Skip to content
2000
Volume 30, Issue 37
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Post-transcriptional modifications (PTMs) are pivotal in the regulation of gene expression, and pseudouridylation is emerging as a critical player. This modification, facilitated by enzymes such as NOB1 (PNO1), is integral to ribosome biogenesis. PNO1, in collaboration with the NIN1/RPN12 binding protein 1 homolog (NOB1), is vital for the maturation of ribosomes, transitioning 20S pre-rRNA into functional 18S rRNA. Recent studies have highlighted PNO1's potential involvement in cancer progression; however, its underlying mechanisms remain unclear. Relentless growth characterizing cancer underscores the burgeoning significance of epitranscriptomic modifications, including pseudouridylation, in oncogenesis. Given PNO1's emerging role, it is imperative to delineate its contribution to cancer development to identify novel therapeutic interventions. This review summarizes the current literature regarding the role of PNO1 in cancer progression and its molecular underpinnings in oncogenesis. Overexpression of PNO1 was associated with unfavorable prognosis and increased tumor malignancy. At the molecular level, PNO1 facilitates cancer progression by modulating mRNA stability, alternative splicing, and translation efficiency. Its role in pseudouridylation of oncogenic and tumor-suppressor transcripts further underscores its significance in cancer biology. Although disruption of ribosome biogenesis is known to precipitate oncogenesis, the precise mechanisms by which these alterations contribute to cancer remain unclear. This review elucidates the intricate process of ribosomal small subunit maturation, highlighting the roles of crucial ribosomal proteins (RPs) and RNA-binding proteins (RBPs) as well as the positioning and function of NOB1 and PNO1 within the 40S subunit. The involvement of these components in the maturation of the small subunit (SSU) and their significance in the context of cancer therapeutics has been thoroughly explored. PNO1's burgeoning significance in oncology makes it a potential target for cancer therapies. Strategies aimed at modulating PNO1-mediated pseudouridylation may provide new avenues for cancer treatment. However, further research is essential to unravel the complete spectrum of PNO1 mechanisms in cancer and harness this knowledge for the development of targeted and more efficacious anticancer therapies.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128301870240730071910
2024-10-01
2025-01-05
Loading full text...

Full text loading...

References

  1. ShenA. ChenY. LiuL. HuangY. ChenH. QiF. LinJ. ShenZ. WuX. WuM. LiQ. QiuL. YuN. SferraT.J. PengJ. EBF1-mediated upregulation of ribosome assembly factor PNO1 contributes to cancer progression by negatively regulating the p53 signaling pathway.Cancer Res.20197992257227010.1158/0008‑5472.CAN‑18‑323830862720
    [Google Scholar]
  2. de la CruzJ. KarbsteinK. WoolfordJ.L.Jr Functions of ribosomal proteins in assembly of eukaryotic ribosomes in vivo.Annu. Rev. Biochem.20158419312910.1146/annurev‑biochem‑060614‑03391725706898
    [Google Scholar]
