Skip to content
2000
Volume 30, Issue 33
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background and Aims

The recurrence rate of Colorectal Cancer (CRC) after cure is always high. The purpose of this study was to investigate whether green tea extract (-)-Epigallocatechin gallate (EGCG) has an effective preventive effect on the recurrence of CRC.

Methods

We conducted a systematic literature review and meta-analysis of the effects of taking EGCG or placebo on disease recurrence in patients after colon polyp removal.

Results

Five Randomized Controlled Trials (RCTs) were included in this review. A double-blind drug trial involving 1389 participants involved EGCG and placebo. The results showed no significant publication bias or heterogeneity in the five studies (I2 = 38%; = 0.17). Patients taking EGCG had a lower recurrence rate of CRC than those in the placebo group. The results were statistically significant (Z=2.83, < 0.05).

Conclusion

This study demonstrated that long-term EGCG can prevent CRC recurrence to a certain extent.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128319678240612114820
2024-07-10
2024-11-14
Loading full text...

Full text loading...

References

  1. HamadaT. LiuL. NowakJ.A. MimaK. CaoY. NgK. TwomblyT.S. SongM. JungS. DouR. MasugiY. KosumiK. ShiY. da SilvaA. GuM. LiW. KeumN. WuK. NoshoK. InamuraK. MeyerhardtJ.A. NevoD. WangM. GiannakisM. ChanA.T. GiovannucciE.L. FuchsC.S. NishiharaR. ZhangX. OginoS. Vitamin D status after colorectal cancer diagnosis and patient survival according to immune response to tumour.Eur. J. Cancer20181039810710.1016/j.ejca.2018.07.13030219720
    [Google Scholar]
  2. BradburyK.E. ApplebyP.N. KeyT.J. Fruit, vegetable, and fiber intake in relation to cancer risk: Findings from the European Prospective Investigation into Cancer and Nutrition (EPIC).Am. J. Clin. Nutr.2014100Suppl. 1394S398S10.3945/ajcn.113.07135724920034
    [Google Scholar]
  3. HughesD.J. FedirkoV. JenabM. SchomburgL. MéplanC. FreislingH. Bueno-de-MesquitaH.B. HybsierS. BeckerN.P. CzubanM. TjønnelandA. OutzenM. Boutron-RuaultM.C. RacineA. BastideN. KühnT. KaaksR. TrichopoulosD. TrichopoulouA. LagiouP. PanicoS. PeetersP.H. WeiderpassE. SkeieG. DagrunE. ChirlaqueM.D. SánchezM.J. ArdanazE. LjuslinderI. WennbergM. BradburyK.E. VineisP. NaccaratiA. PalliD. BoeingH. OvervadK. DorronsoroM. JakszynP. CrossA.J. QuirósJ.R. StepienM. KongS.Y. Duarte-SallesT. RiboliE. HeskethJ.E. Selenium status is associated with colorectal cancer risk in the European prospective investigation of cancer and nutrition cohort.Int. J. Cancer201513651149116110.1002/ijc.2907125042282
    [Google Scholar]
  4. DrewD.A. CaoY. ChanA.T. Aspirin and colorectal cancer: The promise of precision chemoprevention.Nat. Rev. Cancer201616317318610.1038/nrc.2016.426868177
    [Google Scholar]
  5. JuJ. HongJ. ZhouJ. PanZ. BoseM. LiaoJ. YangG. LiuY.Y. HouZ. LinY. MaJ. ShihW.J. CarothersA.M. YangC.S. Inhibition of intestinal tumorigenesis in Apcmin/+ mice by (-)-epigallocatechin-3-gallate, the major catechin in green tea.Cancer Res.20056522106231063110.1158/0008‑5472.CAN‑05‑194916288056
    [Google Scholar]
