Skip to content
2000
Volume 30, Issue 39
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Magnesium (Mg2+) is a crucial mineral involved in numerous cellular processes critical for neuronal health and function. This review explores the multifaceted roles of Mg2+, from its biochemical interactions at the cellular level to its impact on cognitive health and behavioral regulation. Mg2+ acts as a cofactor for over 300 enzymatic reactions, including those involved in ATP synthesis, nucleic acid stability, and neurotransmitter release. It regulates ion channels, modulates synaptic plasticity, and maintains the structural integrity of cell membranes, which are essential for proper neuronal signaling and synaptic transmission. Recent studies have highlighted the significance of Mg2+ in neuroprotection, showing its ability to attenuate oxidative stress, reduce inflammation, and mitigate excitotoxicity, thereby safeguarding neuronal health. Furthermore, Mg2+ deficiency has been linked to a range of neuropsychiatric disorders, including depression, anxiety, and cognitive decline. Supplementation with Mg2+, particularly in the form of bioavailable compounds such as Magnesium-L-Threonate (MgLT), Magnesium-Acetyl-Taurate (MgAT), and other Magnesium salts, has shown some promising results in enhancing synaptic density, improving memory function, and alleviating symptoms of mental health disorders. This review highlights significant current findings on the cellular mechanisms by which Mg2+ exerts its neuroprotective effects and evaluates clinical and preclinical evidence supporting its therapeutic potential. By elucidating the comprehensive role of Mg2+ in neuronal health, this review aims to underscore the importance of maintaining optimal Mg2+ levels for cognitive function and behavioral regulation, advocating for further research into Mg2+ supplementation as a viable intervention for neuropsychiatric and neurodegenerative conditions.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128321466240816075041
2024-08-27
2024-12-29
Loading full text...

Full text loading...

References

  1. BaraM. Guiet-BaraA. Potassium, magnesium and membranes. Review of present status and new findings.Magnesium198434-621522510.1155/2016/6851592 6399343
    [Google Scholar]
  2. GarfinkelL. GarfinkelD. Magnesium regulation of the glycolytic pathway and the enzymes involved.Magnesium198542-3607210.1016/0022‑3956(93)90003‑K 2931560
    [Google Scholar]
  3. SeyamaT. KameiY. IriyamaT. Pretreatment with magnesium sulfate attenuates white matter damage by preventing cell death of developing oligodendrocytes.J. Obstet. Gynaecol. Res.201844460160710.1111/jog.13568 29363221
    [Google Scholar]
  4. StangherlinA. O’NeillJ.S. Signal transduction: Magnesium manifests as a second messenger.Curr. Biol.20182824R1403R140510.1016/j.cub.2018.11.003 30562536
    [Google Scholar]
  5. TaiY. QiuY. BaoZ. Magnesium lithospermate B suppresses lipopolysaccharide-induced neuroinflammation in BV2 microglial cells and attenuates neurodegeneration in lipopolysaccharide-injected mice.J. Mol. Neurosci.2018641809210.1007/s12031‑017‑1007‑9 29196883
    [Google Scholar]
  6. PoleszakE. WlaźP. WróbelA. FideckaS. NowakG. NMDA/] glutamate mechanism of magnesium-induced anxiolytic-like behavior in mice.Pharmacol. Rep.200860565566310.1016/j.neures.2014.05.001 19066411
    [Google Scholar]
  7. AbiriB. SarbakhshP. VafaM. Randomized study of the effects of vitamin D and/or magnesium supplementation on mood, serum levels of BDNF, inflammation, and SIRT1 in obese women with mild to moderate depressive symptoms.Nutr. Neurosci.202225102123213510.1080/1028415X.2021.1945859 34210242
    [Google Scholar]
  8. HuJ. XuX. YangJ. WuG. SunC. LvQ. Antihypertensive effect of taurine in rat.Adv. Exp. Med. Biol.2009643758410.1007/978‑0‑387‑75681‑3_8 19239138
    [Google Scholar]
  9. WuC. XueL.D. SuL.W. Magnesium promotes the viability and induces differentiation of neural stem cells both in vitro and in vivo.Neurol. Res.201941320821510.1080/01616412.2018.1544400 30596346
    [Google Scholar]
  10. VennemeyerJ.J. HopkinsT. KuhlmannJ. HeinemanW.R. PixleyS.K. Effects of elevated magnesium and substrate on neuronal numbers and neurite outgrowth of neural stem/progenitor cells in vitro.Neurosci. Res.201484727810.1016/j.neures.2014.05.001 24815060
    [Google Scholar]
  11. ZhuD. SuY. FuB. XuH. Magnesium reduces blood-brain barrier permeability and regulates amyloid-β transcytosis.Mol. Neurobiol.20185597118713110.1007/s12035‑018‑0896‑0 29383689
    [Google Scholar]
  12. SunQ. WeingerJ.G. MaoF. LiuG. Regulation of structural and functional synapse density by L-threonate through modulation of intraneuronal magnesium concentration.Neuropharmacology2016108142643910.1016/j.neuropharm.2016.05.006 27178134
    [Google Scholar]
  13. LiW. YuJ. LiuY. Elevation of brain magnesium prevents synaptic loss and reverses cognitive deficits in Alzheimer’s disease mouse model.Mol. Brain2014716510.1186/s13041‑014‑0065‑y 25213836
    [Google Scholar]
  14. BushA.I. Kalzium ist nicht alles.Neuron201065214314410.1016/j.neuron.2010.01.015 20152120
    [Google Scholar]
  15. SlutskyI. AbumariaN. WuL.J. Enhancement of learning and memory by elevating brain magnesium.Neuron201065216517710.1016/j.neuron.2009.12.026 20152124
    [Google Scholar]
  16. XiongW. LiangY. LiX. LiuG. WangZ. Erythrocyte intracellular Mg2+ concentration as an index of recognition and memory.Sci. Rep.2016612697510.1038/srep26975 27253451
    [Google Scholar]
  17. Campo-SoriaC. ChangY. WeissD.S. Mechanism of action of benzodiazepines on GABAA receptors.Br. J. Pharmacol.2006148798499010.1038/sj.bjp.0706796 16783415
    [Google Scholar]
  18. Jahnen-DechentW. KettelerM. Magnesium basics.Clin. Kidney J.20125Suppl. 131410.1093/ndtplus/sfr163
    [Google Scholar]
  19. GiordanoC. PowellH. LeopizziM. Fatal congenital myopathy and gastrointestinal pseudo-obstruction due to POLG1 mutations.Neurology200972121103110510.1212/01.wnl.0000345002.47396.e1 19307547
    [Google Scholar]
  20. YamanakaR. ShindoY. OkaK. Magnesium is a key player in neuronal maturation and neuropathology.Int. J. Mol. Sci.20192014343910.3390/ijms20143439 31336935
    [Google Scholar]
  21. WuL. MaoS. LinX. YangR. ZhuZ. Evaluation of whole blood trace element levels in Chinese children with autism spectrum disorder.Biol. Trace Elem. Res.2019191226927510.1007/s12011‑018‑1615‑4 30600499
    [Google Scholar]
  22. MorrisM.E. LeroyS. SuttonS.C. Absorption of magnesium from orally administered magnesium sulfate in man.J. Toxicol. Clin. Toxicol.198725537138210.3109/15563658708992640 3430654
    [Google Scholar]
  23. VinkR. GabrielianL. ThorntonE. The role of substance P in secondary pathophysiology after traumatic brain injury.Front. Neurol.20178530410.3389/fneur.2017.00304 28701994
    [Google Scholar]
  24. RamadanN.M. HalvorsonH. Vande-LindeA. LevineS.R. HelpernJ.A. WelchK.M.A. Low brain magnesium in migraine.Headache198929959059310.1111/j.1526‑4610.1989.hed2909590.x 2584000
    [Google Scholar]
  25. PerticoneF. AdinolfiL. BonaduceD. Efficacy of magnesium sulfate in the treatment of torsade de pointes.Am. Heart J.1986112484784910.1016/0002‑8703(86)90486‑2 3766386
    [Google Scholar]
  26. LinC.H. WuY.R. ChenW.L. Variant R244H in Na+/Mg2+ exchanger SLC41A1 in Taiwanese Parkinson’s disease is associated with loss of Mg2+ efflux function.Parkinsonism Relat. Disord.201420660060310.1016/j.parkreldis.2014.02.027 24661466
    [Google Scholar]
  27. MuirK.W. LeesK.R. FordI. DavisS. Magnesium for acute stroke (Intravenous magnesium efficacy in stroke trial): Randomised controlled trial.Lancet2004363940743944510.1016/S0140‑6736(04)15490‑1 14962524
    [Google Scholar]
  28. YangH. TangX. TanL. ZengL. HuZ. Use of 31P magnetic resonance spectroscopy to study the effect of cortical magnesium and energy metabolism after subarachnoid hemorrhage.Cerebrovasc. Dis.200826322323010.1159/000147448 18648193
    [Google Scholar]
  29. NowakL. BregestovskiP. AscherP. HerbetA. ProchiantzA. Magnesium gates glutamate-activated channels in mouse central neurones.Nature1984307595046246510.1038/307462a0 6320006
    [Google Scholar]
  30. IottiS. MalucelliE. In vivo assessment of Mg2+ in human brain and skeletal muscle by 31P-MRS.Magnes. Res.200821315716210.1002/jnr.20651 19009818
    [Google Scholar]
  31. JackaF.N. OverlandS. StewartR. TellG.S. BjellandI. MykletunA. Association between magnesium intake and depression and anxiety in community-dwelling adults: The Hordaland Health Study.Aust. N. Z. J. Psychiatry2009431455210.1080/00048670802534408 19085527
    [Google Scholar]
  32. AbumariaN. YinB. ZhangL. Effects of elevation of brain magnesium on fear conditioning, fear extinction, and synaptic plasticity in the infralimbic prefrontal cortex and lateral amygdala.J. Neurosci.20113142148711488110.1523/JNEUROSCI.3782‑11.2011 22016520
    [Google Scholar]
  33. DingledineR. BorgesK. BowieD. TraynelisS.F. The glutamate receptor ion channels.Pharmacol. Rev.1999511761 10049997
    [Google Scholar]
  34. MayerM.L. WestbrookG.L. GuthrieP.B. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones.Nature1984309596526126310.1038/309261a0 6325946
    [Google Scholar]
  35. SlutskyI. SadeghpourS. LiB. LiuG. Enhancement of synaptic plasticity through chronically reduced Ca2+ flux during uncorrelated activity.Neuron200444583584910.1016/j.neuron.2004.11.013 15572114
    [Google Scholar]
  36. ZhouH. LiuG. Regulation of density of functional presynaptic terminals by local energy supply.Mol. Brain2015814210.1186/s13041‑015‑0132‑z 26184109
    [Google Scholar]
  37. AndrettaA. SchieferdeckerM.E.M. PetterleR.R. dos Santos PaivaE. BoguszewskiC.L. Relations between serum magnesium and calcium levels and body composition and metabolic parameters in women with fibromyalgia.Adv. Rheumatol.20206011810.1186/s42358‑020‑0122‑4 32171334
    [Google Scholar]
  38. Bocchio-ChiavettoL. ZanardiniR. BortolomasiM. Electroconvulsive Therapy (ECT) increases serum Brain Derived Neurotrophic Factor (BDNF) in drug resistant depressed patients.Eur. Neuropsychopharmacol.200616862062410.1016/j.euroneuro.2006.04.010 16757154
    [Google Scholar]
  39. YarrowJ.F. WhiteL.J. McCoyS.C. BorstS.E. Training augments resistance exercise induced elevation of circulating brain derived neurotrophic factor (BDNF).Neurosci. Lett.2010479216116510.1016/j.neulet.2010.05.058 20553806
    [Google Scholar]
  40. SzewczykB. PoleszakE. Sowa-KućmaM. Antidepressant activity of zinc and magnesium in view of the current hypotheses of antidepressant action.Pharmacol. Rep.200860558858910.1523/JNEUROSCI.3782‑11.2011 19066406
    [Google Scholar]
  41. KaneM.J. EngleR.W. The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective.Psychon. Bull. Rev.20029463767110.3758/BF03196323 12613671
    [Google Scholar]