  3. TrerèD. BorzioM. MorabitoA. BorzioF. RoncalliM. DerenziniM. Nucleolar hypertrophy correlates with hepatocellular carcinoma development in cirrhosis due to HBV infection.Hepatology2003371727810.1053/jhep.2003.5003912500191
    [Google Scholar]
  4. OrsolicI. JuradaD. PullenN. OrenM. EliopoulosA.G. VolarevicS. The relationship between the nucleolus and cancer: Current evidence and emerging paradigms.Semin. Cancer Biol.201637-38365010.1016/j.semcancer.2015.12.00426721423
    [Google Scholar]
  5. HaroldC.M. BuhagiarA.F. ChengY. BasergaS.J. Ribosomal RNA transcription regulation in breast cancer.Genes202112450210.3390/genes1204050233805424
    [Google Scholar]
  6. PelletierJ. ThomasG. VolarevićS. Ribosome biogenesis in cancer: New players and therapeutic avenues.Nat. Rev. Cancer2018181516310.1038/nrc.2017.10429192214
    [Google Scholar]
  7. ChengJ. BaßlerJ. FischerP. LauB. KellnerN. KunzeR. GrieselS. KallasM. BerninghausenO. StraussD. BeckmannR. HurtE. Thermophile 90S pre-ribosome structures reveal the reverse order of co-transcriptional 18S rRNA subdomain integration.Mol. Cell201975612561269.e710.1016/j.molcel.2019.06.03231378463
    [Google Scholar]
  8. DragonF. GallagherJ.E.G. Compagnone-PostP.A. MitchellB.M. PorwancherK.A. WehnerK.A. WormsleyS. SettlageR.E. ShabanowitzJ. OsheimY. BeyerA.L. HuntD.F. BasergaS.J. A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis.Nature2002417689296797010.1038/nature0076912068309
    [Google Scholar]
  9. LarburuN. MontelleseC. O’DonohueM.F. KutayU. GleizesP.E. Plisson-ChastangC. Structure of a human pre-40S particle points to a role for RACK1 in the final steps of 18S rRNA processing.Nucleic Acids Res.201644178465847810.1093/nar/gkw71427530427
    [Google Scholar]
  10. ZorbasC. NicolasE. WacheulL. HuvelleE. Heurgué-HamardV. LafontaineD.L.J. The human 18S rRNA base methyltransferases DIMT1L and WBSCR22-TRMT112 but not rRNA modification are required for ribosome biogenesis.Mol. Biol. Cell201526112080209510.1091/mbc.E15‑02‑007325851604
    [Google Scholar]
  11. TurowskiT.W. LebaronS. ZhangE. PeilL. DudnakovaT. PetfalskiE. GrannemanS. RappsilberJ. TollerveyD. Rio1 mediates ATP-dependent final maturation of 40S ribosomal subunits.Nucleic Acids Res.20144219121891219910.1093/nar/gku87825294836
    [Google Scholar]
  12. HeuerA. ThomsonE. SchmidtC. BerninghausenO. BeckerT. HurtE. BeckmannR. Cryo-EM structure of a late pre-40S ribosomal subunit from Saccharomyces cerevisiae. eLife20176e3018910.7554/eLife.3018929155690
    [Google Scholar]
  13. FaticaA. OeffingerM. DlakićM. TollerveyD. NOB1p is required for cleavage of the 3′ end of 18S rRNA.Mol. Cell. Biol.20032351798180710.1128/MCB.23.5.1798‑1807.200312588997
    [Google Scholar]
  14. WoollsH.A. LamannaA.C. KarbsteinK. Roles of Dim2 in ribosome assembly.J. Biol. Chem.201128642578258610.1074/jbc.M110.19149421075849
    [Google Scholar]
  15. AmeismeierM. ChengJ. BerninghausenO. BeckmannR. Visualizing late states of human 40S ribosomal subunit maturation.Nature2018558770924925310.1038/s41586‑018‑0193‑029875412
    [Google Scholar]
  16. ZhouG.J. ZhangY. WangJ. GuoJ.H. NiJ. ZhongZ.M. WangL.Q. DangY.J. DaiJ.F. YuL. Cloning and characterization of a novel human RNA binding protein gene PNO1.DNA Seq.200415321922410.1080/1042517041000170215915497447
    [Google Scholar]
