Skip to content
2000
Volume 30, Issue 35
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Introduction

Silver nanoparticles (AgNPs) have gained significance due to their practical use in the medicinal field, especially in the treatment of tumors and cancer. The current article explores a green synthetic method for the preparation of AgNPs using leaf extract of .

Methods

The synthesis was conducted at different parameters like concentration of AgNO, pH, salt concentration, temperature and time to optimize best results for their biochemical applications. It was validated through UV-V spectroscopy (400-450 nm) with 1:3 (concentration ratio of leaf ethanolic extract and 1 mM AgNO solution) at a pH value of 8 at 35°C, which were the best optimization conditions. The FTIR spectral bands showed the presence of C-N and OH functional groups, indicating that OH stretching and the aliphatic -C-H stretching were involved in the reduction of Ag ions. The XRD pattern showed the face-centered cubic structure of silver nanoparticles. The results of SEM revealed that AgNPs were predominantly spherical in shape, mono-dispersed, and arranged in scattered form. EDX analysis testified the presence of metallic silver along with other elements like Cl, C, and O.

Results

The investigation of biochemical parameters showed that AgNPs were influential in the discoloration of dye wastewater (methylene blue), where 80% of dye color was removed in 20 min, followed by the significant ( < 0.05) analgesic activity with an inhibition percentage of 86.45% at a dose of 500 mg/kg.

Conclusion

Similarly, the antioxidant activity with the highest percent inhibition was 55.4% ( < 0.0001), shown by the AgNPs at 500 µg/mL. AgNPs showed a 30 mm zone of inhibition at 100 µl/mL against It was concluded that AgNPs provide a baseline in medical technology for the treatment of simple to chronic diseases.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128319010240730115613
2024-08-08
2024-12-23
Loading full text...

Full text loading...