  42. LereaL.S. ButlerL.S. McNamaraJ.O. NMDA and non-NMDA receptor-mediated increase of c-fos mRNA in dentate gyrus neurons involves calcium influx via different routes.J. Neurosci.19921282973298110.1523/JNEUROSCI.12‑08‑02973.1992 1322980
    [Google Scholar]
  43. LeeY. LimS.W. KimS.Y. Association between the BDNF Val66Met polymorphism and chronicity of depression.Psychiatry Investig.2013101566110.4306/pi.2013.10.1.56 23482723
    [Google Scholar]
  44. PochwatB. Sowa-KucmaM. KotarskaK. MisztakP. NowakG. SzewczykB. Antidepressant-like activity of magnesium in the olfactory bulbectomy model is associated with the AMPA/BDNF pathway.Psychopharmacology (Berl.)2015232235536710.1007/s00213‑014‑3671‑6 25027582
    [Google Scholar]
  45. Palacios-PradoN. HogeG. MarandykinaA. Intracellular magnesium-dependent modulation of gap junction channels formed by neuronal connexin36.J. Neurosci.201333114741475310.1523/JNEUROSCI.2825‑12.2013 23486946
    [Google Scholar]
  46. ConnorsB.W. LongM.A. Electrical synapses in the mammalian brain.Annu. Rev. Neurosci.200427139341810.1146/annurev.neuro.26.041002.131128 15217338
    [Google Scholar]
  47. WuY FunatoY MeschiE JovanoskiKD MikiH WaddellS Magnesium efflux from Drosophila Kenyon cells is critical for normal and diet-enhanced long-term memory.eLife20209e6133910.7554/eLife.6133933242000
    [Google Scholar]
  48. BardgettM.E. SchultheisP.J. McGillD.L. RichmondR.E. WaggeJ.R. Magnesium deficiency impairs fear conditioning in mice.Brain Res.20051038110010610.1016/j.brainres.2005.01.020 15748878
    [Google Scholar]
  49. YuX. GuanP.P. ZhuD. Magnesium ions inhibit the expression of tumor necrosis factor α and the activity of γ-secretase in a β-amyloid protein-dependent mechanism in APP/PS1 transgenic mice.Front. Mol. Neurosci.20181117210.3389/fnmol.2018.00172 29899688
    [Google Scholar]
  50. BardgettM.E. SchultheisP.J. MuznyA. RiddleM.D. WaggeJ.R. Magnesium deficiency reduces fear-induced conditional lick suppression in mice.Magnes. Res.2007201586510.1080/14737159.2018.1493924 17536490
    [Google Scholar]
  51. RandallR.E.Jr Magnesium metabolism in chronic renal disease.Ann. N. Y. Acad. Sci.1969162283184610.1111/j.1749‑6632.1969.tb13013.x 5259573
    [Google Scholar]
  52. ColeA.J. SaffenD.W. BarabanJ.M. WorleyP.F. Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation.Nature1989340623347447610.1038/340474a0 2547165
    [Google Scholar]
  53. XiaZ. DudekH. MirantiC.K. GreenbergM.E. Calcium influx via the NMDA receptor induces immediate early gene transcription by a MAP kinase/ERK-dependent mechanism.J. Neurosci.199616175425543610.1523/JNEUROSCI.16‑17‑05425.1996 8757255
    [Google Scholar]
  54. de BaaijJ.H.F. HoenderopJ.G.J. BindelsR.J.M. Magnesium in man: Implications for health and disease.Physiol. Rev.201595114610.1152/physrev.00012.2014 25540137
    [Google Scholar]
  55. VerhasM. de La GuéronnièreV. GrognetJ-M. Magnesium bioavailability from mineral water. A study in adult men.Eur. J. Clin. Nutr.200256544244710.1038/sj.ejcn.1601333 12001016
    [Google Scholar]
  56. KillileaD.W. MaierJ.A.M. A connection between magnesium deficiency and aging: New insights from cellular studies.Magnes. Res.2008212778210.1038/sj.ejcn.1601333 18705534
    [Google Scholar]
  57. MordesJ.P. WackerW.E. Excess magnesium.Pharmacol. Rev.197729427330010.1038/sj.ejcn.1601333 364497
    [Google Scholar]
  58. FirozM. GraberM. Bioavailability of US commercial magnesium preparations.Magnes. Res.2001144257262 11794633
    [Google Scholar]
  59. CazzanigaA. FedeleG. CastiglioniS. MaierJ.A. The presence of blood-brain barrier modulates the response to magnesium salts in human brain organoids.Int. J. Mol. Sci.2022239513310.3390/ijms23095133 35563524
    [Google Scholar]
  60. KrystalJ.H. D’SouzaD.C. MathalonD. PerryE. BelgerA. HoffmanR. NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: Toward a paradigm shift in medication development.Psychopharmacology (Berl.)20031693-421523310.1007/s00213‑003‑1582‑z 12955285
    [Google Scholar]
  61. BlancquaertL. VervaetC. DeraveW. Predicting and testing bioavailability of magnesium supplements.Nutrients2019117166310.3390/nu11071663 31330811
    [Google Scholar]
  62. WalkerA.F. MarakisG. ChristieS. ByngM. Mg citrate found more bioavailable than other Mg preparations in a randomised, double-blind study.Magnes. Res.200316318319110.4088/JCP.19r13085 14596323
    [Google Scholar]
  63. KarimiN. RazianA. HeidariM. The efficacy of magnesium oxide and sodium valproate in prevention of migraine headache: A randomized, controlled, double-blind, crossover study.Acta Neurol. Belg.2021121116717310.1007/s13760‑019‑01101‑x 30798472
    [Google Scholar]
  64. ShenY. DaiL. TianH. Treatment of magnesium-L-threonate elevates the magnesium level in the cerebrospinal fluid and attenuates motor deficits and dopamine neuron loss in a mouse model of Parkinson’s disease.Neuropsychiatr. Dis. Treat.20191513143315310.2147/NDT.S230688 31806980
    [Google Scholar]
  65. WangC.Y. ShiJ.D. YangP. Molecular cloning and characterization of a novel gene family of four ancient conserved domain proteins (ACDP).Gene20033061374410.1016/S0378‑1119(02)01210‑6 12657465
    [Google Scholar]
  66. LuoW-B. DongL. WangY-P. Effect of magnesium lithospermate B on calcium and nitric oxide in endothelial cells upon hypoxia/reoxygenation.Acta Pharmacol. Sin.2002231093093610.1016/S0378‑1119(02)01210‑6 12370098
    [Google Scholar]
  67. SchuetteS.A. LashnerB.A. JanghorbaniM. Bioavailability of magnesium diglycinate vs. magnesium oxide in patients with ileal resection.JPEN J. Parenter. Enteral Nutr.199418543043510.1177/0148607194018005430 7815675
    [Google Scholar]
  68. EbyG.A. EbyK.L. Rapid recovery from major depression using magnesium treatment.Med. Hypotheses200667236237010.1016/j.mehy.2006.01.047 16542786
    [Google Scholar]
  69. ZhaoZ. TangZ. ZhangW. LiuJ. LiB. Magnesium isoglycyrrhizinate protects against renal-ischemia-reperfusion injury in a rat model via anti-inflammation, anti-oxidation and anti-apoptosis.Mol. Med. Rep.20171633627363310.3892/mmr.2017.6993 28714024
    [Google Scholar]
  70. LiuG. WeingerJ.G. LuZ.L. XueF. SadeghpourS. Efficacy and safety of MMFS-01, a synapse density enhancer, for treating cognitive impairment in older adults: A randomized, double-blind, placebo-controlled trial.J. Alzheimers Dis.201649497199010.3233/JAD‑150538 26519439
    [Google Scholar]
  71. UysalN. KizildagS. YuceZ. Timeline (bioavailability) of magnesium compounds in hours: Which magnesium compound works best?Biol. Trace Elem. Res.2019187112813610.1007/s12011‑018‑1351‑9 29679349
    [Google Scholar]
  72. KatoT. TsunekawaM. WangS. YamashitaT. MaN. Effect of taurine on iNOS-mediated dna damage in drug-induced renal injury.Adv. Exp. Med. Biol.2017975Pt 271772710.1007/978‑94‑024‑1079‑2_56
    [Google Scholar]
  73. LambukL. JafriA.J.A. ArfuzirN.N.N. Neuroprotective effect of Magnesium acetyltaurate against NMDA-induced excitotoxicity in rat retina.Neurotox. Res.2017311314510.1007/s12640‑016‑9658‑9 27568334
    [Google Scholar]
  74. JafriA.J.A. AgarwalR. IezhitsaI. Protective effect of magnesium acetyltaurate and taurine against NMDA-induced retinal damage involves reduced nitrosative stress.Mol. Vis.20182449550810.1016/j.biopsych.2008.01.012 30090013
    [Google Scholar]
  75. HosgorlerF. KocB. KizildagS. Magnesium acetyl taurate prevents tissue damage and deterioration of prosocial behavior related with vasopressin levels in traumatic brain injured rats.Turk Neurosurg.202030572373310.5137/1019‑5149.JTN.29272‑20.1 32865219
    [Google Scholar]
  76. DecollogneS. TomasA. LecerfC. AdamowiczE. SemanM. NMDA receptor complex blockade by oral administration of magnesium: Comparison with MK-801.Pharmacol. Biochem. Behav.199758126126810.1016/S0091‑3057(96)00555‑2 9264101
    [Google Scholar]
  77. ChanC.Y. SinghI. MagnusonH. Taurine targets the GluN2b-containing NMDA receptor subtype.Adv. Exp. Med. Biol.201580353154410.1007/978‑3‑319‑15126‑7_43 25833525
    [Google Scholar]
  78. PritchardJ.A. The use of the magnesium ion in the management of eclamptogenic toxemias.Surg. Gynecol. Obstet.1955100213114010.1097/00006254‑195508000‑00003 13238166
    [Google Scholar]
  79. HallakM. BermanR.F. IrtenkaufS.M. JanuszC.A. CottonD.B. Magnesium sulfate treatment decreases N-methyl-D-aspartate receptor binding in the rat brain: An autoradiographic study.J. Soc. Gynecol. Investig.199411253010.1177/107155769400100106 9419742
    [Google Scholar]
  80. DiCarloL.A.Jr MoradyF. de BuitleirM. KrolR.B. SchurigL. AnnesleyT.M. Effects of magnesium sulfate on cardiac conduction and refractoriness in humans.J. Am. Coll. Cardiol.1986761356136210.1016/S0735‑1097(86)80157‑7 3711493
    [Google Scholar]
  81. SamadN. YasminF. ManzoorN. Biomarkers in drug free subjects with depression: Correlation with tryptophan.Psychiatry Investig.2019161294895310.30773/pi.2019.0110 31711278
    [Google Scholar]
  82. CoudrayC. RambeauM. Feillet-CoudrayC. Study of magnesium bioavailability from ten organic and inorganic Mg salts in Mg-depleted rats using a stable isotope approach.Magnes. Res.200518421522310.1111/j.1600‑0773.1998.tb01428.x 16548135
    [Google Scholar]
  83. Al AlawiA.M. MajoniS.W. FalhammarH. Magnesium and human health: Perspectives and research directions.Int. J. Endocrinol.20182018211710.1155/2018/9041694 29849626
    [Google Scholar]
  84. RanadeV.V. SombergJ.C. Bioavailability and pharmacokinetics of magnesium after administration of magnesium salts to humans.Am. J. Ther.20018534535710.1097/00045391‑200109000‑00008 11550076
    [Google Scholar]
  85. AtesM. KizildagS. YukselO. Dose-dependent absorption profile of different magnesium compounds.Biol. Trace Elem. Res.2019192224425110.1007/s12011‑019‑01663‑0 30761462
    [Google Scholar]
  86. LongS. RomaniA.M. Role of cellular magnesium in human diseases.Austin J. Nutr. Food Sci.2014210 25839058
    [Google Scholar]
  87. SchuchardtJ.P. HahnA. Intestinal absorption and factors influencing bioavailability of magnesium- An update.Curr. Nutr. Food Sci.201713426027810.2174/1573401313666170427162740 29123461
    [Google Scholar]
  88. MaguireM.E. CowanJ.A. Magnesium chemistry and biochemistry.Biometals200215320321010.1023/A:1016058229972 12206387
    [Google Scholar]
  89. GriffithsA.M. CookD.M. EggettD.L. ChristensenM.J. A retail market study of organic and conventional potatoes (Solanum tuberosum): Mineral content and nutritional implications.Int. J. Food Sci. Nutr.201263439340110.3109/09637486.2011.629602 22022779
    [Google Scholar]
  90. KrejsG.J. NicarM.J. ZerwekhJ.E. NormanD.A. KaneM.G. PakC.Y.C. Effect of 1,25-dihydroxyvitamin D3 on calcium and magnesium absorption in the healthy human jejunum and ileum.Am. J. Med.198375697397610.1016/0002‑9343(83)90877‑X 6689108
    [Google Scholar]
  91. CampbellS.C. StockmannC. BalchA. Intrapartum magnesium sulfate and the potential for cardiopulmonary drug-drug interactions.Ther. Drug Monit.201436454454810.1097/FTD.0000000000000050 24487252