  17. WongA.G. McBurneyK.L. ThompsonK.J. StickneyL.M. MackieG.A. S1 and KH domains of polynucleotide phosphorylase determine the efficiency of RNA binding and autoregulation.J. Bacteriol.201319592021203110.1128/JB.00062‑1323457244
    [Google Scholar]
  18. YadavM. SinghR.S. HoganD. VidhyasagarV. YangS. ChungI.Y.W. KusalikA. DmitrievO.Y. CyglerM. WuY. The KH domain facilitates the substrate specificity and unwinding processivity of DDX43 helicase.J. Biol. Chem.202129610008510.1074/jbc.RA120.01582433199368
    [Google Scholar]
  19. AmeismeierM. ZempI. van den HeuvelJ. ThomsM. BerninghausenO. KutayU. BeckmannR. Structural basis for the final steps of human 40S ribosome maturation.Nature2020587783568368710.1038/s41586‑020‑2929‑x33208940
    [Google Scholar]
  20. van den HeuvelJ. AshionoC. GilletL.C. DörnerK. WylerE. ZempI. KutayU. Processing of the ribosomal ubiquitin-like fusion protein FUBI-eS30/FAU is required for 40S maturation and depends on USP36.eLife202110e7056010.7554/eLife.7056034318747
    [Google Scholar]
  21. LamannaA.C. KarbsteinK. NOB1 binds the single-stranded cleavage site D at the 3′-end of 18S rRNA with its PIN domain.Proc. Natl. Acad. Sci. USA200910634142591426410.1073/pnas.090540310619706509
    [Google Scholar]
  22. DaiH. ZhangS. MaR. PanL. Celecoxib inhibits hepatocellular carcinoma cell growth and migration by targeting PNO1.Med. Sci. Monit.2019257351736010.12659/MSM.91921831568401
    [Google Scholar]
  23. Nait SlimaneS. MarcelV. FenouilT. CatezF. SaurinJ.C. BouvetP. DiazJ.J. MertaniH. Ribosome biogenesis alterations in colorectal cancer.Cells2020911236110.3390/cells911236133120992
    [Google Scholar]
  24. PlassartL. ShayanR. MontelleseC. RinaldiD. LarburuN. PichereauxC. FromentC. LebaronS. O’DonohueM.F. KutayU. MarcouxJ. GleizesP.E. Plisson-ChastangC. The final step of 40S ribosomal subunit maturation is controlled by a dual key lock.eLife202110e6125410.7554/eLife.6125433908345
    [Google Scholar]
  25. LiJ. LiuL. ChenY. WuM. LinX. ShenZ. ChengY. ChenX. WeygantN. WuX. WeiL. SferraT. HanY. ChenX. ShenA. ShenA. PengJ. Ribosome assembly factor PNO1 is associated with progression and promotes tumorigenesis in triple-negative breast cancer.Oncol. Rep.202247610810.3892/or.2022.831935445733
    [Google Scholar]
  26. StepanchickA. ZhiH. CavanaughA.H. RothblumK. SchneiderD.A. RothblumL.I. DNA binding by the ribosomal DNA transcription factor rrn3 is essential for ribosomal DNA transcription.J. Biol. Chem.2013288139135914410.1074/jbc.M112.44426523393135
    [Google Scholar]
  27. SharmaS. MarchandV. MotorinY. LafontaineD.L.J. Identification of sites of 2′-O-methylation vulnerability in human ribosomal RNAs by systematic mapping.Sci. Rep.2017711149010.1038/s41598‑017‑09734‑928904332
    [Google Scholar]
  28. CerqueiraA.V. LemosB. Ribosomal DNA and the nucleolus as keystones in nuclear architecture, organization, and function.Trends Genet.2019351071072310.1016/j.tig.2019.07.01131447250
    [Google Scholar]
  29. MontanaroL. TreréD. DerenziniM. Nucleolus, ribosomes, and cancer.Am. J. Pathol.2008173230131010.2353/ajpath.2008.07075218583314
    [Google Scholar]
  30. NarasimhaA. VasaviB. Harendra KumarM.L. Significance of nuclear morphometry in benign and malignant breast aspirates.Int. J. Appl. Basic Med. Res.201331222610.4103/2229‑516X.11223723776836
