Skip to content
2000
Volume 30, Issue 37
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Solid Lipid Nanocarriers (SLNs) offer a promising avenue for breast cancer treatment, a disease that accounts for 12.5% of global cancer cases. Despite strides in combined therapies (surgery, chemotherapy, radiation, and endocrine therapy), challenges like systemic toxicity, drug resistance, and adverse effects persist. The manuscript offers several novel contributions to the field of breast cancer treatment through the use of SLNs, and these are innovative drug delivery systems, multifunctionality, and biocompatibility, the potential to overcome drug resistance, integration with emerging therapies, focus on personalized medicine, ongoing and future research directions and potential for reduced side effects. SLNs present a novel strategy due to their unique physicochemical properties. They can encapsulate both hydrophilic and hydrophobic drugs, ensuring controlled release and targeted delivery, thus enhancing solubility and bioavailability and reducing side effects. The multifunctional nature of SLNs improves drug delivery while their biocompatibility supports their potential in cancer therapy. Challenges for pharmacists include maintaining stability, effective drug loading, and timed delivery. Combining SLNs with emerging therapies like gene and immunotherapy holds promise for more effective breast cancer treatments. SLNs represent a significant advancement, providing precise drug delivery and fewer side effects, with the potential for overcoming drug resistance. Ongoing research will refine SLNs for breast cancer therapy, targeting cells with minimal side effects and integrating with other treatments for comprehensive approaches. Advances in nanotechnology and personalized medicine will tailor SLNs to specific breast cancer subtypes, enhancing effectiveness. Clinical trials and new treatment developments are crucial for realizing SLNs’ full potential in breast cancer care. In conclusion, SLNs offer a transformative approach to breast cancer treatment, addressing issues of drug delivery and side effects. Ongoing research aims to optimize SLNs for targeted therapy, potentially revolutionizing breast cancer care and providing hope for patients.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128319233240725103706
2024-10-01
2025-01-04
Loading full text...

Full text loading...

References

  1. ArnoldM. MorganE. RumgayH. MafraA. SinghD. LaversanneM. VignatJ. GralowJ.R. CardosoF. SieslingS. SoerjomataramI. Current and future burden of breast cancer: Global statistics for 2020 and 2040.Breast202266152310.1016/j.breast.2022.08.01036084384
    [Google Scholar]
  2. SiegelR.L. GiaquintoA.N. JemalA. Cancer statistics, 2024.CA Cancer J. Clin.2024741124910.3322/caac.2182038230766
    [Google Scholar]
  3. MarwahH. PantJ. YadavJ. ShahK. DewanganH.K. Biosensor detection of COVID-19 in lung cancer: Hedgehog and mucin signaling insights.Curr. Pharm. Des.202329433442345710.2174/011381612827694823120411153138270161
    [Google Scholar]
  4. PantJ. MittalP. SinghL. MarwahH. Evolving strategies in NSCLC care: Targeted therapies, biomarkers, predictive models, and patient management.Curr. Pharmacog Person. Med.202320314616410.2174/0118756921301200240427053840
    [Google Scholar]