  6. SuganumaM. SahaA. FujikiH. New cancer treatment strategy using combination of green tea catechins and anticancer drugs.Cancer Sci.2011102231732310.1111/j.1349‑7006.2010.01805.x21199169
    [Google Scholar]
  7. WangY. JinH.Y. FangM.Z. WangX.F. ChenH. HuangS.L. KongD.S. LiM. ZhangX. SunY. WangS.M. Epigallocatechin gallate inhibits dimethylhydrazine-induced colorectal cancer in rats.World J. Gastroenterol.202026172064208110.3748/wjg.v26.i17.206432536775
    [Google Scholar]
  8. SunC.L. YuanJ.M. KohW.P. YuM.C. Green tea, black tea and colorectal cancer risk: A meta-analysis of epidemiologic studies.Carcinogenesis20062771301130910.1093/carcin/bgl02416638787
    [Google Scholar]
  9. WangZ.H. GaoQ.Y. FangJ.Y. Green tea and incidence of colorectal cancer: Evidence from prospective cohort studies.Nutr. Cancer20126481143115210.1080/01635581.2012.71803123163842
    [Google Scholar]
  10. ParmarM.K.B. TorriV. StewartL. Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints.Stat. Med.199817242815283410.1002/(SICI)1097‑0258(19981230)17:24<2815::AID‑SIM110>3.0.CO;2‑89921604
    [Google Scholar]
  11. TierneyJ.F. StewartL.A. GhersiD. BurdettS. SydesM.R. Practical methods for incorporating summary time-to-event data into meta-analysis.Trials2007811610.1186/1745‑6215‑8‑1617555582
    [Google Scholar]
  12. DerSimonianR. LairdN. Meta-analysis in clinical trials.Control. Clin. Trials19867317718810.1016/0197‑2456(86)90046‑23802833
    [Google Scholar]
  13. SinicropeF.A. ViggianoT.R. ButtarN.S. SongL.M.W.K. SchroederK.W. KraichelyR.E. LarsonM.V. SedlackR.E. KisielJ.B. GostoutC.J. KalaigerA.M. PataiÁ.V. Della’ZannaG. UmarA. LimburgP.J. MeyersJ.P. FosterN.R. YangC.S. SontagS. Randomized Phase II trial of polyphenon e versus placebo in patients at high risk of recurrent colonic neoplasia.Cancer Prev. Res.202114557358010.1158/1940‑6207.CAPR‑20‑059833648940
    [Google Scholar]
  14. ShimizuM. FukutomiY. NinomiyaM. NaguraK. KatoT. ArakiH. SuganumaM. FujikiH. MoriwakiH. Green tea extracts for the prevention of metachronous colorectal adenomas: A pilot study.Cancer Epidemiol. Biomarkers Prev.200817113020302510.1158/1055‑9965.EPI‑08‑052818990744
    [Google Scholar]
  15. ShinC.M. LeeD.H. SeoA.Y. LeeH.J. KimS.B. SonW.C. KimY.K. LeeS.J. ParkS.H. KimN. ParkY.S. YoonH. Green tea extracts for the prevention of metachronous colorectal polyps among patients who underwent endoscopic removal of colorectal adenomas: A randomized clinical trial.Clin. Nutr.201837245245810.1016/j.clnu.2017.01.01428209333
    [Google Scholar]
  16. SeufferleinT. EttrichT.J. MenzlerS. MessmannH. KleberG. ZipprichA. Frank-GleichS. AlgülH. MetterK. OdemarF. HeuerT. HügleU. BehrensR. BergerA.W. SchollC. SchneiderK.L. PerkhoferL. RohlmannF. MucheR. StinglJ.C. Green tea extract to prevent colorectal adenomas, results of a randomized, placebo-controlled clinical trial.Am. J. Gastroenterol.2022117688489410.14309/ajg.000000000000170635213393
    [Google Scholar]
  17. SeufferleinT. EttrichT.J. MenzlerS. MessmannH. KleberG. ZipprichA. Frank-GleichS. AlgülH. MetterK. OdemarF. HeuerT. HügleU. BehrensR. PerkhoferL. SchollC. SchneiderK.L. RohlmannF. MucheR. StinglJ.C. MIRACLE: Green tea extract versus placebo for the prevention of colorectal adenomas: A randomized, controlled trial.Ann. Oncol.201930v86910.1093/annonc/mdz394.023