    [Google Scholar]
  31. PenzoM. MontanaroL. TreréD. DerenziniM. The ribosome biogenesis-cancer connection.Cells2019815510.3390/cells801005530650663
    [Google Scholar]
  32. DerenziniM. MontanaroL. TreréD. What the nucleolus says to a tumour pathologist.Histopathology200954675376210.1111/j.1365‑2559.2008.03168.x19178588
    [Google Scholar]
  33. StępińskiD. The nucleolus, an ally, and an enemy of cancer cells.Histochem. Cell Biol.2018150660762910.1007/s00418‑018‑1706‑530105457
    [Google Scholar]
  34. PrakashV. CarsonB.B. FeenstraJ.M. DassR.A. SekyrovaP. HoshinoA. PetersenJ. GuoY. ParksM.M. KuryloC.M. BatchelderJ.E. HallerK. HashimotoA. RundqivstH. CondeelisJ.S. AllisC.D. DryginD. NietoM.A. AndängM. PercipalleP. BerghJ. AdameykoI. FarrantsA.K.Ö. HartmanJ. LydenD. PietrasK. BlanchardS.C. VincentC.T. Ribosome biogenesis during cell cycle arrest fuels EMT in development and disease.Nat. Commun.2019101211010.1038/s41467‑019‑10100‑831068593
    [Google Scholar]
  35. DerenziniM. MontanaroL. ChillàA. TostiE. ViciM. BarbieriS. GovoniM. MazziniG. TreréD. Key role of the achievement of an appropriate ribosomal RNA complement for G1-S phase transition in H4-II-E-C3 rat hepatoma cells.J. Cell. Physiol.2005202248349110.1002/jcp.2014415389582
    [Google Scholar]
  36. CoussensL.M. WerbZ. Inflammation and cancer.Nature2002420691786086710.1038/nature0132212490959
    [Google Scholar]
  37. BrighentiE. CalabreseC. LiguoriG. GiannoneF.A. TrerèD. MontanaroL. DerenziniM. Interleukin 6 downregulates p53 expression and activity by stimulating ribosome biogenesis: A new pathway connecting inflammation to cancer.Oncogene201433354396440610.1038/onc.2014.124531714
    [Google Scholar]
  38. GrivennikovS.I. GretenF.R. KarinM. Immunity, inflammation, and cancer.Cell2010140688389910.1016/j.cell.2010.01.02520303878
    [Google Scholar]
  39. NarlaA. EbertB.L. Ribosomopathies: Human disorders of ribosome dysfunction.Blood2010115163196320510.1182/blood‑2009‑10‑17812920194897
    [Google Scholar]
  40. ZhangC. ComaiL. JohnsonD.L. Expression of PTEN in PTEN-deficient cells represses Pol I transcription by disrupting the SL1 complex.Mol. Cell. Biol.2005256899691110.1128/MCB.25.16.6899‑6911.200516055704
    [Google Scholar]
  41. GoudarziK.M. LindströmM.S. Role of ribosomal protein mutations in tumor development (Review).Int. J. Oncol.20164841313132410.3892/ijo.2016.338726892688
    [Google Scholar]
  42. GregoryB. RahmanN. BommakantiA. ShamsuzzamanM. ThapaM. LescureA. ZengelJ.M. LindahlL. The small and large ribosomal subunits depend on each other for stability and accumulation.Life Sci. Alliance201922e20180015010.26508/lsa.20180015030837296
    [Google Scholar]
  43. NaiyerS. SinghS.S. KaurD. MukherjeeA. SinghY.P. BhattacharyaA. BhattacharyaS. Transcriptomic analysis of ribosome biogenesis and pre-rRNA processing during growth stress in Entamoeba histolytica.Exp. Parasitol.202223910830810.1016/j.exppara.2022.10830835718007
    [Google Scholar]
  44. CatalanottoC. BarbatoC. CogoniC. BenelliD. The RNA-binding function of ribosomal proteins and ribosome biogenesis factors in human health and disease.Biomedicines20231111296910.3390/biomedicines1111296938001969