  5. AllahqoliL. MazidimoradiA. MomenimovahedZ. RahmaniA. HakimiS. TiznobaikA. GharachehM. SalehiniyaH. BabaeyF. AlkatoutI. The global incidence, mortality, and burden of breast cancer in 2019: Correlation with smoking, drinking, and drug use.Front. Oncol.20221292101510.3389/fonc.2022.92101535965518
    [Google Scholar]
  6. LoudJ.T. MurphyJ. Cancer screening and early detection in the 21st century.Semin. Oncol. Nurs.201733212112810.1016/j.soncn.2017.02.00228343835
    [Google Scholar]
  7. MooT.A. SanfordR. DangC. MorrowM. Overview of breast cancer therapy.PET Clin.201813333935410.1016/j.cpet.2018.02.00630100074
    [Google Scholar]
  8. Al-SayadiG.M.H. VermaA. ChoudharyY. SandalP. PatelP. SinghD. GuptaG.D. KurmiB.D. Solid Lipid Nanoparticles (SLNs): Advancements in modification strategies toward drug delivery vehicle.Pharm. Nanotechnol.202311213815410.2174/221173851166622102616330336305142
    [Google Scholar]
  9. German-CortésJ. Vilar-HernándezM. RafaelD. AbasoloI. AndradeF. Solid lipid nanoparticles: Multitasking nano-carriers for cancer treatment.Pharmaceutics202315383110.3390/pharmaceutics1503083136986692
    [Google Scholar]
  10. YadavR.K. ShahK. DewanganH.K. Intranasal drug delivery of sumatriptan succinate-loaded polymeric solid lipid nanoparticles for brain targeting.Drug Dev. Ind. Pharm.2022481212810.1080/03639045.2022.209057535703403
    [Google Scholar]
  11. ChehelgerdiM. ChehelgerdiM. AllelaO.Q.B. PechoR.D.C. JayasankarN. RaoD.P. ThamaraikaniT. VasanthanM. ViktorP. LakshmaiyaN. SaadhM.J. AmajdA. Abo-ZaidM.A. Castillo-AcoboR.Y. IsmailA.H. AminA.H. Akhavan-SigariR. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation.Mol. Cancer202322116910.1186/s12943‑023‑01865‑037814270
    [Google Scholar]
  12. SivadasanD. RamakrishnanK. MahendranJ. RanganathanH. KaruppaiahA. RahmanH. Solid lipid nanoparticles: Applications and prospects in cancer treatment.Int. J. Mol. Sci.2023247619910.3390/ijms2407619937047172
    [Google Scholar]
  13. Bayón-CorderoL. AlkortaI. AranaL. Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs.Nanomaterials (Basel)20199347410.3390/nano903047430909401
    [Google Scholar]
  14. DewanganH.K. SinghN. MeghS.K. SinghS. MauryaL. Optimization and evaluation of Gymnema sylvestre (GYM) extract loaded polymeric nanoparticles for enhancement of in-vivo efficacy and reduction of toxicity.J. Microencapsul.20221122
    [Google Scholar]
  15. Vanshita GargA. DewanganH.K. Recent advances in drug design and delivery across biological barriers using computational models.Lett. Drug Des. Discov.2022191086587610.2174/1570180819999220204110306
    [Google Scholar]
  16. MakkiJ. Diversity of breast carcinoma: Histological subtypes and clinical relevance.Clin. Med. Insights Pathol.20158CPath.S3156310.4137/CPath.S3156326740749
    [Google Scholar]
  17. SharmaA.N. DewanganH.K. UpadhyayP.K. Comprehensive review on herbal medicine: Emphasis on current therapy and role of phytoconstituents for cancer treatment.Chem. Biodivers.2024213e20230146810.1002/cbdv.20230146838206170
    [Google Scholar]
  18. FengY. SpeziaM. HuangS. YuanC. ZengZ. ZhangL. JiX. LiuW. HuangB. LuoW. LiuB. LeiY. DuS. VuppalapatiA. LuuH.H. HaydonR.C. HeT.C. RenG. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis.Genes Dis.2018527710610.1016/j.gendis.2018.05.00130258937
    [Google Scholar]
  19. VoutsadakisI.A. Comparison of clinical subtypes of breast cancer within the claudin-low molecular cluster reveals distinct phenotypes.Cancers (Basel)20231510268910.3390/cancers1510268937345027
