. BauerA.C. FrancoR.F. ManfroR.C. Immunosuppression in kidney transplantation: State of the art and current protocols.Curr. Pharm. Des.202026283440345010.2174/138161282666620052114244832436821
    [Google Scholar]
  7. AugustineJ.J. BodziakK.A. HricikD.E. Use of sirolimus in solid organ transplantation.Drugs200767336939110.2165/00003495‑200767030‑0000417335296
    [Google Scholar]
  8. KahanB.D. The Rapamune US Study Group Efficacy of sirolimus compared with azathioprine for reduction of acute renal allograft rejection: A randomised multicentre study.Lancet2000356922519420210.1016/S0140‑6736(00)02480‑610963197
    [Google Scholar]
  9. KellyP.A. GruberS.A. BehbodF. KahanB.D. Sirolimus, a new, potent immunosuppressive agent.Pharmacotherapy19971761148115610.1002/j.1875‑9114.1997.tb03080.x9399599
    [Google Scholar]
  10. PanwarV. SinghA. BhattM. TonkR.K. AzizovS. RazaA.S. SenguptaS. KumarD. GargM. Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease.Signal Transduct. Target. Ther.20238137510.1038/s41392‑023‑01608‑z37779156
    [Google Scholar]
  11. StentonS.B. PartoviN. EnsomM.H.H. Sirolimus.Clin. Pharmacokinet.200544876978610.2165/00003088‑200544080‑0000116029064
    [Google Scholar]
  12. ZimmermanK.O. WuH. GreenbergR. GuptillJ.T. HillK. PatelU.D. KuL. GonzalezD. HornikC. JiangW. ZhengN. MelloniC. Cohen-WolkowiezM. Therapeutic drug monitoring, electronic health records, and pharmacokinetic modeling to evaluate sirolimus drug exposure-response relationships in renal transplant patients.Ther. Drug Monit.201638560060610.1097/FTD.000000000000031327259059
    [Google Scholar]
  13. Product Information Product Information: RAPAMUNE(R) oral solution, oral tablets, sirolimus oral solution, oral tablets. Wyeth Pharmaceuticals Inc. (per FDA), Philadelphia, PA.2013Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/021083s059,021110s076lbl.pdf Accessed 15 June 2024.
  14. KahanB.D. NapoliK.L. KellyP.A. PodbielskiJ. HusseinI. UrbauerD.L. KatzS.H. Van BurenC.T. Therapeutic drug monitoring of sirolimus: Correlations with efficacy and toxicity.Clin. Transplant.20001429710910.1034/j.1399‑0012.2000.140201.x10770413
    [Google Scholar]
  15. MacDonaldA ScarolaJ BurkeJT ZimmermanJJ Clinical pharmacokinetics and therapeutic drug monitoring of sirolimus.Clin Ther200022Suppl BB10112110.1016/S0149‑2918(00)89027‑X
    [Google Scholar]
  16. HardingerK.L. KochM.J. BrennanD.C. Current and future immunosuppressive strategies in renal transplantation.Pharmacotherapy20042491159117610.1592/phco.24.13.1159.3809415460177
    [Google Scholar]
  17. HoltD.W. JohnstonA. Monitoring immunosuppressive drugs.Drug Monitoring and Clinical Chemistry. HempelG. Amsterdam, The NetherlandsElsevier200427329610.1016/S1567‑7192(04)80012‑3
    [Google Scholar]
  18. CumminsC.L. JacobsenW. ChristiansU. BenetL.Z. CYP3A4- transfected Caco-2 cells as a tool for understanding biochemical absorption barriers: Studies with sirolimus and midazolam.J. Pharmacol. Exp. Ther.2004308114315510.1124/jpet.103.05806514569063
    [Google Scholar]
  19. LampenA. ZhangY. HackbarthI. BenetL.Z. SewingK.F. ChristiansU. Metabolism and transport of the macrolide immunosuppressant sirolimus in the small intestine.J. Pharmacol. Exp. Ther.19982853110411129618413
    [Google Scholar]
  20. MonchaudC. MarquetP. Pharmacokinetic optimization of immunosuppressive therapy in thoracic transplantation: Part II.Clin. Pharmacokinet.200948848951610.2165/11317240‑000000000‑0000019705921
    [Google Scholar]
  21. TamashiroE.Y. FelipeC.R. GenvigirF.D.V. RodriguesA.C. CamposA.B. HirataR.D.C. Tedesco-SilvaH.Jr Medina-PestanaJ.O. Influence of CYP3A4 and CYP3A5 polymorphisms on tacrolimus and sirolimus exposure in stable kidney transplant recipients.Drug Metab. Pers. Ther.2017322899510.1515/dmpt‑2016‑003628593920
    [Google Scholar]
  22. LolitaL. ZhengM. ZhangX. HanZ. TaoJ. FeiS. WangZ. GuoM. YangH. JuX. TanR. WeiJ.F. GuM. The genetic polymorphism of CYP3A4 rs2242480 is associated with sirolimus trough concentrations among adult renal transplant recipients.Curr. Drug Metab.202021131052105910.2174/138920022199920102720340133115392