    [Google Scholar]
  45. SchneiderD.A. RNA polymerase I activity is regulated at multiple steps in the transcription cycle: Recent insights into factors that influence transcription elongation.Gene2012493217618410.1016/j.gene.2011.08.00621893173
    [Google Scholar]
  46. ChenJ. ZhangL. YeK. Functional regions in the 5′ external transcribed spacer of yeast pre-rRNA.RNA202026786687710.1261/rna.074807.12032213618
    [Google Scholar]
  47. LinJ. LuJ. FengY. SunM. YeK. An RNA-binding complex involved in ribosome biogenesis contains a protein with homology to tRNA CCA-adding enzyme.PLoS Biol.20131110e100166910.1371/journal.pbio.100166924130456
    [Google Scholar]
  48. BarandunJ. HunzikerM. KlingeS. Assembly and structure of the SSU processome - a nucleolar precursor of the small ribosomal subunit.Curr. Opin. Struct. Biol.201849859310.1016/j.sbi.2018.01.00829414516
    [Google Scholar]
  49. HunzikerM. BarandunJ. PetfalskiE. TanD. Delan-ForinoC. MolloyK.R. KimK.H. Dunn-DaviesH. ShiY. Chaker-MargotM. ChaitB.T. WalzT. TollerveyD. KlingeS. UtpA and UtpB chaperone nascent pre-ribosomal RNA and U3 snoRNA to initiate eukaryotic ribosome assembly.Nat. Commun.2016711209010.1038/ncomms1209027354316
    [Google Scholar]
  50. Marmier-GourrierN. CléryA. SchlotterF. Senty-SégaultV. BranlantC. A second base pair interaction between U3 small nucleolar RNA and the 5′-ETS region is required for early cleavage of the yeast pre-ribosomal RNA.Nucleic Acids Res.201139229731974510.1093/nar/gkr67521890904
    [Google Scholar]
  51. Chaker-MargotM. HunzikerM. BarandunJ. DillB.D. KlingeS. Stage-specific assembly events of the 6-MDa small-subunit processome initiate eukaryotic ribosome biogenesis.Nat. Struct. Mol. Biol.2015221192092310.1038/nsmb.311126479197
    [Google Scholar]
  52. PhippsK.R. CharetteJ.M. BasergaS.J. The small subunit processome in ribosome biogenesis-progress and prospects.Wiley Interdiscip. Rev. RNA20112112110.1002/wrna.5721318072
    [Google Scholar]
  53. BarandunJ. Chaker-MargotM. HunzikerM. MolloyK.R. ChaitB.T. KlingeS. The complete structure of the small-subunit processome.Nat. Struct. Mol. Biol.2017241194495310.1038/nsmb.347228945246
    [Google Scholar]
  54. LinnemannJ. PöllG. JakobS. Ferreira-CercaS. GriesenbeckJ. TschochnerH. MilkereitP. Impact of two neighbouring ribosomal protein clusters on biogenesis factor binding and assembly of yeast late small ribosomal subunit precursors.PLoS One2019141e020341510.1371/journal.pone.020341530653518
    [Google Scholar]
  55. BleichertF. GrannemanS. OsheimY.N. BeyerA.L. BasergaS.J. The PINc domain protein Utp24, a putative nuclease, is required for the early cleavage steps in 18S rRNA maturation.Proc. Natl. Acad. Sci. USA2006103259464946910.1073/pnas.060367310316769905
    [Google Scholar]
  56. KošM. TollerveyD. Yeast pre-rRNA processing and modification occur cotranscriptionally.Mol. Cell201037680982010.1016/j.molcel.2010.02.02420347423
    [Google Scholar]
  57. SchäferT. StraussD. PetfalskiE. TollerveyD. HurtE. The path from nucleolar 90S to cytoplasmic 40S pre-ribosomes.EMBO J.20032261370138010.1093/emboj/cdg12112628929
    [Google Scholar]