    [Google Scholar]
  18. WallaceB.C. SchmidC.H. LauJ. TrikalinosT.A. Meta-Analyst: Software for meta-analysis of binary, continuous and diagnostic data.BMC Med. Res. Methodol.2009918010.1186/1471‑2288‑9‑8019961608
    [Google Scholar]
  19. FordE.S. Body mass index and colon cancer in a national sample of adult US men and women.Am. J. Epidemiol.1999150439039810.1093/oxfordjournals.aje.a01001810453815
    [Google Scholar]
  20. HouL. JiB.T. BlairA. DaiQ. GaoY.T. PotterJ.D. ChowW.H. Body mass index and colon cancer risk in Chinese people: Menopause as an effect modifier.Eur. J. Cancer2006421849010.1016/j.ejca.2005.09.01416321519
    [Google Scholar]
  21. WangJ. GaoY. WangL. LiuX. LiJ. WangZ. ZhouJ. WangK. A variant (rs932335) in the HSD11B1 gene is associated with colorectal cancer in a Chinese population.Eur. J. Cancer Prev.201322652352810.1097/CEJ.0b013e328365634624061267
    [Google Scholar]
  22. DraperN. EchwaldS.M. LaveryG.G. WalkerE.A. FraserR. DaviesE. SørensenT.I.A. AstrupA. AdamskiJ. HewisonM. ConnellJ.M. PedersenO. StewartP.M. Association studies between microsatellite markers within the gene encoding human 11beta-hydroxysteroid dehydrogenase type 1 and body mass index, waist to hip ratio, and glucocorticoid metabolism.J. Clin. Endocrinol. Metab.200287114984499010.1210/jc.2001‑01137512414862
    [Google Scholar]
  23. PlotkinL.I. ManolagasS.C. BellidoT. Glucocorticoids induce osteocyte apoptosis by blocking focal adhesion kinase-mediated survival. Evidence for inside-out signaling leading to anoikis.J. Biol. Chem.200728233241202413010.1074/jbc.M61143520017581824
    [Google Scholar]
  24. O’BrienC.A. JiaD. PlotkinL.I. BellidoT. PowersC.C. StewartS.A. ManolagasS.C. WeinsteinR.S. Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength.Endocrinology200414541835184110.1210/en.2003‑099014691012
    [Google Scholar]
  25. HintzpeterJ. StapelfeldC. LoerzC. MartinH.J. MaserE. Green tea and one of its constituents, Epigallocatechine-3-gallate, are potent inhibitors of human 11β-hydroxysteroid dehydrogenase type 1.PLoS One201491e8446810.1371/journal.pone.008446824404164
    [Google Scholar]
  26. AndersonG. Tumour microenvironment: Roles of the aryl hydrocarbon receptor, o-glcnacylation, acetyl-CoA and melatonergic pathway in regulating dynamic metabolic interactions across cell types-tumour microenvironment and metabolism.Int. J. Mol. Sci.202022114110.3390/ijms2201014133375613
    [Google Scholar]
  27. IchisakaY. YanoS. NishimuraK. NiwaT. ShimizuH. Indoxyl sulfate contributes to colorectal cancer cell proliferation and increased EGFR expression by activating AhR and Akt.Biomed. Res.2024452576610.2220/biomedres.45.5738556263
    [Google Scholar]
  28. LabadieB.W. BaoR. LukeJ.J. Reimagining IDO pathway inhibition in cancer immunotherapy via downstream focus on the tryptophan–kynurenine–aryl hydrocarbon axis.Clin. Cancer Res.20192551462147110.1158/1078‑0432.CCR‑18‑288230377198
    [Google Scholar]