    [Google Scholar]
  20. BhushanA. GonsalvesA. MenonJ.U. Current state of breast cancer diagnosis, treatment, and theranostics.Pharmaceutics202113572310.3390/pharmaceutics1305072334069059
    [Google Scholar]
  21. Lopez-GonzalezL. Sanchez CendraA. Sanchez CendraC. Roberts CervantesE.D. EspinosaJ.C. PekarekT. Fraile-MartinezO. García-MonteroC. Rodriguez-SlockerA.M. Jiménez-ÁlvarezL. GuijarroL.G. Aguado-HencheS. MonserratJ. Alvarez-MonM. PekarekL. OrtegaM.A. Diaz-PedreroR. Exploring biomarkers in breast cancer: Hallmarks of diagnosis, treatment, and follow-up in clinical practice.Medicina (Kaunas)202460116810.3390/medicina6001016838256428
    [Google Scholar]
  22. MohantyS.S. SahooC.R. PadhyR.N. Role of hormone receptors and HER2 as prospective molecular markers for breast cancer: An update.Genes Dis.20229364865810.1016/j.gendis.2020.12.00535782984
    [Google Scholar]
  23. GamraniS. BoukansaS. BenbrahimZ. MellasN. Fdili AlaouiF. MelhoufM.A. BouchikhiC. BananiA. BoubbouM. BouhafaT. El FatemiH. The prognosis and predictive value of estrogen negative/progesterone positive (ER−/PR+) phenotype: Experience of 1159 primary breast cancer from a single institute.Breast J.202220221910.1155/2022/923880435711896
    [Google Scholar]
  24. GutierrezC. SchiffR. HER2: Biology, detection, and clinical implications.Arch. Pathol. Lab. Med.20111351556210.5858/2010‑0454‑RAR.121204711
    [Google Scholar]
  25. YadavD. SemwalB.C. DewanganH.K. Grafting, characterization and enhancement of therapeutic activity of berberine loaded PEGylated PAMAM dendrimer for cancerous cell.J. Biomater. Sci. Polym. Ed.20221411436469754
    [Google Scholar]
  26. MehrgouA. AkouchekianM. The importance of BRCA1 and BRCA2 genes mutations in breast cancer development.Med. J. Islam. Repub. Iran20163036927493913
    [Google Scholar]
  27. InwaldE.C. Klinkhammer-SchalkeM. HofstädterF. ZemanF. KollerM. GerstenhauerM. OrtmannO. Ki-67 is a prognostic parameter in breast cancer patients: Results of a large population-based cohort of a cancer registry.Breast Cancer Res. Treat.2013139253955210.1007/s10549‑013‑2560‑823674192
    [Google Scholar]
  28. ZardavasD. PhillipsW.A. LoiS. PIK3CA mutations in breast cancer: Reconciling preclinical and clinical data findings.Breast Cancer Res.201416120110.1186/bcr360525192370
    [Google Scholar]
  29. OlivierM. HollsteinM. HainautP. TP53 mutations in human cancers: Origins, consequences, and clinical use.Cold Spring Harb. Perspect. Biol.201021a00100810.1101/cshperspect.a00100820182602
    [Google Scholar]
  30. MaloneE.R. OlivaM. SabatiniP.J.B. StockleyT.L. SiuL.L. Molecular profiling for precision cancer therapies.Genome Med.2020121810.1186/s13073‑019‑0703‑131937368
    [Google Scholar]
  31. LakshmiS.K. SinghS. ShahK. DewanganH.K. Dual Vinorelbine bitartrate and Resveratrol loaded polymeric aqueous core nanocapsules for synergistic efficacy in breast cancer.J. Microencapsul.202239429931310.1080/02652048.2022.207067935470755
    [Google Scholar]
  32. FajdicJ. DjurovicD. GotovacN. HrgovicZ. Criteria and procedures for breast conserving surgery.Acta Inform. Med.2013211161910.5455/aim.2013.21.16‑1923572855
    [Google Scholar]
  33. ZahoorS. HajiA. BattooA. QurieshiM. MirW. ShahM. Sentinel lymph node biopsy in breast cancer: A clinical review and update.J. Breast Cancer201720321722710.4048/jbc.2017.20.3.21728970846