    [Google Scholar]
  23. BruckmuellerH. CascorbiI. ABCB1, ABCG2, ABCC1, ABCC2, and ABCC3 drug transporter polymorphisms and their impact on drug bioavailability: What is our current understanding?Expert Opin. Drug Metab. Toxicol.202117436939610.1080/17425255.2021.187666133459081
    [Google Scholar]
  24. AnglicheauD. PalletN. RabantM. MarquetP. CassinatB. MériaP. BeauneP. LegendreC. ThervetE. Role of P-glycoprotein in cyclosporine cytotoxicity in the cyclosporine-sirolimus interaction.Kidney Int.20067061019102510.1038/sj.ki.500164916837925
    [Google Scholar]
  25. ShaoS. HuL. HanZ. HouK. FangH. ZhangG. FengY. HuangL. The effect of ABCB1 polymorphism on sirolimus in renal transplant recipients: A meta-analysis.Transl. Androl. Urol.20209267368310.21037/tau.2020.03.4232420174
    [Google Scholar]
  26. WuM.J. ShuK.H. LianJ.D. YangC.R. ChengC.H. ChenC.H. Impact of variability of sirolimus trough level on chronic allograft nephropathy.Transplant. Proc.20084072202220510.1016/j.transproceed.2008.07.02918790192
    [Google Scholar]
  27. PageM.J. McKenzieJ.E. BossuytP.M. BoutronI. HoffmannT.C. MulrowC.D. ShamseerL. TetzlaffJ.M. AklE.A. BrennanS.E. ChouR. GlanvilleJ. GrimshawJ.M. HróbjartssonA. LaluM.M. LiT. LoderE.W. Mayo-WilsonE. McDonaldS. McGuinnessL.A. StewartL.A. ThomasJ. TriccoA.C. WelchV.A. WhitingP. MoherD. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews.BMJ202137271n7110.1136/bmj.n7133782057
    [Google Scholar]
  28. The Newcastle-ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses.Available from: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp Accessed 15 June 2024.
  29. HigginsJ.P.T. ThompsonS.G. Quantifying heterogeneity in a meta- analysis.Stat. Med.200221111539155810.1002/sim.118612111919
    [Google Scholar]
  30. AnglicheauD. CorreD.L. LechatonS. Laurent-PuigP. KreisH. BeauneP. LegendreC. ThervetE. Consequences of genetic polymorphisms for sirolimus requirements after renal transplant in patients on primary sirolimus therapy.Am. J. Transplant.20055359560310.1111/j.1600‑6143.2005.00745.x15707415
    [Google Scholar]
  31. LeeJ. HuangH. ChenY. LuX. ABCB1 haplotype influences the sirolimus dose requirements in Chinese renal transplant recipients.Biopharm. Drug Dispos.201435316417210.1002/bdd.188124285256
    [Google Scholar]
  32. LiY. YanL. ShiY. BaiY. TangJ. WangL. CYP3A5 and ABCB1 genotype influence tacrolimus and sirolimus pharmacokinetics in renal transplant recipients.Springerplus201541-663710.1186/s40064‑015‑1425‑526543771
    [Google Scholar]
  33. MiaoL.Y. HuangC.R. HouJ.Q. QianM.Y. Association study of ABCB1 and CYP3A5 gene polymorphisms with sirolimus trough concentration and dose requirements in Chinese renal transplant recipients.Biopharm. Drug Dispos.20082911510.1002/bdd.57717941052
    [Google Scholar]
  34. MouradM. MouradG. WallemacqP. GarrigueV. Van BellingenC. Van KerckhoveV. De MeyerM. MalaiseJ. EddourD.C. LisonD. SquiffletJ.P. HaufroidV. Sirolimus and tacrolimus trough concentrations and dose requirements after kidney transplantation in relation to CYP3A5 and MDR1 polymorphisms and steroids.Transplantation200580797798410.1097/01.TP.0000174131.47469.D216249748
    [Google Scholar]
  35. Rodríguez-JiménezC. García-SaizM. Pérez-TamajónL. SalidoE. TorresA. Influence of genetic polymorphisms of CYP3A5 and ABCB1 on sirolimus pharmacokinetics, patient and graft survival and other clinical outcomes in renal transplant.Drug Metab. Pers. Ther.2017321495810.1515/dmpt‑2016‑004028245187
    [Google Scholar]
  36. PączekL. WyzgałJ. PączekL. Impact of CYP3A4*1B and CYP3A5*3 polymorphisms on the pharmacokinetics of cyclosporine and sirolimus in renal transplant recipients.Ann. Transplant.2012173364410.12659/AOT.88345623018254
    [Google Scholar]
  37. KhanA.R. RazaA. FirasatS. AbidA. CYP3A5 gene polymorphisms and their impact on dosage and trough concentration of tacrolimus among kidney transplant patients: A systematic review and meta-analysis.Pharmacogenomics J.202020455356210.1038/s41397‑019‑0144‑731902947