  58. SchäferT. MacoB. PetfalskiE. TollerveyD. BöttcherB. AebiU. HurtE. Hrr25-dependent phosphorylation state regulates organization of the pre-40S subunit.Nature2006441709365165510.1038/nature0484016738661
    [Google Scholar]
  59. JohnsonM.C. GhaleiH. DoxtaderK.A. KarbsteinK. StroupeM.E. Structural heterogeneity in pre-40S ribosomes.Structure201725232934010.1016/j.str.2016.12.01128111018
    [Google Scholar]
  60. ChengJ. LauB. ThomsM. AmeismeierM. BerninghausenO. HurtE. BeckmannR. The nucleoplasmic phase of pre-40S formation prior to nuclear export.Nucleic Acids Res.20225020119241193710.1093/nar/gkac96136321656
    [Google Scholar]
  61. JohnsonA.G. LapointeC.P. WangJ. CorsepiusN.C. ChoiJ. FuchsG. PuglisiJ.D. RACK1 on and off the ribosome.RNA201925788189510.1261/rna.071217.11931023766
    [Google Scholar]
  62. WoolfordJ.L.Jr BasergaS.J. Ribosome biogenesis in the yeast Saccharomyces cerevisiae.Genetics2013195364368110.1534/genetics.113.15319724190922
    [Google Scholar]
  63. AspdenJ.L. Eyre-WalkerY.C. PhillipsR.J. AminU. MumtazM.A.S. BrocardM. CousoJ.P. Extensive translation of small open reading frames revealed by poly-ribo-seq.eLife20143e0352810.7554/eLife.0352825144939
    [Google Scholar]
  64. HaskellD. ZinovyevaA. KH domain containing RNA-binding proteins coordinate with microRNAs to regulate Caenorhabditis elegans development.G3 (Bethesda)2021112jkab01310.1093/g3journal/jkab01333585875
    [Google Scholar]
  65. GrannemanS. PetfalskiE. SwiatkowskaA. TollerveyD. Cracking pre-40S ribosomal subunit structure by systematic analyses of RNA–protein cross-linking.EMBO J.201029122026203610.1038/emboj.2010.8620453830
    [Google Scholar]
  66. Landry-VoyerA.M. Mir HassaniZ. AvinoM. BachandF. Ribosomal protein uS5 and friends: Protein–protein interactions involved in ribosome assembly and beyond.Biomolecules202313585310.3390/biom1305085337238722
    [Google Scholar]
  67. KonikkatS. WoolfordJ.L.Jr Principles of 60S ribosomal subunit assembly emerging from recent studies in yeast.Biochem. J.2017474219521410.1042/BCJ2016051628062837
    [Google Scholar]
  68. GhaleiH. SchaubF.X. DohertyJ.R. NoguchiY. RoushW.R. ClevelandJ.L. StroupeM.E. KarbsteinK. Hrr25/CK1δ-directed release of LTV1 from pre-40S ribosomes is necessary for ribosome assembly and cell growth.J. Cell Biol.2015208674575910.1083/jcb.20140905625778921
    [Google Scholar]
  69. Ferreira-CercaS. KiburuI. ThomsonE. LaRondeN. HurtE. Dominant Rio1 kinase/ATPase catalytic mutant induces trapping of late pre-40S biogenesis factors in 80S-like ribosomes.Nucleic Acids Res.201442138635864710.1093/nar/gku54224948609
    [Google Scholar]
  70. ParkerM.D. CollinsJ.C. KoronaB. GhaleiH. KarbsteinK. A kinase-dependent checkpoint prevents escape of immature ribosomes into the translating pool.PLoS Biol.20191712e300032910.1371/journal.pbio.300032931834877
    [Google Scholar]
  71. WeisserM. BanN. Extensions, extra factors, and extreme complexity: Ribosomal structures provide insights into eukaryotic translation.Cold Spring Harb. Perspect. Biol.2019119a03236710.1101/cshperspect.a03236731481454
    [Google Scholar]
  72. McCaughanU.M. JayachandranU. ShchepachevV. ChenZ.A. RappsilberJ. TollerveyD. CookA.G. Pre-40S ribosome biogenesis factor TSR1 is an inactive structural mimic of translational GTPases.Nat. Commun.2016711178910.1038/ncomms1178927250689