    [Google Scholar]
  34. KokaK. VermaA. DwarakanathB.S. PapineniR.V.L. Technological advancements in external beam radiation therapy (EBRT): An indispensable tool for cancer treatment.Cancer Manag. Res.2022141421142910.2147/CMAR.S35174435431581
    [Google Scholar]
  35. MasoodS. Neoadjuvant chemotherapy in breast cancers.Womens Health (Lond. Engl.)201612548049110.1177/174550571667713927885165
    [Google Scholar]
  36. JohnsonN. BryantA. MilesT. HogbergT. CornesP. Adjuvant chemotherapy for endometrial cancer after hysterectomy.Cochrane Libr.201120143CD00317510.1002/14651858.CD003175.pub221975736
    [Google Scholar]
  37. AnK.C. Selective estrogen receptor modulators.Asian Spine J.201610478779110.4184/asj.2016.10.4.78727559463
    [Google Scholar]
  38. SadeghiM. Shahriari-AhmadiA. ArabiM. PayandehM. The recurrence frequency of breast cancer and its prognostic factors in Iranian patients.Int. J. Appl. Basic Med. Res.201771404310.4103/2229‑516X.19852128251106
    [Google Scholar]
  39. ZakariaN.H. HashadD. SaiedM.H. HegazyN. ElkayalA. TayaeE. Genetic mutations in HER2-positive breast cancer: Possible association with response to trastuzumab therapy.Hum. Genomics20231714310.1186/s40246‑023‑00493‑537202799
    [Google Scholar]
  40. Lakshmi SinghS. VijayakumarM.R. DewanganH.K. Lipid based aqueous core nanocapsules (ACNs) for encapsulating hydrophilic vinorelbine bitartrate: Preparation, optimization, characterization and in vitro safety assessment for intravenous administration.Curr. Drug Deliv.20181591284129310.2174/156720181566618071611245730009708
    [Google Scholar]
  41. ContiM. MorcianoF. BufiE. D’AngeloA. PanicoC. Di PaolaV. GoriE. RussoG. CiminoG. PalmaS. BelliP. ManfrediR. Surgical planning after neoadjuvant treatment in breast cancer: A multimodality imaging-based approach focused on MRI.Cancers (Basel)2023155143910.3390/cancers1505143936900231
    [Google Scholar]
  42. KrzyszczykP. AcevedoA. DavidoffE.J. TimminsL.M. Marrero-BerriosI. PatelM. WhiteC. LoweC. SherbaJ.J. HartmanshennC. O’NeillK.M. BalterM.L. FritzZ.R. AndroulakisI.P. SchlossR.S. YarmushM.L. The growing role of precision and personalized medicine for cancer treatment.Technology (Singap.)2018603n047910010.1142/S233954781830002030713991
    [Google Scholar]
  43. ElumalaiK. SrinivasanS. ShanmugamA. Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment.Biomedical Technology2024510912210.1016/j.bmt.2023.09.001
    [Google Scholar]
  44. MishraV. BansalK.K. VermaA. YadavN. ThakurS. SudhakarK. RosenholmJ.M. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems.Pharmaceutics201810419110.3390/pharmaceutics1004019130340327
    [Google Scholar]
  45. MishraA.K. NehaS.L. RaniL. JainA. DewanganH.K. SahooP.K. Rationally designed nanoparticulate delivery approach for silymarin with natural bio-enhancer: In vitro characterization and in vivo evaluations of hepatoprotective effects in a mouse model.J. Drug Deliv. Sci. Technol.20238610458010.1016/j.jddst.2023.104580
    [Google Scholar]
  46. SharmaA.N. UpadhyayP.K. DewanganH.K. Development, evaluation, pharmacokinetic and biodistribution estimation of resveratrol-loaded solid lipid nanoparticles for prostate cancer targeting.J. Microencapsul.202239656357410.1080/02652048.2022.213578536222429
    [Google Scholar]
  47. AkandaM. MithuM.D.S.H. DouroumisD. Solid lipid nanoparticles: An effective lipid-based technology for cancer treatment.J. Drug Deliv. Sci. Technol.20238610470910.1016/j.jddst.2023.104709