    [Google Scholar]
  38. RojasL. NeumannI. HerreroM.J. BosóV. ReigJ. PovedaJ.L. MegíasJ. BeaS. AliñoS.F. Effect of CYP3A5*3 on kidney transplant recipients treated with tacrolimus: A systematic review and meta-analysis of observational studies.Pharmacogenomics J.2015151384810.1038/tpj.2014.3825201288
    [Google Scholar]
  39. ZhuH.J. YuanS.H. FangY. SunX.Z. KongH. GeW.H. The effect of CYP3A5 polymorphism on dose-adjusted cyclosporine concentration in renal transplant recipients: A meta-analysis.Pharmacogenomics J.201111323724610.1038/tpj.2010.2620368718
    [Google Scholar]
  40. ZhangJ. DaiY. LiuZ. ZhangM. LiC. ChenD. SongH. Effect of CYP3A4 and CYP3A5 genetic polymorphisms on the pharmacokinetics of sirolimus in healthy chinese volunteers.Ther. Drug Monit.201739440641110.1097/FTD.000000000000041528700521
    [Google Scholar]
  41. RendersL. FrismanM. UferM. MosyaginI. HaenischS. OttU. CaliebeA. DechantM. BraunF. KunzendorfU. CascorbiI. CYP3A5 genotype markedly influences the pharmacokinetics of tacrolimus and sirolimus in kidney transplant recipients.Clin. Pharmacol. Ther.200781222823410.1038/sj.clpt.610003917192769
    [Google Scholar]
  42. EmotoC. FukudaT. VenkatasubramanianR. VinksA.A. The impact of CYP3A5*3 polymorphism on sirolimus pharmacokinetics: Insights from predictions with a physiologically-based pharmacokinetic model.Br. J. Clin. Pharmacol.20158061438144610.1111/bcp.1274326256674
    [Google Scholar]
  43. DjebliN. RousseauA. HoizeyG. RerolleJ.P. ToupanceO. Le MeurY. MarquetP. Sirolimus population pharmacokinetic/pharmacogenetic analysis and bayesian modelling in kidney transplant recipients.Clin. Pharmacokinet.200645111135114810.2165/00003088‑200645110‑0000717048977
    [Google Scholar]
  44. LukasJ.C. CalvoR. ZografidisA. OrtegaI. SuárezE. Simulation of sirolimus exposures and population variability immediately post renal transplantation: Importance of the patient’s CYP3A5 genotype in tailoring treatment.Biopharm. Drug Dispos.2010312-312913710.1002/bdd.69720155737
    [Google Scholar]
  45. KhaledS.K. PalmerJ.M. HerzogJ. StillerT. TsaiN.C. SenitzerD. LiuX. ThomasS.H. ShayaniS. WeitzelJ. FormanS.J. NakamuraR. Influence of absorption, distribution, metabolism, and excretion genomic variants on tacrolimus/sirolimus blood levels and graft-versus-host disease after allogeneic hematopoietic cell transplantation.Biol. Blood Marrow Transplant.201622226827610.1016/j.bbmt.2015.08.02726325438
    [Google Scholar]
  46. HakeamH.A. Al-JedaiA.H. RazaS.M. HamawiK. Sirolimus induced dyslipidemia in tacrolimus based vs. tacrolimus free immunosuppressive regimens in renal transplant recipients.Ann. Transplant.2008132465318566560
    [Google Scholar]
  47. MaK.L. RuanX.Z. PowisS.H. ChenY. MoorheadJ.F. VargheseZ. Sirolimus modifies cholesterol homeostasis in hepatic cells: A potential molecular mechanism for sirolimus-associated dyslipidemia.Transplantation20078481029103610.1097/01.tp.0000286095.55685.e917989609
    [Google Scholar]
  48. SamW.J. ChamberlainC.E. LeeS.J. GoldsteinJ.A. HaleD.A. MannonR.B. KirkA.D. HonY.Y. Associations of ABCB1 and IL-10 genetic polymorphisms with sirolimus-induced dyslipidemia in renal transplant recipients.Transplantation201294997197710.1097/TP.0b013e31826b55e223073467
    [Google Scholar]
  49. YangS. JiangH. LiC. LuH. LiC. YeD. QiH. XuW. BaoX. MasekoN. ZhangS. ShaoR. LiL. Genomewide association study identifies a novel variant associated with tacrolimus trough concentration in Chinese renal transplant recipients.Clin. Transl. Sci.202215112640265110.1111/cts.1338835977080
    [Google Scholar]
  50. LiuJ. FengD. KanX. ZhengM. ZhangX. WangZ. SunL. ChenH. GaoX. LuT. GuM. TanR. HanZ. Polymorphisms in the CYP3A5 gene significantly affect the pharmacokinetics of sirolimus after kidney transplantation.Pharmacogenomics2021221490391210.2217/pgs‑2021‑008334523354
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128324199240730093415
Loading
/content/journals/cpd/10.2174/0113816128324199240730093415
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test