    [Google Scholar]
  73. LebaronS. SchneiderC. van NuesR.W. SwiatkowskaA. WalshD. BöttcherB. GrannemanS. WatkinsN.J. TollerveyD. Proofreading of pre-40S ribosome maturation by a translation initiation factor and 60S subunits.Nat. Struct. Mol. Biol.201219874475310.1038/nsmb.230822751017
    [Google Scholar]
  74. García-GómezJ.J. Fernández-PevidaA. LebaronS. RosadoI.V. TollerveyD. KresslerD. de la CruzJ. Final pre-40S maturation depends on the functional integrity of the 60S subunit ribosomal protein L3.PLoS Genet.2014103e100420510.1371/journal.pgen.100420524603549
    [Google Scholar]
  75. RolfeM.D. RiceC.J. LucchiniS. PinC. ThompsonA. CameronA.D.S. AlstonM. StringerM.F. BettsR.P. BaranyiJ. PeckM.W. HintonJ.C.D. Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation.J. Bacteriol.2012194368670110.1128/JB.06112‑1122139505
    [Google Scholar]
  76. VanrobaysE. LeplusA. OsheimY.N. BeyerA.L. WacheulL. LafontaineD.L.J. TOR regulates the subcellular distribution of Dim2, a KH domain protein required for cotranscriptional ribosome assembly and pre-40S ribosome export.RNA200814102061207310.1261/rna.117670818755838
    [Google Scholar]
  77. ZhaoD. YangJ. YangL. Insights for oxidative stress and mTOR signaling in myocardial ischemia/reperfusion injury under diabetes.Oxid. Med. Cell. Longev.2017201711210.1155/2017/643746728298952
    [Google Scholar]
  78. WangX. WuT. HuY. MarcinkiewiczM. QiS. Valderrama-CarvajalH. LuoH. WuJ. PNO1 tissue-specific expression and its functions related to the immune responses and proteasome activities.PLoS One201279e4609310.1371/journal.pone.004609323029399
    [Google Scholar]
  79. VerkhratskyA. ParpuraV. Neurological and psychiatric disorders as a neuroglial failure.Period. Biol.2014116211512425544781
    [Google Scholar]
  80. ObengE.A. CarlsonL.M. GutmanD.M. HarringtonW.J.Jr LeeK.P. BoiseL.H. Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells.Blood2006107124907491610.1182/blood‑2005‑08‑353116507771
    [Google Scholar]
  81. TschochnerH. HurtE. Pre-ribosomes on the road from the nucleolus to the cytoplasm.Trends Cell Biol.200313525526310.1016/S0962‑8924(03)00054‑012742169
    [Google Scholar]
  82. RösslerI. WeiglS. Fernández-FernándezJ. Martín-VillanuevaS. StraussD. HurtE. de la CruzJ. PertschyB. The C-terminal tail of ribosomal protein Rps15 is engaged in cytoplasmic pre-40S maturation.RNA Biol.202219156057410.1080/15476286.2022.206407335438042
    [Google Scholar]
  83. PertschyB. SchneiderC. GnädigM. SchäferT. TollerveyD. HurtE. RNA helicase Prp43 and its co-factor Pfa1 promote 20 to 18S rRNA processing catalyzed by the endonuclease NOB1.J. Biol. Chem.200928450350793509110.1074/jbc.M109.04077419801658
    [Google Scholar]
  84. CampbellM.G. KarbsteinK. Protein-protein interactions within late pre-40S ribosomes.PLoS One201161e1619410.1371/journal.pone.001619421283762
    [Google Scholar]
  85. KoizumiS. HamazakiJ. MurataS. Transcriptional regulation of the 26S proteasome by Nrf1.Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci.201894832533610.2183/pjab.94.02130305478
    [Google Scholar]
  86. CatalanottoC. CogoniC. ZardoG. MicroRNA in control of gene expression: An overview of nuclear functions.Int. J. Mol. Sci.20161710171210.3390/ijms1710171227754357