    [Google Scholar]
  48. DhimanN. AwasthiR. SharmaB. KharkwalH. KulkarniG.T. Lipid nanoparticles as carriers for bioactive delivery.Front Chem.2021958011810.3389/fchem.2021.58011833981670
    [Google Scholar]
  49. EvansL.M. CoweyS.L. SiegalG.P. HardyR.W. Stearate preferentially induces apoptosis in human breast cancer cells.Nutr. Cancer200961574675310.1080/0163558090282559719838949
    [Google Scholar]
  50. CentonzeG. NataliniD. PiccolantonioA. SalemmeV. MorellatoA. ArinaP. RigantiC. DefilippiP. Cholesterol and its derivatives: Multifaceted players in breast cancer progression.Front. Oncol.20221290667010.3389/fonc.2022.90667035719918
    [Google Scholar]
  51. TagdeP. NajdaA. NagpalK. KulkarniG.T. ShahM. UllahO. BalantS. RahmanM.H. Nanomedicine-based delivery strategies for breast cancer treatment and management.Int. J. Mol. Sci.2022235285610.3390/ijms2305285635269998
    [Google Scholar]
  52. SubramanianP. Lipid-based nanocarrier system for the effective delivery of nutraceuticals.Molecules20212618551010.3390/molecules2618551034576981
    [Google Scholar]
  53. SahooP.K. MishraA.K. PandeyM. DewanganH.K. SlN. A comprehensive review on liver targeting: Emphasis on nanotechnology-based molecular targets and receptors mediated approaches.Curr. Drug Targets202223151381140510.2174/138945012366622090609143236065923
    [Google Scholar]
  54. ChatterjeeB. Hamed AlmurisiS. Ahmed Mahdi DukhanA. MandalU.K. SenguptaP. Controversies with self-emulsifying drug delivery system from pharmacokinetic point of view.Drug Deliv.20162393639365210.1080/10717544.2016.121499027685505
    [Google Scholar]
  55. OliveiraM.S. AryasomayajulaB. PattniB. MussiS.V. FerreiraL.A.M. TorchilinV.P. Solid lipid nanoparticles co-loaded with doxorubicin and α-tocopherol succinate are effective against drug-resistant cancer cells in monolayer and 3-D spheroid cancer cell models.Int. J. Pharm.2016512129230010.1016/j.ijpharm.2016.08.04927568499
    [Google Scholar]
  56. DewanganH.K. SinghS. MauryaL. SrivastavaA. HepatitisB. Antigen loaded biodegradable polymeric nanoparticles: Formulation optimization and in-vivo immunization fin BALB/c mice.Curr. Drug Deliv.20181581204121510.2174/156720181566618060411045729866006
    [Google Scholar]
  57. EiermannW. Trastuzumab combined with chemotherapy for the treatment of HER2-positive metastatic breast cancer: Pivotal trial data.Ann. Oncol.200112Suppl. 1S57S6210.1093/annonc/12.suppl_1.S5711521723
    [Google Scholar]
  58. SwainS.M. ShastryM. HamiltonE. Targeting HER2-positive breast cancer: Advances and future directions.Nat. Rev. Drug Discov.202322210112610.1038/s41573‑022‑00579‑036344672
    [Google Scholar]
  59. TapiaM. HernandoC. MartínezM.T. BurguésO. Tebar-SánchezC. LameirinhasA. Ágreda-RocaA. Torres-RuizS. Garrido-CanoI. LluchA. BermejoB. ErolesP. Clinical impact of new treatment strategies for HER2-positive metastatic breast cancer patients with resistance to classical anti-HER therapies.Cancers (Basel)20231518452210.3390/cancers1518452237760491
    [Google Scholar]
  60. SharmaV. JamiV. SettiM.L.V. Avijit ChoudhuryA. RaghuvanshiR. Kumar DewanganH. BashaA.M. Optimization, evaluation and comparative IVPT study of micro and nano liposomal topical formulations of apremilast.Mater. Today Proc.2022111110.1016/j.matpr.2022.11.250
    [Google Scholar]