    [Google Scholar]
  92. SeneffS. SamselA. Glyphosate, pathways to modern diseases III: Manganese, neurological diseases, and associated pathologies.Surg. Neurol. Int.2015614510.4103/2152‑7806.153876 25883837
    [Google Scholar]
  93. Kotlinska-HasiecE. Makara-StudzinskaM. CzajkowskiM. Plasma magnesium concentration in patients undergoing coronary artery bypass grafting.Ann. Agric. Environ. Med.201724218118410.5604/12321966.1232767 28664690
    [Google Scholar]
  94. MedalleR. WaterhouseC. HahnT.J. Vitamin D resistance in magnesium deficiency.Am. J. Clin. Nutr.197629885485810.1093/ajcn/29.8.854 941867
    [Google Scholar]
  95. HardwickL.L. JonesM.R. BrautbarN. LeeD.B.N. Magnesium absorption: Mechanisms and the influence of vitamin D, calcium and phosphate.J. Nutr.19911211132310.1093/jn/121.1.13 1992050
    [Google Scholar]
  96. AhmedF. MohammedA. Magnesium: The forgotten electrolyte-A review on hypomagnesemia.Med. Sci. (Basel)2019745610.3390/medsci7040056 30987399
    [Google Scholar]
  97. SarisN.E.L. MervaalaE. KarppanenH. KhawajaJ.A. LewenstamA. Magnesium.Clin. Chim. Acta20002941-212610.1016/S0009‑8981(99)00258‑2 10727669
    [Google Scholar]
  98. de BaaijJ.H.F. DorresteijnE.M. HennekamE.A.M. Recurrent FXYD2 p.Gly41Arg mutation in patients with isolated dominant hypomagnesaemia.Nephrol. Dial. Transplant.201530695295710.1093/ndt/gfv014 25765846
    [Google Scholar]
  99. GröberU. Magnesium and drugs.Int. J. Mol. Sci.2019209209410.3390/ijms20092094 31035385
    [Google Scholar]
  100. KolteD. VijayaraghavanK. KheraS. SicaD.A. FrishmanW.H. Role of magnesium in cardiovascular diseases.Cardiol. Rev.201422418219210.1097/CRD.0000000000000003 24896250
    [Google Scholar]
  101. PhamP.C. PhamP.A. PhamS. PhamP.T. PhamP.M. PhamP.T. Hypomagnesemia: A clinical perspective.Int. J. Nephrol. Renovasc. Dis.2014721923010.2147/IJNRD.S42054 24966690
    [Google Scholar]
  102. StuiverM. LainezS. WillC. CNNM2, encoding a basolateral protein required for renal Mg2+ handling, is mutated in dominant hypomagnesemia.Am. J. Hum. Genet.201188333334310.1016/j.ajhg.2011.02.005 21397062
    [Google Scholar]
  103. SimonD.B. Nelson-WilliamsC. Johnson BiaM. Gitelman’s variant of Barter’s syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl cotransporter.Nat. Genet.1996121243010.1038/ng0196‑24 8528245
    [Google Scholar]
  104. SchollU.I. DaveH.B. LuM. SeSAME/EAST syndrome-phenotypic variability and delayed activity of the distal convoluted tubule.Pediatr. Nephrol.201227112081209010.1007/s00467‑012‑2219‑4 22907601
    [Google Scholar]
  105. FogliaP.E.G. BettinelliA. TosettoC. Cardiac work up in primary renal hypokalaemia-hypomagnesaemia (Gitelman syndrome).Nephrol. Dial. Transplant.20041961398140210.1093/ndt/gfh204 15034158
    [Google Scholar]
  106. SimonD.B. LuY. ChoateK.A. Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption.Science1999285542410310610.1126/science.285.5424.103 10390358
    [Google Scholar]
  107. KonradM. SchallerA. SeelowD. Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement.Am. J. Hum. Genet.200679594995710.1086/508617 17033971
    [Google Scholar]
  108. GilbertR.D. PaedF.C. EmmsM. TechD.M. Pearson’s syndrome presenting with Fanconi syndrome.Ultrastruct. Pathol.199620547347510.3109/01913129609016351 8883332
    [Google Scholar]
  109. JiaS. LiuY. ShiY. Elevation of brain magnesium potentiates neural stem cell proliferation in the hippocampus of young and aged mice.J. Cell. Physiol.201623191903191210.1002/jcp.25306 26754806
    [Google Scholar]
  110. HebertS.C. Bartter syndrome.Curr. Opin. Nephrol. Hypertens.200312552753210.1097/00041552‑200309000‑00008 12920401
    [Google Scholar]
  111. BockenhauerD. FeatherS. StanescuH.C. Epilepsy, ataxia, sensorineural deafness, tubulopathy, and KCNJ10 mutations.N. Engl. J. Med.2009360191960197010.1056/NEJMoa0810276 19420365
    [Google Scholar]
  112. FerrèS. de BaaijJ.H.F. FerreiraP. Mutations in PCBD1 cause hypomagnesemia and renal magnesium wasting.J. Am. Soc. Nephrol.201425357458610.1681/ASN.2013040337 24204001
    [Google Scholar]
  113. SimaiteD. KofentJ. GongM. Recessive mutations in PCBD1 cause a new type of early-onset diabetes.Diabetes201463103557356410.2337/db13‑1784 24848070
    [Google Scholar]
  114. WilsonF.H. HaririA. FarhiA. A cluster of metabolic defects caused by mutation in a mitochondrial tRNA.Science200430656991190119410.1126/science.1102521 15498972
    [Google Scholar]
  115. BelostotskyR. Ben-ShalomE. RinatC. Mutations in the mitochondrial seryl-tRNA synthetase cause hyperuricemia, pulmonary hypertension, renal failure in infancy and alkalosis, HUPRA syndrome.Am. J. Hum. Genet.201188219320010.1016/j.ajhg.2010.12.010 21255763
    [Google Scholar]
  116. HarveyJ.N. BarnettD. Endocrine dysfunction in Kearns‐Sayre syndrome.Clin. Endocrinol. (Oxf.)19923719710410.1111/j.1365‑2265.1992.tb02289.x 1424198
    [Google Scholar]
  117. SchlingmannK.P. WeberS. PetersM. Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family.Nat. Genet.200231216617010.1038/ng889 12032568
    [Google Scholar]
  118. WalderR.Y. LandauD. MeyerP. Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia.Nat. Genet.200231217117410.1038/ng901 12032570
    [Google Scholar]
  119. GroenestegeW.M.T. ThébaultS. van der WijstJ. Impaired basolateral sorting of pro-EGF causes isolated recessive renal hypomagnesemia.J. Clin. Invest.200711782260226710.1172/JCI31680 17671655
    [Google Scholar]
  120. RajizadehA. Mozaffari-KhosraviH. Yassini-ArdakaniM. DehghaniA. Effect of magnesium supplementation on depression status in depressed patients with magnesium deficiency: A randomized, double-blind, placebo-controlled trial.Nutrition2017351566010.1016/j.nut.2016.10.014 28241991
    [Google Scholar]
  121. GlaudemansB. van der WijstJ. ScolaR.H. A missense mutation in the Kv1.1 voltage-gated potassium channel-encoding gene KCNA1 is linked to human autosomal dominant hypomagnesemia.J. Clin. Invest.2009119493694210.1172/JCI36948 19307729
    [Google Scholar]
  122. PearceS.H.S. WilliamsonC. KiforO. A familial syndrome of hypocalcemia with hypercalciuria due to mutations in the calcium-sensing receptor.N. Engl. J. Med.1996335151115112210.1056/NEJM199610103351505 8813042
    [Google Scholar]
  123. EmmaF. PizziniC. TessaA. “Bartter-like” phenotype in Kearns-Sayre syndrome.Pediatr. Nephrol.200621335536010.1007/s00467‑005‑2092‑5 16382326
    [Google Scholar]
  124. GotoY. ItamiN. KajiiN. TochimaruH. EndoM. HoraiS. Renal tubular involvement mimicking Bartter syndrome in a patient with Kearns-Sayre syndrome.J. Pediatr.1990116690491010.1016/S0022‑3476(05)80648‑1 2161456
    [Google Scholar]
  125. VoetsT. NiliusB. HoefsS. TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption.J. Biol. Chem.20042791192510.1074/jbc.M311201200 14576148
    [Google Scholar]
  126. WintherG. Pyndt JørgensenB.M. ElfvingB. Dietary magnesium deficiency alters gut microbiota and leads to depressive-like behaviour.Acta Neuropsychiatr.201527316817610.1017/neu.2015.7 25690713
    [Google Scholar]
  127. ChmielinskaJ.J. Tejero-TaldoM.I. MakI.T. WeglickiW.B. Intestinal and cardiac inflammatory response shows enhanced endotoxin receptor (CD14) expression in magnesium deficiency.Mol. Cell. Biochem.20052781-2535710.1007/s11010‑005‑2733‑9 16180088
    [Google Scholar]
  128. ZimowskaW. GirardeauJ.P. KuryszkoJ. BayleD. RayssiguierY. MazurA. Morphological and immune response alterations in the intestinal mucosa of the mouse after short periods on a low-magnesium diet.Br. J. Nutr.200288551552210.1079/BJN2002696 12425732
    [Google Scholar]
  129. Pyndt JørgensenB. WintherG. KihlP. Dietary magnesium deficiency affects gut microbiota and anxiety-like behaviour in C57BL/6N mice.Acta Neuropsychiatr.201527530731110.1017/neu.2015.10 25773775
    [Google Scholar]
  130. CoudrayC. DemignéC. RayssiguierY. Effects of dietary fibers on magnesium absorption in animals and humans.J. Nutr.200313311410.1093/jn/133.1.1 12514257
    [Google Scholar]
  131. CussottoS. SandhuK.V. DinanT.G. CryanJ.F. The neuroendocrinology of the microbiota-gut-brain axis: A behavioural perspective.Front. Neuroendocrinol.20185118010110.1016/j.yfrne.2018.04.002 29753796
    [Google Scholar]
  132. GaoX. CaoQ. ChengY. Chronic stress promotes colitis by disturbing the gut microbiota and triggering immune system response.Proc. Natl. Acad. Sci. USA201811513E2960E296910.1073/pnas.1720696115 29531080
    [Google Scholar]
  133. LiuC. ChengY. GuoY. QianH. Magnesium-L-threonate alleviate colonic inflammation and memory impairment in chronic-plus-binge alcohol feeding mice.Brain Res. Bull.20211741318419310.1016/j.brainresbull.2021.06.009 34144203
    [Google Scholar]
  134. CrowleyE.K. Long-SmithC.M. MurphyA. Dietary supplementation with a magnesium-rich marine mineral blend enhances the diversity of gastrointestinal microbiota.Mar. Drugs201816621610.3390/md16060216 29925774
    [Google Scholar]
  135. AngA.W.K. KoS.M. TanC.H. Calcium, magnesium, and psychotic symptoms in a girl with idiopathic hypoparathyroidism.Psychosom. Med.199557329930210.1097/00006842‑199505000‑00013 7652132
    [Google Scholar]
  136. NechiforM. VaideanuC. PalamaruI. BorzaC. MindreciI. The influence of some antipsychotics on erythrocyte magnesium and plasma magnesium, calcium, copper and zinc in patients with paranoid schizophrenia.J. Am. Coll. Nutr.2004235549S551S10.1080/07315724.2004.10719401 15466963
    [Google Scholar]
  137. Jabotinsky-RubinK. DurstR. LevitinL.A. Effects of haloperidol on human plasma magnesium.J. Psychiatr. Res.199327215515910.1016/0022‑3956(93)90003‑K 8366466
    [Google Scholar]
  138. ZhangC. HuQ. LiS. A Magtein®, Magnesium L-threonate, -based formula improves brain cognitive functions in healthy Chinese adults.Nutrients20221424523510.3390/nu14245235 36558392
    [Google Scholar]
  139. TurnlundJ.R. BetschartA.A. LiebmanM. KretschM.J. SauberlichH.E. Vitamin B−6 depletion followed by repletion with animal- or plant-source diets and calcium and magnesium metabolism in young women.Am. J. Clin. Nutr.199256590591010.1093/ajcn/56.5.905 1415010
    [Google Scholar]
  140. GuillardO. PiriouA. FauconneauB. MaucoG. MetteyR. Unexpected toxicity induced by magnesium orotate treatment in congenital hypomagnesemia.J. Intern. Med.20022521889010.1046/j.1365‑2796.2002.01007.x 12074744
    [Google Scholar]
  141. PoleszakE. WlaźP. KedzierskaE. Effects of acute and chronic treatment with magnesium in the forced swim test in rats.Pharmacol. Rep.200557565465810.1046/j.1365‑2796.2002.01007.x 16227649
    [Google Scholar]
  142. JayediA. Rashidy-PourA. Shab-BidarS. Vitamin D status and risk of dementia and Alzheimer’s disease: A meta-analysis of dose-response.Nutr. Neurosci.2019221175075910.1080/1028415X.2018.1436639 29447107
    [Google Scholar]