    [Google Scholar]
  87. Akbari MoqadamF. Lange-TurenhoutE.A.M. AriësI.M. PietersR. den BoerM.L. MiR-125b, miR-100 and miR-99a co-regulate vincristine resistance in childhood acute lymphoblastic leukemia.Leuk. Res.201337101315132110.1016/j.leukres.2013.06.02723915977
    [Google Scholar]
  88. LinC.K.E. KapteinJ.S. SheikhJ. Differential expression of microRNAs and their possible roles in patients with chronic idiopathic urticaria and active hives.Allergy Rhinol. (Providence)201782ar.2017.8.019910.2500/ar.2017.8.019928583230
    [Google Scholar]
  89. DaiH. HouK. CaiZ. ZhouQ. ZhuS. Low-level miR-646 in colorectal cancer inhibits cell proliferation and migration by targeting NOB1 expression.Oncol. Lett.20171466708671410.3892/ol.2017.703229391877
    [Google Scholar]
  90. KeW. LuZ. ZhaoX. NOB1: A potential biomarker or target in cancer.Curr. Drug Targets201920101081108910.2174/138945012066619030814534630854959
    [Google Scholar]
  91. DongS. XueS. SunY. HanZ. SunL. XuJ. LiuJ. MicroRNA-363-3p downregulation in papillary thyroid cancer inhibits tumor progression by targeting NOB1.J. Investig. Med.2021691667410.1136/jim‑2020‑00156233077486
    [Google Scholar]
  92. ElhamamsyA.R. MetgeB.J. AlsheikhH.A. ShevdeL.A. SamantR.S. Ribosome biogenesis: A central player in cancer metastasis and therapeutic resistance.Cancer Res.202282132344235310.1158/0008‑5472.CAN‑21‑408735303060
    [Google Scholar]
  93. JiaoL. LiuY. YuX.Y. PanX. ZhangY. TuJ. SongY.H. LiY. Ribosome biogenesis in disease: New players and therapeutic targets.Signal Transduct. Target. Ther.2023811510.1038/s41392‑022‑01285‑436617563
    [Google Scholar]
  94. RawlaP. SunkaraT. BarsoukA. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors.Prz. Gastroenterol.20191428910310.5114/pg.2018.8107231616522
    [Google Scholar]
  95. LiX. HanY.R. XuefengX. MaY.X. XingG.S. YangZ.W. ZhangZ. ShiL. WuX.L. Lentivirus-mediated short hairpin RNA interference of CENPK inhibits growth of colorectal cancer cells with overexpression of Cullin 4A.World J. Gastroenterol.202228375420544310.3748/wjg.v28.i37.542036312839
    [Google Scholar]
  96. LiuL. ChenY. LinX. WuM. LiJ. XieQ. SferraT.J. HanY. LiuH. CaoL. YaoM. PengJ. ShenA. Upregulation of SNTB1 correlates with poor prognosis and promotes cell growth by negative regulating PKN2 in colorectal cancer.Cancer Cell Int.202121154734663329
    [Google Scholar]
  97. SaitoA. KamikawaY. ItoT. MatsuhisaK. KanekoM. OkamotoT. YoshimaruT. MatsushitaY. KatagiriT. ImaizumiK. p53-independent tumor suppression by cell-cycle arrest via CREB/ATF transcription factor OASIS.Cell Rep.202342511247910.1016/j.celrep.2023.11247937178686
    [Google Scholar]
  98. BangS. KaurS. KurokawaM. Regulation of the p53 family proteins by the ubiquitin proteasomal pathway.Int. J. Mol. Sci.201921126110.3390/ijms2101026131905981
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128301870240730071910
Loading
/content/journals/cpd/10.2174/0113816128301870240730071910
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): 40S subunit; NOB1; PNO1; ribosome maturation; Ribososme biogenesis; small subunit
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test