  29. Leja-SzpakA. GóralskaM. Link-LenczowskiP. CzechU. Nawrot-PorąbkaK. BoniorJ. JaworekJ. The opposite effect of L-kynurenine and Ahr inhibitor Ch223191 on apoptotic protein expression in pancreatic carcinoma cells (Panc-1).Anticancer. Agents Med. Chem.202019172079209010.2174/187152061966619041516521230987575
    [Google Scholar]
  30. LiuY. LiangX. DongW. FangY. LvJ. ZhangT. FiskesundR. XieJ. LiuJ. YinX. JinX. ChenD. TangK. MaJ. ZhangH. YuJ. YanJ. LiangH. MoS. ChengF. ZhouY. ZhangH. WangJ. LiJ. ChenY. CuiB. HuZ.W. CaoX. Xiao-Feng QinF. HuangB. Tumor-repopulating cells induce PD-1 expression in CD8+ T cells by transferring kynurenine and ahr activation.Cancer Cell2018333480494.e710.1016/j.ccell.2018.02.00529533786
    [Google Scholar]
  31. ZhuP. YuH. ZhouK. BaiY. QiR. ZhangS. 3,3′-Diindolylmethane modulates aryl hydrocarbon receptor of esophageal squamous cell carcinoma to reverse epithelial-mesenchymal transition through repressing RhoA/ROCK1-mediated COX2/PGE2 pathway.J. Exp. Clin. Cancer Res.202039111310.1186/s13046‑020‑01618‑732546278
    [Google Scholar]
  32. IkeyaS. SakabeJ. YamadaT. NaitoT. TokuraY. Voriconazole-induced photocarcinogenesis is promoted by aryl hydrocarbon receptor-dependent COX-2 upregulation.Sci. Rep.201881505010.1038/s41598‑018‑23439‑729568008
    [Google Scholar]
  33. MiaoJ. LuX. HuY. PiaoC. WuX. LiuX. HuangC. WangY. LiD. LiuJ. Prostaglandin E2 and PD-1 mediated inhibition of antitumor CTL responses in the human tumor microenvironment.Oncotarget2017852898028981010.18632/oncotarget.2115529163789
    [Google Scholar]
  34. MorianosI. TrochoutsouA.I. PapadopoulouG. SemitekolouM. BanosA. KonstantopoulosD. ManousopoulouA. KapasaM. WeiP. LomenickB. BelaidiE. KalamatasT. KarageorgiouK. DoskasT. SallustoF. PanF. GarbisS.D. QuintanaF.J. XanthouG. Activin-A limits Th17 pathogenicity and autoimmune neuroinflammation via CD39 and CD73 ectonucleotidases and Hif1-α–dependent pathways.Proc. Natl. Acad. Sci.202011722122691228010.1073/pnas.191819611732409602
    [Google Scholar]
  35. JangS.W. LiuX. PradoldejS. TosiniG. ChangQ. IuvoneP.M. YeK. N-acetylserotonin activates TrkB receptor in a circadian rhythm.Proc. Natl. Acad. Sci.201010783876388110.1073/pnas.091253110720133677
    [Google Scholar]
  36. AndersonG. ReiterR.J. Glioblastoma: Role of mitochondria N-acetylserotonin/melatonin ratio in mediating effects of miR-451 and Aryl hydrocarbon receptor and in coordinating wider biochemical changes.Int. J. Tryptophan Res.20191210.1177/117864691985594231244524
    [Google Scholar]
  37. NohK.T. SonK.H. JungI.D. KangT.H. ChoiC.H. ParkY.M. Glycogen synthase kinase-3β (GSK-3β) inhibition enhances dendritic cell-based cancer vaccine potency via suppression of interferon-γ-induced indoleamine 2,3-dioxygenase expression.J. Biol. Chem.201529019123941240210.1074/jbc.M114.62857825814664
    [Google Scholar]
  38. ChengC.W. ShiehP.C. LinY.C. ChenY.J. LinY.H. KuoD.H. LiuJ.Y. KaoJ.Y. KaoM.C. WayT.D. Indoleamine 2,3-dioxygenase, an immunomodulatory protein, is suppressed by (-)-epigallocatechin-3-gallate via blocking of gamma-interferon-induced JAK-PKC-delta-STAT1 signaling in human oral cancer cells.J. Agric. Food Chem.201058288789410.1021/jf903377e19928918