  143. ChaiB. GaoF. WuR. Vitamin D deficiency as a risk factor for dementia and Alzheimer’s disease: an updated meta-analysis.BMC Neurol.201919128410.1186/s12883‑019‑1500‑6 31722673
    [Google Scholar]
  144. PoleszakE. WlaźP. KedzierskaE. Immobility stress induces depression-like behavior in the forced swim test in mice: Effect of magnesium and imipramine.Pharmacol. Rep.2006585746752 17085867
    [Google Scholar]
  145. MurckH. Ketamine, magnesium and major depression - From pharmacology to pathophysiology and back.J. Psychiatr. Res.201347795596510.1016/j.jpsychires.2013.02.015 23541145
    [Google Scholar]
  146. PoleszakE. WlaźP. KędzierskaE. NMDA/glutamate mechanism of antidepressant-like action of magnesium in forced swim test in mice.Pharmacol. Biochem. Behav.200788215816410.1016/j.pbb.2007.07.018 17825400
    [Google Scholar]
  147. MehdiS.M.A. AtlasS.E. QadirS. Double-blind, randomized crossover study of intravenous infusion of magnesium sulfate versus 5% dextrose on depressive symptoms in adults with treatment-resistant depression.Psychiatry Clin. Neurosci.201771320421110.1111/pcn.12480 27862658
    [Google Scholar]
  148. TarletonE.K. LittenbergB. MacLeanC.D. KennedyA.G. DaleyC. Role of magnesium supplementation in the treatment of depression: A randomized clinical trial.PLoS One2017126e018006710.1371/journal.pone.0180067 28654669
    [Google Scholar]
  149. FardF.E. MirghafourvandM. Mohammad-Alizadeh CharandabiS. Farshbaf-KhaliliA. JavadzadehY. AsgharianH. Effects of zinc and magnesium supplements on postpartum depression and anxiety: A randomized controlled clinical trial.Women Health20175791115112810.1080/03630242.2016.1235074 27617502
    [Google Scholar]
  150. PouteauE. Kabir-AhmadiM. NoahL. Superiority of magnesium and vitamin B6 over magnesium alone on severe stress in healthy adults with low magnesemia: A randomized, single-blind clinical trial.PLoS One20181312e020845410.1371/journal.pone.0208454 30562392
    [Google Scholar]
  151. TejparS. PiessevauxH. ClaesK. Magnesium wasting associated with epidermal-growth-factor receptor-targeting antibodies in colorectal cancer: A prospective study.Lancet Oncol.20078538739410.1016/S1470‑2045(07)70108‑0 17466895
    [Google Scholar]
  152. AlexanderPE van KammenDP BunneyWEJr Serum calcium and magnesium in schizophrenia: Relationship to clinical phenomena and neuroleptic treatment.Br J Psychiatry19781332143910.1192/bjp.133.2.143354732
    [Google Scholar]
  153. ScorzaFA AlbuquerqueM AridaRM CysneirosRM Serum levels of magnesium in sudden cardiac deaths among people with schizophrenia: hit or miss?Arq Neuropsiquiatr20127010814610.1590/S0004‑282X201200100001123060109
    [Google Scholar]
  154. LiuH.T. HollmannM.W. LiuW.H. HoenemannC.W. DurieuxM.E. Modulation of NMDA receptor function by ketamine and magnesium: Part I.Anesth. Analg.20019251173118110.1097/00000539‑200105000‑00019 11323343
    [Google Scholar]
  155. HollmannM.W. LiuH.T. HoenemannC.W. LiuW.H. DurieuxM.E. Modulation of NMDA receptor function by ketamine and magnesium. Part II: Interactions with volatile anesthetics.Anesth. Analg.20019251182119110.1097/00000539‑200105000‑00020 11323344
    [Google Scholar]
  156. KotermanskiS.E. JohnsonJ.W. Mg2+ imparts NMDA receptor subtype selectivity to the Alzheimer’s drug memantine.J. Neurosci.20092992774277910.1523/JNEUROSCI.3703‑08.2009 19261873
    [Google Scholar]
  157. BohnT. DavidssonL. WalczykT. HurrellR.F. Phytic acid added to white-wheat bread inhibits fractional apparent magnesium absorption in humans.Am. J. Clin. Nutr.200479341842310.1093/ajcn/79.3.418 14985216
    [Google Scholar]
  158. MuroyamaA. InakaM. MatsushimaH. SuginoH. MarunakaY. MitsumotoY. Enhanced susceptibility to MPTP neurotoxicity in magnesium-deficient C57BL/6N mice.Neurosci. Res.2009631727510.1016/j.neures.2008.09.009 18977253
    [Google Scholar]
  159. IslamM.R. IslamM.R. Shalahuddin QusarM.M.A. Alterations of serum macro-minerals and trace elements are associated with major depressive disorder: A case-control study.BMC Psychiatry20181819410.1186/s12888‑018‑1685‑z 29631563
    [Google Scholar]
  160. OyanagiK. KawakamiE. Kikuchi-HorieK. Magnesium deficiency over generations in rats with special references to the pathogenesis of the parkinsonism-dementia complex and amyotrophic lateral sclerosis of Guam.Neuropathology200626211512810.1111/j.1440‑1789.2006.00672.x 16708544
    [Google Scholar]
  161. WangJ. UmP. DickermanB.A. LiuJ. Zinc, magnesium, selenium and depression: A review of the evidence, potential mechanisms and implications.Nutrients201810558410.3390/nu10050584 29747386
    [Google Scholar]
  162. BacP. HerrenknechtC. BinetP. DurlachJ. Audiogenic seizures in magnesium-deficient mice: Effects of magnesium pyrrolidone-2-carboxylate, magnesium acetyltaurinate, magnesium chloride and vitamin B-6.Magnes. Res.199361111910.1016/j.clnu.2019.12.011 8369195
    [Google Scholar]
  163. MohaddesiH. Saei Ghare NazM. NajarzadehM. YeganehpourM. KhalkhaliH. Correlation between depression with serum levels of vitamin D, calcium and magnesium in women of reproductive age.J. Caring Sci.20198211711910.15171/jcs.2019.017 31249822
    [Google Scholar]
  164. BaeY.J. KimS.K. Low dietary calcium is associated with self-rated depression in middle-aged Korean women.Nutr. Res. Pract.20126652753310.4162/nrp.2012.6.6.527 23346303
    [Google Scholar]
  165. HuangJ.H. LuY.F. ChengF.C. LeeJ.N.Y. TsaiL.C. Correlation of magnesium intake with metabolic parameters, depression and physical activity in elderly type 2 diabetes patients: A cross-sectional study.Nutr. J.20121114110.1186/1475‑2891‑11‑41 22695027
    [Google Scholar]
  166. WoodwardG. WanJ.C.M. ViswanathK. ZamanR. Serum Vitamin D and Magnesium levels in a psychiatric cohort.Psychiatr. Danub.201931Suppl. 3221226
    [Google Scholar]
  167. ShohagH. UllahA. QusarS. RahmanM. HasnatA. Alterations of serum zinc, copper, manganese, iron, calcium, and magnesium concentrations and the complexity of interelement relations in patients with obsessive-compulsive disorder.Biol. Trace Elem. Res.2012148327528010.1007/s12011‑012‑9371‑3 22383079
    [Google Scholar]
  168. MahmoudM.M. El-MazaryA.A.M. MaherR.M. SaberM.M. Zinc, ferritin, magnesium and copper in a group of Egyptian children with attention deficit hyperactivity disorder.Ital. J. Pediatr.20113716010.1186/1824‑7288‑37‑60 22206662
    [Google Scholar]
  169. SkalnyA.V. MazaletskayaA.L. AjsuvakovaO.P. Serum zinc, copper, zinc-to-copper ratio, and other essential elements and minerals in children with attention deficit/hyperactivity disorder (ADHD).J. Trace Elem. Med. Biol.20205812644510.1016/j.jtemb.2019.126445 31869738
    [Google Scholar]
  170. RazzaqueM.S. Magnesium: Are we consuming enough?Nutrients20181012186310.3390/nu10121863 30513803
    [Google Scholar]
  171. WilliamsG.D. SmithM.B. Application of the accurate assessment of intracellular magnesium and pH from the 31P shifts of ATP to cerebral hypoxia-ischemia in neonatal rat.Magn. Reson. Med.199533685385710.1002/mrm.1910330618 7651125
    [Google Scholar]
  172. ZhangJ. ZhaoF. ZhaoY. Hypoxia induces an increase in intracellular magnesium via transient receptor potential melastatin 7 (TRPM7) channels in rat hippocampal neurons in vitro.J. Biol. Chem.201128623201942020710.1074/jbc.M110.148494 21487014
    [Google Scholar]
  173. HinsbergerA.D. WilliamsonP.C. CarrT.J. Magnetic resonance imaging volumetric and phosphorus 31 magnetic resonance spectroscopy measurements in schizophrenia.J. Psychiatry Neurosci.199722211111710.1074/jbc.M110.148494 9074305
    [Google Scholar]
  174. AndrásiE. IgazS. MolnárZ. MakóS. Disturbances of magnesium concentrations in various brain areas in Alzheimer’s disease.Magnes. Res.200013318919610.1111/j.1440‑1789.2006.00672.x 11008926
    [Google Scholar]
  175. StelmasiakZ. SolskiJ. JakubowskaB. Magnesium concentration in plasma and erythrocytes in MS.Acta Neurol. Scand.199592110911110.1111/j.1600‑0404.1995.tb00476.x 7572055
    [Google Scholar]
  176. YasuiM. YaseY. KihiraT. AdachiK. SuzukiY. Magnesium and calcium contents in CNS tissues of amyotrophic lateral sclerosis patients from the Kii Peninsula, Japan.Eur. Neurol.1992322959810.1159/000116800 1314186
    [Google Scholar]
  177. LodiR. MontagnaP. SorianiS. Deficit of brain and skeletal muscle bioenergetics and low brain Magnesium in juvenile migraine: An in vivo 31P magnetic resonance spectroscopy interictal study.Pediatr. Res.199742686687110.1203/00006450‑199712000‑00024 9396571
    [Google Scholar]
  178. CernakI. RadosevicP. MalicevicZ. SavicJ. Experimental magnesium depletion in adult rabbits caused by blast overpressure.Magnes. Res.199583249259 8845290
    [Google Scholar]
  179. SuzukiM. NishinaM. EndoM. Decrease in cerebral free magnesium concentration following closed head injury and effects of VA-045 in rats.Gen. Pharmacol.199728111912110.1016/S0306‑3623(96)00148‑6 9112087
    [Google Scholar]
  180. McKeeJ.A. BrewerR.P. MacyG.E. BorelC.O. ReynoldsJ.D. WarnerD.S. Magnesium neuroprotection is limited in humans with acute brain injury.Neurocrit. Care20052334235110.1385/NCC:2:3:342 16159086
    [Google Scholar]
  181. WolfF.I. TrapaniV. SimonacciM. FerréS. MaierJ.A.M. Magnesium deficiency and endothelial dysfunction: Is oxidative stress involved?Magnes. Res.2008211586410.1684/mrh.2008.0129 18557135
    [Google Scholar]
  182. KharitonovaM. IezhitsaI. ZheltovaA. OzerovA. SpasovA. SkalnyA. Comparative angioprotective effects of magnesium compounds.J. Trace Elem. Med. Biol.20152922723410.1016/j.jtemb.2014.06.026 25127069
    [Google Scholar]
  183. IezhitsaI.N. SpasovA.A. Potassium magnesium homeostasis: Physiology, pathophysiology, clinical consequences of deficiency and pharmacological correction.Usp. Fiziol. Nauk20083912341 18314767
    [Google Scholar]
  184. DørupI. Magnesium and potassium deficiency. Its diagnosis, occurrence and treatment in diuretic therapy and its consequences for growth, protein synthesis and growth factors.Acta Physiol. Scand. Suppl.1994618155 8036903
    [Google Scholar]
  185. OkumaY. UeharaT. NomuraY. The precise characterization and the crucial mechanism of NO-induced cytotoxicity.Nippon Yakurigaku Zasshi1998112318719410.1254/fpj.112.187 9793073
    [Google Scholar]
  186. SadirS. TabassumS. EmadS. Neurobehavioral and biochemical effects of magnesium chloride (MgCl2), magnesium sulphate (MgSO4) and magnesium-L-threonate (MgT) supplementation in rats: A dose dependent comparative study.Pak. J. Pharm. Sci.2019321(Supplementary)27728310.2131/jts.23.5_389 30829204
    [Google Scholar]
  187. NagaiN. FukuhataT. ItoY. Effect of magnesium deficiency on intracellular ATP levels in human lens epithelial cells.Biol. Pharm. Bull.200730161010.1248/bpb.30.6 17202650
    [Google Scholar]
  188. ZheltovaA.A. KharitonovaM.V. IezhitsaI.N. SpasovA.A. Magnesium deficiency and oxidative stress: An update.Biomedicine2016642010.7603/s40681‑016‑0020‑6