  61. WangY. MindenA. Current molecular combination therapies used for the treatment of breast cancer.Int. J. Mol. Sci.202223191104610.3390/ijms23191104636232349
    [Google Scholar]
  62. MokhtariR.B. HomayouniT.S. BaluchN. MorgatskayaE. KumarS. DasB. YegerH. Combination therapy in combating cancer.Oncotarget2017823380223804310.18632/oncotarget.1672328410237
    [Google Scholar]
  63. YuS. BiX. YangL. WuS. YuY. JiangB. ZhangA. LanK. DuanS. Co-delivery of paclitaxel and PLK1-targeted siRNA using aptamer-functionalized cationic liposome for synergistic anti-breast cancer effects in vivo.J. Biomed. Nanotechnol.20191561135114810.1166/jbn.2019.275131072423
    [Google Scholar]
  64. SubhanM.A. FilipczakN. TorchilinV.P. Advances with lipid-based nanosystems for siRNA delivery to breast cancers.Pharmaceuticals (Basel)202316797010.3390/ph1607097037513882
    [Google Scholar]
  65. MitraA.K. AgrahariV. MandalA. CholkarK. NatarajanC. ShahS. JosephM. TrinhH.M. VaishyaR. YangX. HaoY. KhuranaV. PalD. Novel delivery approaches for cancer therapeutics.J. Control. Release201521924826810.1016/j.jconrel.2015.09.06726456750
    [Google Scholar]
  66. QiaoX. GuoD. TaoZ. HuX. Effect of doxorubicin on efficacy of immune checkpoint inhibitors through increasing infiltration of CD8-positive T cells and activating STAT1-IRF1-CXCL10 axis.J. Clin. Oncol.20234116Suppl.e13095e13095
    [Google Scholar]
  67. KangW. LiuY. WangW. Light-responsive nanomedicine for cancer immunotherapy.Acta Pharm. Sin. B20231362346236810.1016/j.apsb.2023.05.01637425044
    [Google Scholar]
  68. DewanganH.K. PandeyT. MauryaL. SinghS. Rational design and evaluation of HBsAg polymeric nanoparticles as antigen delivery carriers.Int. J. Biol. Macromol.201811180481210.1016/j.ijbiomac.2018.01.07329343454
    [Google Scholar]
  69. BarenholzY.C. Doxil® - The first FDA-approved nano-drug: Lessons learned.J. Control. Release2012160211713410.1016/j.jconrel.2012.03.02022484195
    [Google Scholar]
  70. BuradeV. BhowmickS. MaitiK. ZalawadiaR. RuanH. ThennatiR. Lipodox® (generic doxorubicin hydrochloride liposome injection): In vivo efficacy and bioequivalence versus Caelyx® (doxorubicin hydrochloride liposome injection) in human mammary carcinoma (MX-1) xenograft and syngeneic fibrosarcoma (WEHI 164) mouse models.BMC Cancer201717140510.1186/s12885‑017‑3377‑328587612
    [Google Scholar]
  71. LeeH.W. KangS.Y. KimI.H. SunD.S. AnH.J. JangJ.S. LeeS-C. JinM. Phase 2 study of weekly polymeric micelle-formulated paclitaxel plus gemcitabine in patients with recurrent and metastatic adenocarcinoma of the pancreas.J. Clin. Oncol.20234116_supple16257e1625710.1200/JCO.2023.41.16_suppl.e16257
    [Google Scholar]
  72. BangK.H. NaY.G. HuhH.W. HwangS.J. KimM.S. KimM. LeeH.K. ChoC.W. The delivery strategy of paclitaxel nanostructured lipid carrier coated with platelet membrane.Cancers (Basel)201911680710.3390/cancers1106080731212681
    [Google Scholar]
  73. KamelA.E. FadelM. LouisD. Curcumin-loaded nanostructured lipid carriers prepared using Peceol™ and olive oil in photodynamic therapy: Development and application in breast cancer cell line.Int. J. Nanomedicine2019145073508510.2147/IJN.S21048431371948
    [Google Scholar]
  74. TomarS. YadavR.K. ShahK. DewanganH.K. A comprehensive review on carrier mediated nose to brain targeting: Emphasis on molecular targets, current trends, future prospects, and challenges.Int J Polymeric Mat and Polymeric Biomat.20221123