    [Google Scholar]
  39. AndersonG. Tumor microenvironment and metabolism: Role of the mitochondrial melatonergic pathway in determining intercellular interactions in a new dynamic homeostasis.Int. J. Mol. Sci.202224131110.3390/ijms2401031136613754
    [Google Scholar]
  40. YangY.C. ChienM.H. LaiT.C. SuC.Y. JanY.H. HsiaoM. ChenC.L. Monoamine oxidase B expression correlates with a poor prognosis in colorectal cancer patients and is significantly associated with epithelial-to-mesenchymal transition-related gene signatures.Int. J. Mol. Sci.2020218281310.3390/ijms2108281332316576
    [Google Scholar]
  41. LinS.M. WangS.W. HoS.C. TangY.L. Protective effect of green tea (-)-epigallocatechin-3-gallate against the monoamine oxidase B enzyme activity increase in adult rat brains.Nutrition20102611-121195120010.1016/j.nut.2009.11.02220472400
    [Google Scholar]
  42. ManningB.D. TokerA. AKT/PKB signaling: Navigating the network.Cell2017169338140510.1016/j.cell.2017.04.00128431241
    [Google Scholar]
  43. JungY.D. KimM.S. ShinB.A. ChayK.O. AhnB.W. LiuW. BucanaC.D. GallickG.E. EllisL.M. EGCG, a major component of green tea, inhibits tumour growth by inhibiting VEGF induction in human colon carcinoma cells.Br. J. Cancer200184684485010.1054/bjoc.2000.169111259102
    [Google Scholar]
  44. LarsenC.A. DashwoodR.H. (−)-Epigallocatechin-3-gallate inhibits Met signaling, proliferation, and invasiveness in human colon cancer cells.Arch. Biochem. Biophys.20105011525710.1016/j.abb.2010.03.01720361925
    [Google Scholar]
  45. ChungJ.Y. HuangC. MengX. DongZ. YangC.S. Inhibition of activator protein 1 activity and cell growth by purified green tea and black tea polyphenols in H-ras-transformed cells: Structure-activity relationship and mechanisms involved.Cancer Res.199959184610461710493515
    [Google Scholar]
  46. ChenC. ShenG. HebbarV. HuR. OwuorE.D. KongA.N.T. Epigallocatechin-3-gallate-induced stress signals in HT-29 human colon adenocarcinoma cells.Carcinogenesis20032481369137810.1093/carcin/bgg09112819184
    [Google Scholar]
  47. BigelowR.L.H. CardelliJ.A. The green tea catechins, (−)-Epigallocatechin-3-gallate (EGCG) and (−)-Epicatechin-3-gallate (ECG), inhibit HGF/Met signaling in immortalized and tumorigenic breast epithelial cells.Oncogene200625131922193010.1038/sj.onc.120922716449979
    [Google Scholar]
  48. FangM.Z. WangY. AiN. HouZ. SunY. LuH. WelshW. YangC.S. Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines.Cancer Res.200363227563757014633667
    [Google Scholar]
  49. AndersonG. Physiological processes underpinning the ubiquitous benefits and interactions of melatonin, butyrate and green tea in neurodegenerative conditions.Melatonin Res202471204610.32794/mr112500167
    [Google Scholar]
  50. LuoK.W. XiaJ. ChengB.H. GaoH.C. FuL.W. LuoX.L. Tea polyphenol EGCG inhibited colorectal-cancer-cell proliferation and migration via downregulation of STAT3.Gastroenterol. Rep.202191597010.1093/gastro/goaa07233747527
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128319678240612114820
Loading
/content/journals/cpd/10.2174/0113816128319678240612114820
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test