    [Google Scholar]
  189. ChaudharyD.P. BoparaiR.K. BansalD.D. Implications of oxidative stress in high sucrose low magnesium diet fed rats.Eur. J. Nutr.200746738339010.1007/s00394‑007‑0677‑4 17823763
    [Google Scholar]
  190. HansC.P. ChaudharyD.P. BansalD.D. Magnesium deficiency increases oxidative stress in rats.Indian J. Exp. Biol.2002401112751279 13677631
    [Google Scholar]
  191. SugimotoJ. RomaniA.M. Valentin-TorresA.M. Magnesium decreases inflammatory cytokine production: A novel innate immunomodulatory mechanism.J. Immunol.2012188126338634610.4049/jimmunol.1101765 22611240
    [Google Scholar]
  192. GougouliasN. HatzisotiriouA. KapoukranidouD. AlbaniM. Magnesium administration provokes motor unit survival, after sciatic nerve injury in neonatal rats.BMC Musculoskelet. Disord.2004513310.1186/1471‑2474‑5‑33 15447790
    [Google Scholar]
  193. SinghH. JalodiaS. GuptaM.S. TalapatraP. GuptaV. SinghI. Role of magnesium sulfate in neuroprotection in acute ischemic stroke.Ann. Indian Acad. Neurol.201215317718010.4103/0972‑2327.99705 22919188
    [Google Scholar]
  194. GromovaO.A. TorshinI.Y. KalachevaA.G. KuramshinaD.B. Molecular-biological basics of neuroprotection effects of magnesium.Zh. Nevrol. Psikhiatr. Im. S. S. Korsakova20111111290101
    [Google Scholar]
  195. McIntoshT.K. VinkR. YamakamiI. FadenA.I. Magnesium protects against neurological deficit after brain injury.Brain Res.1989482225226010.1016/0006‑8993(89)91188‑8 2784989
    [Google Scholar]
  196. BøhmerT. RøsethA. HolmH. Weberg-TeigenS. WahlL. Bioavailability of oral magnesium supplementation in female students evaluated from elimination of magnesium in 24-hour urine.Magnes. Trace Elem.199095272278 2130825
    [Google Scholar]
  197. LindbergJ.S. ZobitzM.M. PoindexterJ.R. PakC.Y. Magnesium bioavailability from magnesium citrate and magnesium oxide.J. Am. Coll. Nutr.199091485510.1080/07315724.1990.10720349 2407766
    [Google Scholar]
  198. DolinskaB. RyszkaF. Influence of salt form and concentration on the absorption of magnesium in rat small intestine.Boll. Chim. Farm.2004143416316510.1080/07315724.1990.10720349 15255338
    [Google Scholar]
  199. WhiteJ. MasseyL. GalesS.K. DittusK. CampbellK. Blood and urinary magnesium kinetics after oral magnesium supplements.Clin. Ther.199214567868710.1080/07315724.1990.10720349 1468087
    [Google Scholar]
  200. WangJ. LiuY. ZhouL.J. Magnesium L-threonate prevents and restores memory deficits associated with neuropathic pain by inhibition of TNF-α.Pain Physician2013165E563E57510.1080/07315724.1990.10720349 24077207
    [Google Scholar]
  201. WilimzigC. LatzR. VierlingW. MutschlerE. TrnovecT. NyulassyS. Increase in magnesium plasma level after orally administered trimagnesium dicitrate.Eur. J. Clin. Pharmacol.199649431732310.1007/BF00226334 8857079
    [Google Scholar]
  202. ZhouX. HuangZ. ZhangJ. Chronic oral administration of magnesium-l-threonate prevents oxaliplatin-induced memory and emotional deficits by normalization of TNF-α/NF-κB signaling in rats.Neurosci. Bull.2021371556910.1007/s12264‑020‑00563‑x 32857294
    [Google Scholar]
  203. WangP. YuX. GuanP.P. Magnesium ion influx reduces neuroinflammation in Aβ precursor protein/Presenilin 1 transgenic mice by suppressing the expression of interleukin-1β.Cell. Mol. Immunol.201714545146410.1038/cmi.2015.93 26549801
    [Google Scholar]
  204. FaustiniG. BonoF. ValerioA. PizziM. SpanoP. BellucciA. Mitochondria and α-synuclein: Friends or foes in the pathogenesis of Parkinson’s disease?Genes (Basel)201781237710.3390/genes8120377 29292725
    [Google Scholar]
  205. ArfuzirN.N.N. LambukL. JafriA.J.A. Protective effect of magnesium acetyltaurate against endothelin-induced retinal and optic nerve injury.Neuroscience20163251215316410.1016/j.neuroscience.2016.03.041 27012609
    [Google Scholar]
  206. AgarwalR. IezhitsaI. AwaludinN.A. Effects of magnesium taurate on the onset and progression of galactose-induced experimental cataract: In vivo and in vitro evaluation.Exp. Eye Res.20131101354310.1016/j.exer.2013.02.011 23428743
    [Google Scholar]
  207. ShrivastavaP. ChoudharyR. NirmalkarU. Magnesium taurate attenuates progression of hypertension and cardiotoxicity against cadmium chloride-induced hypertensive albino rats.J. Tradit. Complement. Med.20199211912310.1016/j.jtcme.2017.06.010 30963046
    [Google Scholar]
  208. XuZ.P. LiL. BaoJ. Magnesium protects cognitive functions and synaptic plasticity in streptozotocin-induced sporadic Alzheimer’s model.PLoS One201499e10864510.1371/journal.pone.0108645 25268773
    [Google Scholar]
  209. ElinR.J. Assessment of magnesium status for diagnosis and therapy.Magnes. Res.2010234S194S19810.1684/mrh.2010.0213 20736141
    [Google Scholar]
  210. KieboomB.C.T. LicherS. WoltersF.J. Serum magnesium is associated with the risk of dementia.Neurology201789161716172210.1212/WNL.0000000000004517 28931641
    [Google Scholar]
  211. AlpayK. ErtaşM. OrhanE.K. ÜstayD.K. LienersC. BaykanB. Diet restriction in migraine, based on IgG against foods: A clinical double-blind, randomised, cross-over trial.Cephalalgia201030782983710.1177/0333102410361404 20647174
    [Google Scholar]
  212. NischwitzV. BertheleA. MichalkeB. Speciation analysis of selected metals and determination of their total contents in paired serum and cerebrospinal fluid samples: An approach to investigate the permeability of the human blood-cerebrospinal fluid-barrier.Anal. Chim. Acta2008627225826910.1016/j.aca.2008.08.018 18809082
    [Google Scholar]
  213. HoffmanA. LevyG. Kinetics of drug action in disease states. XXXVI: Effect of cyclosporine on the pharmacodynamics and pharmacokinetics of a barbiturate (heptabarbital) in rats.J. Pharm. Sci.1990791192210.1002/jps.2600790106 1968970
    [Google Scholar]
  214. AllouiA. BegonS. ChassaingC. Does Mg2+ deficiency induce a long-term sensitization of the central nociceptive pathways?Eur. J. Pharmacol.20034691-3656910.1016/S0014‑2999(03)01719‑9 12782186
    [Google Scholar]
  215. BarthaR. MichaeliS. MerkleH. In vivo 1H2OT measurement in the human occipital lobe at 4T and 7T by Carr-Purcell MRI: Detection of microscopic susceptibility contrast.Magn. Reson. Med.200247474275010.1002/mrm.10112 11948736
    [Google Scholar]
  216. DjurhuusM.S. GramJ. PetersenP.H. KlitgaardN.A.H. BollerslevJ. Beck-NielsenH. Biological variation of serum and urinary magnesium in apparently healthy males.Scand. J. Clin. Lab. Invest.199555654955810.1080/00365519509075394 8571086
    [Google Scholar]
  217. Al-DujailiA.H. Al-HakeimH.K. TwayejA.J. MaesM. Total and ionized calcium and magnesium are significantly lowered in drug-naïve depressed patients: Effects of antidepressants and associations with immune activation.Metab. Brain Dis.20193451493150310.1007/s11011‑019‑00458‑5 31292851
    [Google Scholar]
  218. Salehi-PourmehrH. DolatkhahN. Gassab-AbdollahiN. FarrinN. MojtahediM. Farshbaf-KhaliliA. Screening of depression in overweight and obese pregnant women and its predictors.J. Obstet. Gynaecol. Res.201945112169217710.1111/jog.14100 31576657
    [Google Scholar]
  219. CamardeseG. De RisioL. PiziG. Plasma magnesium levels and treatment outcome in depressed patients.Nutr. Neurosci.2012152788410.1179/1476830512Y.0000000002 22564338
    [Google Scholar]
  220. NaharZ. AzadM.A.K. RahmanM.A. Comparative analysis of serum manganese, zinc, calcium, copper and magnesium level in panic disorder patients.Biol. Trace Elem. Res.2010133328429010.1007/s12011‑009‑8441‑7 19582379
    [Google Scholar]
  221. RuljancicN. MihanovicM. CepelakI. BaklizaA. Platelet and serum calcium and magnesium concentration in suicidal and non-suicidal schizophrenic patients.Psychiatry Clin. Neurosci.201367315415910.1111/pcn.12038 23581866
    [Google Scholar]
  222. YangR. ZhangY. GaoW. LinN. LiR. ZhaoZ. Blood levels of trace elements in children with attention-deficit hyperactivity disorder: Results from a case-control study.Biol. Trace Elem. Res.2019187237638210.1007/s12011‑018‑1408‑9 29909491
    [Google Scholar]
  223. AbbasiB. KimiagarM. SadeghniiatK. ShiraziM.M. HedayatiM. RashidkhaniB. The effect of magnesium supplementation on primary insomnia in elderly: A double-blind placebo-controlled clinical trial.J. Res. Med. Sci.201217121161116910.1080/03630242.2016.1235074 23853635
    [Google Scholar]
  224. NielsenF.H. JohnsonL.K. ZengH. Magnesium supplementation improves indicators of low magnesium status and inflammatory stress in adults older than 51 years with poor quality sleep.Magnes. Res.201023415816810.1684/mrh.2010.0220 21199787
    [Google Scholar]
  225. SurmanC. VaudreuilC. BolandH. RhodewaltL. DiSalvoM. BiedermanJ. L-threonic acid magnesium salt supplementation in ADHD: An open-label pilot study.J. Diet. Suppl.202118211913110.1080/19390211.2020.1731044 32162987
    [Google Scholar]
  226. HeldK. AntonijevicI.A. KünzelH. Oral Mg2+ supplementation reverses age-related neuroendocrine and sleep EEG changes in humans.Pharmacopsychiatry200235413514310.1055/s‑2002‑33195 12163983
    [Google Scholar]
  227. GaralejićE. Bojović-JovićD. DamjanovićA. Hamilton anxiety scale (HAMA) in infertile women with endometriosis and its correlation with magnesium levels in peritoneal fluid.Psychiatr. Danub.2010221646710.1055/s‑2002‑33195 20305593
    [Google Scholar]
  228. SchrattenholzA. SoskicV. NMDA receptors are not alone: Dynamic regulation of NMDA receptor structure and function by neuregulins and transient cholesterol-rich membrane domains leads to disease-specific nuances of glutamate-signalling.Curr. Top. Med. Chem.20066766368610.2174/156802606776894519 16719808
    [Google Scholar]
  229. LiuY. ZhangJ. Recent development in NMDA receptors.Chin. Med. J. (Engl.)20001131094895610.1111/jcpt.12656 11775847
    [Google Scholar]
  230. MayerM.L. BenvenisteM. PatneauD.K. VyklickyL.Jr Pharmacologic properties of NMDA receptors.Ann. N. Y. Acad. Sci.1992648119420410.1111/j.1749‑6632.1992.tb24538.x
    [Google Scholar]
  231. BlissT.V.P. CollingridgeG.L. A synaptic model of memory: Long-term potentiation in the hippocampus.Nature19933616407313910.1038/361031a0 8421494
    [Google Scholar]
  232. KumarA. NMDA receptor function during senescence: Implication on cognitive performance.Front. Neurosci.2015947310.3389/fnins.2015.00473 26732087
    [Google Scholar]
  233. IacobucciG.J. PopescuG.K. NMDA receptors: Linking physiological output to biophysical operation.Nat. Rev. Neurosci.201718423624910.1038/nrn.2017.24 28303017
    [Google Scholar]
  234. MionG. VillevieilleT. Ketamine pharmacology: An update (pharmacodynamics and molecular aspects, recent findings).CNS Neurosci. Ther.201319637038010.1111/cns.12099 23575437
    [Google Scholar]
  235. SurmeierD.J. SprustonN. Peering into the dendritic machinery of striatal medium spiny neurons.Neuron200444340140210.1016/j.neuron.2004.10.021 15504319
    [Google Scholar]