    [Google Scholar]
  75. VanshitaG.A. ShahK. SharmaR. DewanganH.K. Review: Recent advances of nanotechnology in brain targeting.Curr. Nanosci.202219350361
    [Google Scholar]
  76. ShivenA. AlamA. DewanganH.K. ShahK. AlamP. KapoorD.N. Optimisation and in-vivo evaluation of extracted Karanjin loaded liposomal topical formulation for treatment of psoriasis in tape-stripped mouse model.J. Microencapsul.2024111510.1080/02652048.2024.235424938780157
    [Google Scholar]
  77. HuL. XingQ. MengJ. ShangC. Preparation and enhanced oral bioavailability of cryptotanshinone-loaded solid lipid nanoparticles.AAPS PharmSciTech201011258258710.1208/s12249‑010‑9410‑320352534
    [Google Scholar]
  78. DubeyR.K. ShuklaS. ShahK. DewanganH.K. A comprehensive review of self-assembly techniques used to fabricate as DNA origami, block copolymers, and colloidal nanostructures.Curr. Nanosci.202420203410.2174/0115734137283662240129073747
    [Google Scholar]
  79. NehaS.L. MishraA.K. RaniL. ParohaS. DewanganH.K. SahooP.K. Design and evaluations of a nanostructured lipid carrier loaded with dopamine hydrochloride for intranasal bypass drug delivery in Parkinson’s disease.J. Microencapsul.202340859961210.1080/02652048.2023.226438637787159
    [Google Scholar]
  80. Scioli MontotoS. MuracaG. RuizM.E. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects.Front. Mol. Biosci.2020758799710.3389/fmolb.2020.58799733195435
    [Google Scholar]
  81. RajniS.K. ShahK. DewanganH.K. Delivery of nano-emulgel carrier: Optimization, evaluation and in vivo anti-inflammation estimations for osteoarthritis.Ther. Deliv.202415318119210.4155/tde‑2023‑010938356357
    [Google Scholar]
  82. TanS.L.J. BillaN. Improved bioavailability of poorly soluble drugs through gastrointestinal muco-adhesion of lipid nanoparticles.Pharmaceutics20211311181710.3390/pharmaceutics1311181734834232
    [Google Scholar]
  83. ZońA. BednarekI. Cisplatin in ovarian cancer treatment-known limitations in therapy force new solutions.Int. J. Mol. Sci.2023248758510.3390/ijms2408758537108749
    [Google Scholar]
  84. Kumar DubeyR. ShahK. ObaidullahA.J. AlanaziM.M. Faris AlotaibiH. Kumar DewanganH. Nanostructured lipid carriers of ivabradine hydrochloride: Optimization, characterization and in-vivo estimation for management of stable angina.Arab. J. Chem.2023161010517710.1016/j.arabjc.2023.105177
    [Google Scholar]
  85. YangF. HeQ. DaiX. ZhangX. SongD. The potential role of nanomedicine in the treatment of breast cancer to overcome the obstacles of current therapies.Front. Pharmacol.202314114310210.3389/fphar.2023.114310236909177
    [Google Scholar]
  86. SunY.L. PatelA. KumarP. ChenZ.S. Role of ABC transporters in cancer chemotherapy.Chin. J. Cancer2012312515710.5732/cjc.011.1046622257384
    [Google Scholar]
  87. Guney EskilerG. CecenerG. DikmenG. EgeliU. TuncaB. Solid lipid nanoparticles: Reversal of tamoxifen resistance in breast cancer.Eur. J. Pharm. Sci.2018120738810.1016/j.ejps.2018.04.04029719240
    [Google Scholar]
  88. LeeJ. ChoiM.K. SongI.S. Recent advances in doxorubicin formulation to enhance pharmacokinetics and tumor targeting.Pharmaceuticals (Basel)202316680210.3390/ph1606080237375753
    [Google Scholar]
  89. KamareheiF. The effects of combination therapy by solid lipid nanoparticle and dental stem cells on different degenerative diseases.Am. J. Transl. Res.20221453327334335702091