  236. NechiforM. Interactions between magnesium and psychotropic drugs.Magnes. Res.20082129710010.1684/mrh.2008.0131 18705537
    [Google Scholar]
  237. CornishS. Mehl-MadronaL. The role of vitamins and minerals in psychiatry.Integr. Med. Insights2008310.4137/117863370800300003 21614157
    [Google Scholar]
  238. BreydoL. WuJ.W. UverskyV.N. α-Synuclein misfolding and Parkinson’s disease.Biochim. Biophys. Acta Mol. Basis Dis.20121822226128510.1016/j.bbadis.2011.10.002 22024360
    [Google Scholar]
  239. MullerR.U. FinkelsteinA. The electrostatic basis of Mg++ inhibition of transmitter release.Proc. Natl. Acad. Sci. USA197471392392610.1073/pnas.71.3.923 4362638
    [Google Scholar]
  240. MagnussonK.R. Declines in mRNA expression of different subunits may account for differential effects of aging on agonist and antagonist binding to the NMDA receptor.J. Neurosci.20002051666167410.1523/JNEUROSCI.20‑05‑01666.2000 10684868
    [Google Scholar]
  241. BillardJ.M. Ageing, hippocampal synaptic activity and magnesium.Magnes. Res.200619319921510.1073/pnas.71.3.923 17172010
    [Google Scholar]
  242. AkhondzadehS. Hippocampal synaptic plasticity and cognition.J. Clin. Pharm. Ther.199924424124810.1046/j.1365‑2710.1999.00231.x 10475982
    [Google Scholar]
  243. TangY.P. ShimizuE. DubeG.R. Genetic enhancement of learning and memory in mice.Nature19994016748636910.1038/43432 10485705
    [Google Scholar]
  244. FeeneyK.A. HansenL.L. PutkerM. Daily magnesium fluxes regulate cellular timekeeping and energy balance.Nature2016532759937537910.1038/nature17407 27074515
    [Google Scholar]
  245. FoxC.J. RussellK.I. WangY.T. ChristieB.R. Contribution of NR2A and NR2B NMDA subunits to bidirectional synaptic plasticity in the hippocampus in vivo.Hippocampus2006161190791510.1002/hipo.20230 17024679
    [Google Scholar]
  246. StroebelD. CasadoM. PaolettiP. Triheteromeric NMDA receptors: from structure to synaptic physiology.Curr. Opin. Physiol.2018211210.1016/j.cophys.2017.12.004 29682629
    [Google Scholar]
  247. SobolevskiiA.I. KhodorovB.I. Blocker studies of the functional architecture of the NMDA receptor channel.Neurosci. Behav. Physiol.200232215717110.1023/A:1013927409034 11942695
    [Google Scholar]
  248. CavaliereF. Benito-MuñozM. PanickerM. MatuteC. NMDA modulates oligodendrocyte differentiation of subventricular zone cells through PKC activation.Front. Cell. Neurosci.2013726110.3389/fncel.2013.00261 24391542
    [Google Scholar]
  249. HardieD.G. AMP-activated protein kinase-an energy sensor that regulates all aspects of cell function.Genes Dev.201125181895190810.1101/gad.17420111 21937710
    [Google Scholar]
  250. HermosuraM.C. NayakantiH. DorovkovM.V. A TRPM7 variant shows altered sensitivity to magnesium that may contribute to the pathogenesis of two Guamanian neurodegenerative disorders.Proc. Natl. Acad. Sci. USA200510232115101151510.1073/pnas.0505149102 16051700
    [Google Scholar]
  251. DumanR.S. MonteggiaL.M. A neurotrophic model for stress-related mood disorders.Biol. Psychiatry200659121116112710.1016/j.biopsych.2006.02.013 16631126
    [Google Scholar]
  252. SartoriS.B. WhittleN. HetzenauerA. SingewaldN. Magnesium deficiency induces anxiety and HPA axis dysregulation: Modulation by therapeutic drug treatment.Neuropharmacology201262130431210.1016/j.neuropharm.2011.07.027 21835188
    [Google Scholar]
  253. AfsharfarM. ShahrakiM. ShakibaM. AsbaghiO. DashipourA. The effects of magnesium supplementation on serum level of brain derived neurotrophic factor (BDNF) and depression status in patients with depression.Clin. Nutr. ESPEN202142238138610.1016/j.clnesp.2020.12.022 33745609
    [Google Scholar]
  254. YamanakaR. ShindoY. HottaK. SuzukiK. OkaK. GABA-induced intracellular Mg2+ mobilization integrates and coordinates cellular information processing for the maturation of neural networks.Curr. Biol.2018282439843991.e510.1016/j.cub.2018.10.044 30528584
    [Google Scholar]
  255. ThomasG.M. HuganirR.L. MAPK cascade signalling and synaptic plasticity.Nat. Rev. Neurosci.20045317318310.1038/nrn1346 14976517
    [Google Scholar]
  256. ZhaiS. ArkE.D. Parra-BuenoP. YasudaR. Long-distance integration of nuclear ERK signaling triggered by activation of a few dendritic spines.Science201334261621107111110.1126/science.1245622 24288335
    [Google Scholar]
  257. ClercP. YoungC.A. BordtE.A. GrigoreA.M. FiskumG. PolsterB.M. Magnesium sulfate protects against the bioenergetic consequences of chronic glutamate receptor stimulation.PLoS One2013811e7998210.1371/journal.pone.0079982 24236167
    [Google Scholar]
  258. HouH. WangL. FuT. PapasergiM. YuleD.I. XiaH. Magnesium acts as a second messenger in the regulation of NMDA receptor-mediated CREB signaling in neurons.Mol. Neurobiol.20205762539255010.1007/s12035‑020‑01871‑z 32215817
    [Google Scholar]
  259. KomiyaY. SuL.T. ChenH.C. HabasR. RunnelsL.W. Magnesium and embryonic development.Magnes. Res.20142711810.1684/mrh.2014.0356 24721994
    [Google Scholar]
  260. LiCausiF HartmanNW. Role of mTOR complexes in neurogenesis.Int. J. Mol. Sci.2018195154410.3390/ijms19051544 29789464
    [Google Scholar]
  261. ProwseC.N. LewJ. Mechanism of activation of ERK2 by dual phosphorylation.J. Biol. Chem.200127619910310.1074/jbc.M008137200 11016942
    [Google Scholar]
  262. DingF. O’DonnellJ. XuQ. KangN. GoldmanN. NedergaardM. Changes in the composition of brain interstitial ions control the sleep-wake cycle.Science2016352628555055510.1126/science.aad4821 27126038
    [Google Scholar]
  263. RubinH. The membrane, magnesium, mitosis (MMM) model of cell proliferation control.Magnes. Res.2005184268274 16548142
    [Google Scholar]
  264. GaoF. DingB. ZhouL. GaoX. GuoH. XuH. Magnesium sulfate provides neuroprotection in lipopolysaccharide-activated primary microglia by inhibiting NF-κB pathway.J. Surg. Res.2013184294495010.1016/j.jss.2013.03.034 23628437
    [Google Scholar]
  265. EskesR. AntonssonB. Osen-SandA. Bax-induced cytochrome C release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions.J. Cell Biol.1998143121722410.1083/jcb.143.1.217 9763433
    [Google Scholar]
  266. LydenP. WahlgrenN.G. Mechanisms of action of neuroprotectants in stroke.J. Stroke Cerebrovasc. Dis.20009Pt 291410.1053/jscd.2000.19316
    [Google Scholar]
  267. LinJ.Y. ChungS.Y. LinM.C. ChengF.C. Effects of magnesium sulfate on energy metabolites and glutamate in the cortex during focal cerebral ischemia and reperfusion in the gerbil monitored by a dual-probe microdialysis technique.Life Sci.200271780381110.1016/S0024‑3205(02)01738‑1 12074939
    [Google Scholar]
  268. IannelloS. BelfioreF. Hypomagnesemia. A review of pathophysiological, clinical and therapeutical aspects.Panminerva Med.200143317720910.1016/j.jad.2013.08.009 11579331
    [Google Scholar]
  269. YuanJ. YanknerB.A. Apoptosis in the nervous system.Nature2000407680580280910.1038/35037739 11048732
    [Google Scholar]
  270. DeromM.L. Sayón-OreaC. Martínez-OrtegaJ.M. Martínez-GonzálezM.A. Magnesium and depression: A systematic review.Nutr. Neurosci.201316519120610.1179/1476830512Y.0000000044 23321048
    [Google Scholar]
  271. BagheriG. RezaeeR. TsarouhasK. Magnesium sulfate ameliorates carbon monoxide induced cerebral injury in male rats.Mol. Med. Rep.20181921032103910.3892/mmr.2018.9771 30569139
    [Google Scholar]
  272. SerefkoA. SzopaA. WlaźP. Magnesium in depression.Pharmacol. Rep.201365354755410.1016/S1734‑1140(13)71032‑6 23950577
    [Google Scholar]
  273. KirklandA.E. SarloG.L. HoltonK.F. The role of magnesium in neurological disorders.Nutrients201810673010.3390/nu10060730 29882776
    [Google Scholar]
  274. WeglickiW.B. PhillipsT.M. FreedmanA.M. CassidyM.M. DickensB.F. Magnesium-deficiency elevates circulating levels of inflammatory cytokines and endothelin.Mol. Cell. Biochem.1992110216917310.1007/BF02454195 1584207
    [Google Scholar]
  275. SerefkoA. SzopaA. PoleszakE. Magnesium and depression.Magnes. Res.201629311211910.1684/mrh.2016.0407 27910808
    [Google Scholar]
  276. BarbagalloM. BelvedereM. Di BellaG. DominguezL.J. Altered ionized magnesium levels in mild-to-moderate Alzheimer’s disease.Magnes. Res.201124311512110.1684/mrh.2011.0287 21951617
    [Google Scholar]
  277. VinkR. Magnesium in the CNS: Recent advances and developments.Magnes. Res.20162939510110.1684/mrh.2016.0408 27829572
    [Google Scholar]
  278. MohammadiH. ShamshirianA. EslamiS. ShamshirianD. EbrahimzadehM.A. Magnesium sulfate attenuates lethality and oxidative damage induced by different models of hypoxia in mice.BioMed Res. Int.2020202068051810.1155/2020/2624734 33381544
    [Google Scholar]
  279. MaierJ.A. CastiglioniS. LocatelliL. ZocchiM. MazurA. Magnesium and inflammation: Advances and perspectives.Semin. Cell Dev. Biol.2021115374410.1016/j.semcdb.2020.11.002 33221129
    [Google Scholar]
  280. TsujiR. InoueH. UeharaM. KidaS. Dietary magnesium deficiency induces the expression of neuroinflammation-related genes in mouse brain.Neuropsychopharmacol. Rep.202141223023610.1002/npr2.12167 33675126
    [Google Scholar]
  281. WeglickiW.B. ChmielinskaJ.J. Tejero-TaldoI. Neutral endopeptidase inhibition enhances substance P mediated inflammation due to hypomagnesemia.Magnes. Res.2009223167S173S10.1684/mrh.2009.0181 19780404
    [Google Scholar]
  282. MashaghiA. MarmalidouA. TehraniM. GraceP.M. PothoulakisC. DanaR. Neuropeptide substance P and the immune response.Cell. Mol. Life Sci.201673224249426410.1007/s00018‑016‑2293‑z 27314883
    [Google Scholar]
  283. GarnierY. MiddelanisJ. JensenA. BergerR. Neuroprotective effects of magnesium on metabolic disturbances in fetal hippocampal slices after oxygen-glucose deprivation: Mediation by nitric oxide system.J. Soc. Gynecol. Investig.200292869210.1016/S1071‑5576(01)00161‑7 11963837
    [Google Scholar]
  284. MarretS. MarpeauL. Zupan-SimunekV. Magnesium sulphate given before very-preterm birth to protect infant brain:] the randomised controlled PREMAG trial*.BJOG2007114331031810.1111/j.1471‑0528.2006.01162.x 17169012
    [Google Scholar]
  285. Le Dieu-LugonB. DupréN. DerambureC. Effect of neuroprotective magnesium sulfate treatment on brain transcription response to hypoxia ischemia in neonate mice.Int. J. Mol. Sci.2021228425310.3390/ijms22084253 33923910
    [Google Scholar]
  286. MathewA.A. PanonnummalR. ‘Magnesium’-the master cation-as a drug-possibilities and evidences.Biometals202134595598610.1007/s10534‑021‑00328‑7 34213669
    [Google Scholar]
  287. DeshpandeL.S. LouJ.K. MianA. Time course and mechanism of hippocampal neuronal death in an in vitro model of status epilepticus: Role of NMDA receptor activation and NMDA dependent calcium entry.Eur. J. Pharmacol.20085831738310.1016/j.ejphar.2008.01.025 18289526
    [Google Scholar]
  288. ShadmanJ. SadeghianN. MoradiA. BohlooliS. PanahpourH. Magnesium sulfate protects blood-brain barrier integrity and reduces brain edema after acute ischemic stroke in rats.Metab. Brain Dis.20193441221122910.1007/s11011‑019‑00419‑y 31037556
    [Google Scholar]
  289. ImerM. OmayB. UzunkolA. Effect of magnesium, MK-801 and combination of magnesium and MK-801 on blood-brain barrier permeability and brain edema after experimental traumatic diffuse brain injury.Neurol. Res.200931997798110.1179/174313209X385617 19215660
    [Google Scholar]
  290. RomeoV. CazzanigaA. MaierJ.A.M. Magnesium and the blood-brain barrier in vitro: Effects on permeability and magnesium transport.Magnes. Res.2019321162410.1684/mrh.2019.0454 31503002
    [Google Scholar]
  291. KillileaD.W. KillileaA.N. Mineral requirements for mitochondrial function: A connection to redox balance and cellular differentiation.Free Radic. Biol. Med.2022182118219110.1016/j.freeradbiomed.2022.02.022 35218912
    [Google Scholar]
  292. TannouT. KoeberleS. ManckoundiaP. AubryR. Multifactorial immunodeficiency in frail elderly patients: Contributing factors and management.Med. Mal. Infect.201949316717210.1016/j.medmal.2019.01.012 30782449
    [Google Scholar]
  293. PilchovaI. KlacanovaK. TatarkovaZ. KaplanP. RacayP. The involvement of Mg2+ in regulation of cellular and mitochondrial functions.Oxid. Med. Cell. Longev.201720171810.1155/2017/6797460 28757913
    [Google Scholar]
  294. KubotaT. ShindoY. TokunoK. Mitochondria are intracellular magnesium stores: investigation by simultaneous fluorescent imagings in PC12 cells.Biochim. Biophys. Acta Mol. Cell Res.200517441192810.1016/j.bbamcr.2004.10.013 15878394
    [Google Scholar]
  295. RutterG.A. OsbaldestonN.J. McCormackJ.G. DentonR.M. Measurement of matrix free Mg2+ concentration in rat heart mitochondria by using entrapped fluorescent probes.Biochem. J.1990271362763410.1042/bj2710627 2244870
    [Google Scholar]
  296. JungD.W. BrierleyG.P. Magnesium transport by mitochondria.J. Bioenerg. Biomembr.199426552753510.1007/BF00762737 7896768
    [Google Scholar]
  297. RomaniA.M.P. Cellular magnesium homeostasis.Arch. Biochem. Biophys.2011512112310.1016/j.abb.2011.05.010 21640700
    [Google Scholar]
  298. RomaniA. Regulation of magnesium homeostasis and transport in mammalian cells.Arch. Biochem. Biophys.200745819010210.1016/j.abb.2006.07.012 16949548
    [Google Scholar]
  299. MastrototaroL. SmorodchenkoA. AschenbachJ.R. KolisekM. SponderG. Solute carrier 41A3 encodes for a mitochondrial Mg2+ efflux system.Sci. Rep.2016612799910.1038/srep27999 27302215
    [Google Scholar]
  300. KolisekM. ZsurkaG. SamajJ. WeghuberJ. SchweyenR.J. SchweigelM. Mrs2p is an essential component of the major electrophoretic Mg2+ influx system in mitochondria.EMBO J.20032261235124410.1093/emboj/cdg122 12628916
    [Google Scholar]
  301. PanovA. ScarpaA. Independent modulation of the activity of α-ketoglutarate dehydrogenase complex by Ca2+ and Mg2+.Biochemistry199635242743210.1021/bi952101t 8555212
    [Google Scholar]
  302. AprilleJ.R. Mechanism and regulation of the mitochondrial ATP-Mg/Pi carrier.J. Bioenerg. Biomembr.199325547348110.1007/BF01108404 8132487
    [Google Scholar]
  303. MatsuiY. FunatoY. ImamuraH. MikiH. MizukamiS. KikuchiK. Visualization of long-term Mg2+ dynamics in apoptotic cells using a novel targetable fluorescent probe.Chem. Sci. (Camb.)20178128255826410.1039/C7SC03954A 29619172
    [Google Scholar]
  304. RabchevskyA.G. PatelS.P. LyttleT.S. Effects of gabapentin on muscle spasticity and both induced as well as spontaneous autonomic dysreflexia after complete spinal cord injury.Front. Physiol.20123132910.3389/fphys.2012.00329 22934077
    [Google Scholar]
  305. TestaiL. RapposelliS. MartelliA. BreschiM.C. CalderoneV. Mitochondrial potassium channels as pharmacological target for cardioprotective drugs.Med. Res. Rev.201535352055310.1002/med.21332 25346462
    [Google Scholar]
  306. SeoY.W. ShinJ.N. KoK.H. The molecular mechanism of Noxa-induced mitochondrial dysfunction in p53-mediated cell death.J. Biol. Chem.200327848482924829910.1074/jbc.M308785200 14500711
    [Google Scholar]
  307. ZhangG. GruskosJ.J. AfzalM.S. BuccellaD. Visualizing changes in mitochondrial Mg2+ during apoptosis with organelle-targeted triazole-based ratiometric fluorescent sensors.Chem. Sci. (Camb.)20156126841684610.1039/C5SC02442K 29861926
    [Google Scholar]
  308. CappadoneC. MerolleL. MarracciniC. Intracellular magnesium content decreases during mitochondria-mediated apoptosis induced by a new indole-derivative in human colon cancer cells.Magnes. Res.201225310411110.1684/mrh.2012.0319 23009862
    [Google Scholar]
  309. SzandaG. RajkiA. Gallego-SandínS. Garcia-SanchoJ. SpätA. Effect of cytosolic Mg2+ on mitochondrial Ca2+ signaling.Pflugers Arch.2009457494195410.1007/s00424‑008‑0551‑0 18629534
    [Google Scholar]
  310. LeeS.K. ShanmughapriyaS. MokM.C.Y. Structural insights into mitochondrial calcium uniporter regulation by divalent cations.Cell Chem. Biol.20162391157116910.1016/j.chembiol.2016.07.012 27569754
    [Google Scholar]
  311. PradhanR.K. QiF. BeardD.A. DashR.K. Characterization of Mg2+ inhibition of mitochondrial Ca2+ uptake by a mechanistic model of mitochondrial Ca2+ uniporter.Biophys. J.201110192071208110.1016/j.bpj.2011.09.029 22067144
    [Google Scholar]
  312. ShahN.C. LiuJ.P. IqbalJ. Mg deficiency results in modulation of serum lipids, glutathione, and NO synthase isozyme activation in cardiovascular tissues: relevance to de novo synthesis of ceramide, serum Mg and atherogenesis.Int. J. Clin. Exp. Med.20114210311810.1042/BJ20120248 21686135
    [Google Scholar]
  313. ChenH.C. SuL.T. González-PagánO. OvertonJ.D. RunnelsL.W. A key role for Mg2+ in TRPM7's control of ROS levels during cell stress.Biochem. J.2012445344144810.1042/BJ20120248 22587440
    [Google Scholar]
  314. NguyenM. WongY.C. YsselsteinD. SeverinoA. KraincD. Synaptic, mitochondrial, and lysosomal dysfunction in Parkinson’s disease.Trends Neurosci.201942214014910.1016/j.tins.2018.11.001 30509690
    [Google Scholar]
  315. ZhouF. YaoH.H. WuJ.Y. DingJ.H. SunT. HuG. Opening of microglial KATP channels inhibits rotenone-induced neuroinflammation.J. Cell. Mol. Med.2008125a1559157010.1111/j.1582‑4934.2007.00144.x 19012619
    [Google Scholar]
  316. CaoC. HealeyS. AmaralA. ATP-sensitive potassium channel: A novel target for protection against UV-induced human skin cell damage.J. Cell. Physiol.2007212125226310.1002/jcp.21026 17301957
    [Google Scholar]
  317. KolisekM. SponderG. MastrototaroL. Substitution p.A350V in Na+/Mg2+ exchanger SLC41A1, potentially associated with Parkinson’s disease, is a gain-of-function mutation.PLoS One201388e7109610.1371/journal.pone.0071096 23976986
    [Google Scholar]
  318. AjithT.A. Possible therapeutic effect of magnesium in ocular diseases.J. Basic Clin. Physiol. Pharmacol.20203122019010710.1515/jbcpp‑2019‑0107 31730524
    [Google Scholar]
  319. HyndM. ScottH.L. DoddP.R. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease.Neurochem. Int.200445558359510.1016/j.neuint.2004.03.007 15234100
    [Google Scholar]
  320. LandfieldP.W. MorganG.A. Chronically elevating plasma Mg2+ improves hippocampal frequency potentiation and reversal learning in aged and young rats.Brain Res.1984322116717110.1016/0006‑8993(84)91199‑5 6097334
    [Google Scholar]
  321. HermosuraM.C. GarrutoR.M. TRPM7 and TRPM2-Candidate susceptibility genes for Western Pacific ALS and PD?Biochim. Biophys. Acta Mol. Basis Dis.20071772882283510.1016/j.bbadis.2007.02.008 17395433
    [Google Scholar]
  322. XueW. YouJ. SuY. WangQ. The effect of magnesium deficiency on neurological disorders: A narrative review article.Iran. J. Public Health201948337938710.18502/ijph.v48i3.880 31223564
    [Google Scholar]
  323. AndréC. TruongT.T. RobertJ.F. GuillaumeY.C. Effect of metals on herbicides-α-synuclein association: A possible factor in neurodegenerative disease studied by capillary electrophoresis.Electrophoresis200526173256326410.1002/elps.200500169 16143978
    [Google Scholar]
  324. GoltsN. SnyderH. FrasierM. TheislerC. ChoiP. WolozinB. Magnesium inhibits spontaneous and iron-induced aggregation of α-synuclein.J. Biol. Chem.200227718161161612310.1074/jbc.M107866200 11850416
    [Google Scholar]
  325. CheungpasitpornW. ThongprayoonC. MaoM.A. Hypomagnesaemia linked to depression: A systematic review and meta-analysis.Intern. Med. J.201545443644010.1111/imj.12682 25827510
    [Google Scholar]
  326. ChenW.F. WuL. DuZ.R. Neuroprotective properties of icariin in MPTP-induced mouse model of Parkinson’s disease: Involvement of PI3K/Akt and MEK/ERK signaling pathways.Phytomedicine201725939910.1016/j.phymed.2016.12.017 28190476
    [Google Scholar]
  327. LipinskiB. PretoriusE. The role of iron-induced fibrin in the pathogenesis of Alzheimer’s disease and the protective role of magnesium.Front. Hum. Neurosci.2013773510.3389/fnhum.2013.00735 24194714
    [Google Scholar]
  328. YuenA.W.C. SanderJ.W. Can magnesium supplementation reduce seizures in people with epilepsy? A hypothesis.Epilepsy Res.20121001-215215610.1016/j.eplepsyres.2012.02.004 22406257
    [Google Scholar]
  329. LevineJ. RapoportA. MashiahM. DolevE. Serum and cerebrospinal levels of calcium and magnesium in acute versus remitted schizophrenic patients.Neuropsychobiology199633416917210.1159/000119272 8840338
    [Google Scholar]
  330. SadehM. BlattI. MartonovitsG. KarniA. GoldhammerY. Treatment of porphyric convulsions with magnesium sulfate.Epilepsia199132571271510.1111/j.1528‑1157.1991.tb04714.x 1915181
    [Google Scholar]
  331. NuyttenD. Van HeesJ. MeulemansA. CartonH. Magnesium deficiency as a cause of acute intractable seizures.J. Neurol.1991238526226410.1007/BF00319737 1919610
    [Google Scholar]
  332. WatilaM.M. AbdullahiI. ShahiN. NyandaitiY.W. BwalaS.A. Serum magnesium in adult patients with idiopathic and symptomatic epilepsy in Maiduguri, Northeast Nigeria.Niger. J. Clin. Pract.201922218619310.4103/njcp.njcp_252_18 30729941
    [Google Scholar]
  333. TerraV.C. De AlbuquerqueM. ScorzaC.A. AridaR.M. ScorzaF.A. Serum magnesium: A clinical biomarker for sudden unexpected death in epilepsy?J. Epilepsy Clin. Neurophysiol.2011172
    [Google Scholar]
  334. DolatiS. RikhtegarR. MehdizadehA. YousefiM. The role of magnesium in pathophysiology and migraine treatment.Biol. Trace Elem. Res.2020196237538310.1007/s12011‑019‑01931‑z 31691193
    [Google Scholar]
  335. Sun-EdelsteinC. MauskopA. Role of magnesium in the pathogenesis and treatment of migraine.Expert Rev. Neurother.20099336937910.1586/14737175.9.3.369 19271946
    [Google Scholar]
  336. ChiuH-Y. YehT-H. HuangY-C. ChenP-Y. Effects of intravenous and oral magnesium on reducing migraine: A meta-analysis of randomized controlled trials.Pain Physician2016191E97E11210.1586/14737175.9.3.369 26752497
    [Google Scholar]