    [Google Scholar]
  90. DeepikaD. DewanganH.K. MauryaL. SinghS. Intranasal drug delivery of frovatriptan succinate loaded polymeric nanoparticles for brain targeting.J. Pharm. Sci.2019108285185910.1016/j.xphs.2018.07.01330053555
    [Google Scholar]
  91. ZhangR.X. WongH.L. XueH.Y. EohJ.Y. WuX.Y. Nanomedicine of synergistic drug combinations for cancer therapy – Strategies and perspectives.J. Control. Release201624048950310.1016/j.jconrel.2016.06.01227287891
    [Google Scholar]
  92. GhazalH. WaqarA. YaseenF. ShahidM. SultanaM. TariqM. BashirM.K. TahseenH. RazaT. AhmadF. Role of nanoparticles in enhancing chemotherapy efficacy for cancer treatment.Next Materials2024210012810.1016/j.nxmate.2024.100128
    [Google Scholar]
  93. PrasadP. ShuhendlerA. CaiP. RauthA.M. WuX.Y. Doxorubicin and mitomycin C co-loaded polymer-lipid hybrid nanoparticles inhibit growth of sensitive and multidrug resistant human mammary tumor xenografts.Cancer Lett.2013334226327310.1016/j.canlet.2012.08.00822902994
    [Google Scholar]
  94. RaghuvanshiA. ShahK. DewanganH.K. Ethosome as antigen delivery carrier: Optimisation, evaluation and induction of immunological response via nasal route against hepatitis B.J. Microencapsul.202239435236310.1080/02652048.2022.208416935635238
    [Google Scholar]
  95. ZhangX. LiuJ. LiX. LiF. LeeR.J. SunF. LiY. LiuZ. TengL. Trastuzumab-coated nanoparticles loaded with docetaxel for breast cancer therapy.Dose Response201917310.1177/155932581987258331523204
    [Google Scholar]
  96. FisusiF.A. AkalaE.O. Drug combinations in breast cancer therapy.Pharm. Nanotechnol.20197132310.2174/221173850766619012211122430666921
    [Google Scholar]
  97. GonnelliS. PetrioliR. Aromatase inhibitors, efficacy and metabolic risk in the treatment of postmenopausal women with early breast cancer.Clin. Interv. Aging20083464765710.2147/CIA.S346619281057
    [Google Scholar]
  98. RethiL. MutalikC. AnurogoD. LuL.S. ChuH.Y. YougbaréS. KuoT.R. ChengT.M. ChenF.L. Lipid-based nanomaterials for drug delivery systems in breast cancer therapy.Nanomaterials (Basel)20221217294810.3390/nano1217294836079985
    [Google Scholar]
  99. MoK. KimA. ChoeS. ShinM. YoonH. Overview of solid lipid nanoparticles in breast cancer therapy.Pharmaceutics2023158206510.3390/pharmaceutics1508206537631279
    [Google Scholar]
  100. MishraA.K. RaniL. SinghR. DewanganH.K. SahooP.K. KumarV. Nanoinformatics and nanotechnology in anti-inflammatory therapy: A review.J. Drug Deliv. Sci. Technol.20249310544610.1016/j.jddst.2024.105446
    [Google Scholar]
  101. CarlsenL. ZhangS. TianX. De La CruzA. GeorgeA. ArnoffT.E. El-DeiryW.S. The role of p53 in anti-tumor immunity and response to immunotherapy.Front. Mol. Biosci.202310114838910.3389/fmolb.2023.114838937602328
    [Google Scholar]
  102. SharmaV. DewanganH.K. MauryaL. VatsK. VermaH. SinghS. Rational design and in-vivo estimation of Ivabradine hydrochloride loaded nanoparticles for management of stable angina.J. Drug Deliv. Sci. Technol.20195410133710134610.1016/j.jddst.2019.101337
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128319233240725103706
Loading
/content/journals/cpd/10.2174/0113816128319233240725103706
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): breast cancer; lipid carriers; nanocarriers; SLNs; targeted therapy, chemotherapy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test