  337. MaierJ.A. PickeringG. GiacomoniE. CazzanigaA. PellegrinoP. Headaches and magnesium: Mechanisms, bioavailability, therapeutic efficacy and potential advantage of magnesium pidolate.Nutrients2020129266010.3390/nu12092660 32878232
    [Google Scholar]
  338. SperlA. HellerR.A. BiglariB. The role of magnesium in the secondary phase after traumatic spinal cord injury. A prospective clinical observer study.Antioxidants201981150910.3390/antiox8110509 31653023
    [Google Scholar]
  339. UysalN. BaykaraB. KirayM. The combined treatment with progesterone and magnesium sulfate positively affects the traumatic brain injury in immature rats.Turk Neurosurg.201223212913710.5137/1019‑5149.JTN.5582‑11.1 23546895
    [Google Scholar]
  340. RyanM.F. The role of magnesium in clinical biochemistry: An overview.Ann. Clin. Biochem.1991281192610.1177/000456329102800103 2024929
    [Google Scholar]
  341. VeroneseN. DemurtasJ. PesolilloG. Magnesium and health outcomes: An umbrella review of systematic reviews and meta-analyses of observational and intervention studies.Eur. J. Nutr.202059126327210.1007/s00394‑019‑01905‑w 30684032
    [Google Scholar]
  342. JungK.I. OckS.M. ChungJ.H. SongC.H. Associations of serum Ca and Mg levels with mental health in adult women without psychiatric disorders.Biol. Trace Elem. Res.2010133215316110.1007/s12011‑009‑8421‑y 19543697
    [Google Scholar]
  343. EffatpanahM. RezaeiM. EffatpanahH. Magnesium status and attention deficit hyperactivity disorder (ADHD): A meta-analysis.Psychiatry Res.2019274522823410.1016/j.psychres.2019.02.043 30807974
    [Google Scholar]
  344. BoyleN. LawtonC. DyeL. The effects of magnesium supplementation on subjective anxiety and stress-A systematic review.Nutrients20179542910.3390/nu9050429 28445426
    [Google Scholar]
  345. PhelanD. MoleroP. Martínez-GonzálezM.A. MolendijkM. Magnesium and mood disorders: Systematic review and meta-analysis.BJPsych Open20184416717910.1192/bjo.2018.22 29897029
    [Google Scholar]
  346. PoleszakE. SzewczykB. KędzierskaE. WlaźP. PilcA. NowakG. Antidepressant- and anxiolytic-like activity of magnesium in mice.Pharmacol. Biochem. Behav.200478171210.1016/j.pbb.2004.01.006 15159129
    [Google Scholar]
  347. TongG.M. RudeR.K. Magnesium deficiency in critical illness.J. Intensive Care Med.200520131710.1177/0885066604271539 15665255
    [Google Scholar]
  348. IezhitsaI.N. SpasovA.A. KharitonovaM.V. KravchenkoM.S. Effect of magnesium chloride on psychomotor activity, emotional status, and acute behavioural responses to clonidine, d-amphetamine, arecoline, nicotine, apomorphine, and L-5-hydroxytryptophan.Nutr. Neurosci.2011141102410.1179/174313211X12966635733277 21535917
    [Google Scholar]
  349. FrommL. HeathD.L. VinkR. NimmoA.J. Magnesium attenuates post-traumatic depression/anxiety following diffuse traumatic brain injury in rats.J. Am. Coll. Nutr.2004235529S533S10.1080/07315724.2004.10719396 15466958
    [Google Scholar]
  350. MurckH. Magnesium and affective disorders.Nutr. Neurosci.20025637538910.1080/1028415021000039194 12509067
    [Google Scholar]
  351. HornyakM. VoderholzerU. HohagenF. BergerM. RiemannD. Magnesium therapy for periodic leg movements-related insomnia and restless legs syndrome: An open pilot study.Sleep199821550150510.1093/sleep/21.5.501 9703590
    [Google Scholar]
  352. KirovG.K. BirchN.J. SteadmanP. RamseyR.G. Plasma magnesium levels in a population of psychiatric patients: Correlations with symptoms.Neuropsychobiology1994302-3737810.1159/000119139 7800167
    [Google Scholar]
  353. KirovG.K. TsachevK.N. Magnesium, schizophrenia and manic-depressive disease.Neuropsychobiology1990232798110.1159/000119431 2077436
    [Google Scholar]
  354. GemperleA.Y. EnzA. PozzaM.F. LthiA. OlpeH.R. Effects of clozapine, haloperidol and iloperidone on neurotransmission and synaptic plasticity in prefrontal cortex and their accumulation in brain tissue: An in vitro study.Neuroscience2003117368169510.1016/S0306‑4522(02)00769‑8 12617972
    [Google Scholar]
  355. KrystalJ.H. MathewS.J. DʼSouzaDC GarakaniA Gunduz-BruceH CharneyDS. Potential psychiatric applications of metabotropic glutamate receptor agonists and antagonists.CNS Drugs201024866969310.2165/11533230‑000000000‑00000 20658799
    [Google Scholar]
  356. MöykkynenT. Uusi-OukariM. HeikkiläJ. LovingerD.M. LüddensH. KorpiE.R. Magnesium potentiation of the function of native and recombinant GABAA receptors.Neuroreport200112102175217910.1097/00001756‑200107200‑00026 11447329
    [Google Scholar]
  357. GobbiG. JaniriL. Sodium- and magnesium-valproate in vivo modulate glutamatergic and GABAergic synapses in the medial prefrontal cortex.Psychopharmacology (Berl.)2006185225526210.1007/s00213‑006‑0317‑3 16496131
    [Google Scholar]
  358. SchwarzC. VolzA. LiC. LeuchtS. Valproate for schizophrenia.Cochrane Database Syst. Rev.20081853CD00402810.1002/14651858.CD004028.pub3 18646098
    [Google Scholar]
  359. ChenJ.L. ZhouX. LiuB.L. Normalization of magnesium deficiency attenuated mechanical allodynia, depressive-like behaviors, and memory deficits associated with cyclophosphamide-induced cystitis by inhibiting TNF-α/NF-κB signaling in female rats.J. Neuroinflammation20201719910.1186/s12974‑020‑01786‑5 32241292
    [Google Scholar]
  360. RoweW. Correcting magnesium deficiencies may prolong life.Clin. Interv. Aging201271-2515410.2147/CIA.S28768 22379366
    [Google Scholar]
  361. ter BorgS. VerlaanS. HemsworthJ. Micronutrient intakes and potential inadequacies of community-dwelling older adults: a systematic review.Br. J. Nutr.201511381195120610.1017/S0007114515000203 25822905
    [Google Scholar]
  362. GlickJ.L. Dementias: the role of magnesium deficiency and an hypothesis concerning the pathogenesis of Alzheimer’s disease.Med. Hypotheses199031321122510.1016/0306‑9877(90)90095‑V 2092675
    [Google Scholar]
  363. ChenY. ShengW. LinJ. Magnesium oxide nanoparticle coordinated phosphate-functionalized chitosan injectable hydrogel for osteogenesis and angiogenesis in bone regeneration.ACS Appl. Mater. Interfaces20221467592760810.1021/acsami.1c21260 35119809
    [Google Scholar]
  364. LeeJ.H.T. RoyJ. Moon SohnH. Magnesium in a polyethylene glycol formulation provides neuroprotection after unilateral cervical spinal cord injury.Spine201035232041204810.1097/BRS.0b013e3181d2d6c5 20938394
    [Google Scholar]
  365. BusingyeD.S. TurnerR.J. VinkR. Combined magnesium/] polyethylene glycol facilitates the neuroprotective effects of magnesium in traumatic brain injury at a reduced magnesium dose.CNS Neurosci. Ther.2016221085485910.1111/cns.12591 27421816
    [Google Scholar]
  366. ZhangX. HuangP. JiangG. A novel magnesium ion-incorporating dual-crosslinked hydrogel to improve bone scaffold-mediated osteogenesis and angiogenesis.Mater. Sci. Eng. C20211211011186810.1016/j.msec.2021.111868 33579495
    [Google Scholar]
  367. LinS. YangG. JiangF. A magnesium-enriched 3D culture system that mimics the bone development microenvironment for vascularized bone regeneration.Adv. Sci. (Weinh.)2019612190020910.1002/advs.201900209 31380166
    [Google Scholar]
  368. DualéC CardotJM JoannyF An advanced formulation of a magnesium dietary supplement adapted for a long-term use supplementation improves magnesium bioavailability: In vitro and clinical comparative studies.Biol Trace Elem Res201818611810.1007/s12011‑018‑1277‑229524192
    [Google Scholar]
  369. UllahH. UllahI. RehmanG. Magnesium and zinc oxide nanoparticles from Datura alba improve cognitive impairment and blood brain barrier leakage.Molecules20222715475310.3390/molecules27154753 35897930
    [Google Scholar]
  370. JakariaM. AzamS. HaqueM.E. Taurine and its analogs in neurological disorders: Focus on therapeutic potential and molecular mechanisms.Redox Biol.20192410122310.1016/j.redox.2019.101223 31141786
    [Google Scholar]
  371. BidriM. ChoayP. Taurine: A particular aminoacid with multiple functions.Ann. Pharm. Fr.200361638539110.3390/molecules27154753 14639190
    [Google Scholar]
  372. ZhouJ. LiY. YanG. Protective role of taurine against morphine-induced neurotoxicity in C6 cells via inhibition of oxidative stress.Neurotox. Res.201120433434210.1007/s12640‑011‑9247‑x 21611853
    [Google Scholar]
  373. ShinyK.S. KumarS.H.S. FarvinK.H.S. AnandanR. DevadasanK. Protective effect of taurine on myocardial antioxidant status in isoprenaline-induced myocardial infarction in rats.J. Pharm. Pharmacol.201057101313131710.1211/jpp.57.10.0010 16259760
    [Google Scholar]
  374. SunQ. Taurine supplementation lowers blood pressure and improves vascular function in prehypertension: Randomized, double-blind, placebo-controlled study.Hypertension201667354154910.1161/HYPERTENSIONAHA.115.06624
    [Google Scholar]
  375. YangQ. YangJ. WuG. Effects of taurine on myocardial cGMP/cAMP ratio, antioxidant ability, and ultrastructure in cardiac hypertrophy rats induced by isoproterenol.Adv. Exp. Med. Biol.201377621722910.1007/978‑1‑4614‑6093‑0_21 23392885
    [Google Scholar]
  376. XuY.J. ArnejaA.S. TappiaP.S. DhallaN.S. The potential health benefits of taurine in cardiovascular disease.Exp. Clin. Cardiol.20081325765 19343117
    [Google Scholar]
  377. MozaffariM.S. PatelC. AbdelsayedR. SchafferS.W. Accelerated NaCl-induced hypertension in taurine-deficient rat: Role of renal function.Kidney Int.200670232933710.1038/sj.ki.5001503 16760912
    [Google Scholar]
  378. BoS. PisuE. Role of dietary magnesium in cardiovascular disease prevention, insulin sensitivity and diabetes.Curr. Opin. Lipidol.2008191505610.1097/MOL.0b013e3282f33ccc 18196987
    [Google Scholar]
  379. AlexanderR.T. HoenderopJ.G. BindelsR.C.A.A.J. Molecular determinants of magnesium homeostasis: Insights from human disease.J. Am. Soc. Nephrol.20081981451145810.1681/ASN.2008010098 18562569
    [Google Scholar]
  380. PorresJ.M. ArandaP. López-JuradoM. UrbanoG. Nutritional evaluation of protein, phosphorus, calcium and magnesium bioavailability from lupin (Lupinus albus var. multolupa)-based diets in growing rats: Effect of α-galactoside oligosaccharide extraction and phytase supplementation.Br. J. Nutr.20069561102111110.1079/BJN20061771 16768832
    [Google Scholar]
  381. RyderK.M. ShorrR.I. BushA.J. Magnesium intake from food and supplements is associated with bone mineral density in healthy older white subjects.J. Am. Geriatr. Soc.200553111875188010.1111/j.1532‑5415.2005.53561.x 16274367
    [Google Scholar]
  382. VolpeS.L. Magnesium in disease prevention and overall health.Adv. Nutr.201343378S383S10.3945/an.112.003483 23674807
    [Google Scholar]
  383. Guerrero-RomeroF. Bermudez-PeñaC. Rodríguez-MoránM. Severe hypomagnesemia and low-grade inflammation in metabolic syndrome.Magnes. Res.2011242455310.1684/mrh.2011.0281 21609903
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128321466240816075041
Loading
/content/journals/cpd/10.2174/0113816128321466240816075041
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test