References

  1. SinghJ. DuttaT. KimK.H. RawatM. SamddarP. KumarP. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation.J. Nanobiotechnol20181618410.1186/s12951‑018‑0408‑4 30373622
    [Google Scholar]
  2. SaqibS. FaryadS. AfridiM.I. Bimetallic assembled silver nanoparticles impregnated in Aspergillus fumigatus extract damage the bacterial membrane surface and release cellular contents.Coatings20221210150510.3390/coatings12101505
    [Google Scholar]
  3. AlelwaniW. TajM.B. AlgheshairyR.M. Synthesis and potential of bio fabricated silver nanoparticles for use as functional material against foodborne pathogens.Chem Africa2022551527154310.1007/s42250‑022‑00402‑8
    [Google Scholar]
  4. SharmaV.K. YngardR.A. LinY. Silver nanoparticles: Green synthesis and their antimicrobial activities.Adv. Colloid Interface Sci.20091451-2839610.1016/j.cis.2008.09.002 18945421
    [Google Scholar]
  5. DanishM.S.S. Estrella-PajulasL.L. AlemaidaI.M. GrilliM.L. MikhaylovA. SenjyuT. Green synthesis of silver oxide nanoparticles for photocatalytic environmental remediation and biomedical applications.Metals (Basel)202212576910.3390/met12050769
    [Google Scholar]
  6. El-SeediH.R. El-ShabasyR.M. KhalifaS.A.M. Metal nanoparticles fabricated by green chemistry using natural extracts: Biosynthesis, mechanisms, and applications.RSC Advances2019942245392455910.1039/C9RA02225B 35527869
    [Google Scholar]
  7. AravindM. AhmadA. AhmadI. Critical green routing synthesis of silver NPs using jasmine flower extract for biological activities and photocatalytical degradation of methylene blue.J. Environ. Chem. Eng.20219110487710.1016/j.jece.2020.104877
    [Google Scholar]
  8. JavedB. RajaN.I. NadhmanA. MashwaniZ-R. Understanding the potential of bio-fabricated non-oxidative silver nanoparticles to eradicate Leishmania and plant bacterial pathogens.Appl. Nanosci.20201062057206710.1007/s13204‑020‑01355‑5
    [Google Scholar]
  9. AzmatR. AltafI. MoinS. AhmedW. AlrefaeiA.F. AliS. A study of photo-biological reactions under TiO2 nanoparticle accumulation in Spinacia oleracea.Pak. J. Bot.20235541359136410.30848/PJB2023‑4(25)
    [Google Scholar]
  10. MerkoçiA. Nanoparticles-based strategies for DNA, protein and cell sensors.Biosens. Bioelectron.20102641164117710.1016/j.bios.2010.07.028 20678915
    [Google Scholar]
  11. UllahH. UllahI. RehmanG. Magnesium and zinc oxide nanoparticles from datura alba improve cognitive impairment and blood brain barrier leakage.Molecules20222715475310.3390/molecules27154753 35897930
    [Google Scholar]
  12. BansalS.A. KumarV. KarimiJ. SinghA.P. KumarS. Role of gold nanoparticles in advanced biomedical applications.Nanoscale Adv.2020293764378710.1039/D0NA00472C 36132791
    [Google Scholar]
  13. KanniahP. RadhamaniJ. ChelliahP. Green synthesis of multifaceted silver nanoparticles using the flower extract of Aerva lanata and evaluation of its biological and environmental applications.ChemistrySelect2020572322233110.1002/slct.201903228
    [Google Scholar]
  14. ThakkarK.N. MhatreS.S. ParikhR.Y. Biological synthesis of metallic nanoparticles.Nanomedicine20106225726210.1016/j.nano.2009.07.002 19616126
    [Google Scholar]
  15. LinicS. AslamU. BoerigterC. MorabitoM. Photochemical transformations on plasmonic metal nanoparticles.Nat. Mater.201514656757610.1038/nmat4281 25990912
    [Google Scholar]
  16. YoonW.J. JungK-Y. LiuJ. Plasmon-enhanced optical absorption and photocurrent in organic bulk heterojunction photovoltaic devices using self-assembled layer of silver nanoparticles.Sol. Energy Mater. Sol. Cells201094212813210.1016/j.solmat.2009.08.006
    [Google Scholar]
  17. YangL. KuangH. ZhangW. AguilarZ.P. WeiH. XuH. Comparisons of the biodistribution and toxicological examinations after repeated intravenous administration of silver and gold nanoparticles in mice.Sci. Rep.201771330310.1038/s41598‑017‑03015‑1 28607366
    [Google Scholar]
  18. SathishkumarP. PreethiJ. VijayanR. Anti-acne, anti-dandruff and anti-breast cancer efficacy of green synthesised silver nanoparticles using Coriandrum sativum leaf extract.J. Photochem. Photobiol. B2016163697610.1016/j.jphotobiol.2016.08.005 27541567
    [Google Scholar]
  19. ArvizoR.R. BhattacharyyaS. KudgusR.A. GiriK. BhattacharyaR. MukherjeeP. Intrinsic therapeutic applications of noble metal nanoparticles: Past, present and future.Chem. Soc. Rev.20124172943297010.1039/c2cs15355f 22388295
    [Google Scholar]
  20. GanB.K. YongC.Y. HoK.L. OmarA.R. AlitheenN.B. TanW.S. Targeted delivery of cell penetrating peptide virus-like nanoparticles to skin cancer cells.Sci. Rep.201881849910.1038/s41598‑018‑26749‑y 29855618
    [Google Scholar]
  21. EomS. ChoiG. NakamuraH. ChoyJ-H. 2-Dimensional nanomaterials with imaging and diagnostic functions for nanomedicine; A review.Bull. Chem. Soc. Jpn.202093111210.1246/bcsj.20190270
    [Google Scholar]
  22. RahmanA. RehmanG. ShahN. Biosynthesis and characterization of silver nanoparticles using Tribulus terrestris seeds: Revealed promising antidiabetic potentials.Molecules20232810420310.3390/molecules28104203 37241943
    [Google Scholar]
  23. MinnichA.J. DresselhausM.S. RenZ.F. ChenG. Bulk nanostructured thermoelectric materials: Current research and future prospects.Energy Environ. Sci.20092546647910.1039/b822664b
    [Google Scholar]
  24. VargheseR.J. ZikalalaN. OluwafemiO.S. Green synthesis protocol on metal oxide nanoparticles using plant extracts. Colloidal metal oxide nanoparticles.AmsterdamElsevier2020678210.1016/B978‑0‑12‑813357‑6.00006‑1
    [Google Scholar]
  25. BehravanM. Hossein PanahiA. NaghizadehA. ZiaeeM. MahdaviR. MirzapourA. Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity.Int. J. Biol. Macromol.201912414815410.1016/j.ijbiomac.2018.11.101 30447360
    [Google Scholar]
  26. ParveenK. BanseV. LedwaniL. Green synthesis of nanoparticles: Their advantages and disadvantages.Open J Appl Sci202010494516810.1063/1.4945168
    [Google Scholar]
  27. PalithyaS. GaddamS.A. KotakadiV.S. Green synthesis of silver nanoparticles using flower extracts of Aerva lanata and their biomedical applications.Particul. Sci. Technol.2022401849610.1080/02726351.2021.1919259
    [Google Scholar]
  28. SamuggamS. ChinniS.V. MutusamyP. Green synthesis and characterization of silver nanoparticles using Spondias mombin extract and their antimicrobial activity against biofilm-producing bacteria.Molecules2021269268110.3390/molecules26092681 34063685
    [Google Scholar]
  29. SundeepD. Vijaya KumarT. RaoP.S.S. RavikumarR.V.S.S.N. Gopala KrishnaA. Green synthesis and characterization of Ag nanoparticles from Mangifera indica leaves for dental restoration and antibacterial applications.Prog. Biomater.201761-2576610.1007/s40204‑017‑0067‑9 28470622
    [Google Scholar]
  30. Qasim NasarM. ZohraT. KhalilA.T. Seripheidium quettense mediated green synthesis of biogenic silver nanoparticles and their theranostic applications.Green Chem. Lett. Rev.201912331032210.1080/17518253.2019.1643929
    [Google Scholar]
  31. RaoL. CaiB. BuL.L. Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy.ACS Nano20171143496350510.1021/acsnano.7b00133 28272874
    [Google Scholar]
  32. Murali KrishnaI. Bhagavanth ReddyG. VeerabhadramG. MadhusudhanA. Eco-friendly green synthesis of silver nanoparticles using salmalia malabarica: Synthesis, characterization, antimicrobial, and catalytic activity studies.Appl. Nanosci.20166568168910.1007/s13204‑015‑0479‑6
    [Google Scholar]
  33. CruzD. FaléP.L. MouratoA. VazP.D. Luisa SerralheiroM. LinoA.R.L. Preparation and physicochemical characterization of Ag nanoparticles biosynthesized by Lippia citriodora (Lemon Verbena).Colloids Surf. B Biointerfaces2010811677310.1016/j.colsurfb.2010.06.025 20655710
    [Google Scholar]
  34. CorciovaA. IvanescuB. Biosynthesis, characterisation and therapeutic applications of plant-mediated silver nanoparticles.J. Serb. Chem. Soc.201883551553810.2298/JSC170731021C
    [Google Scholar]
  35. YasminS. NourenS. BhattiH.N. Green synthesis, characterization and photocatalytic applications of silver nanoparticles using Diospyros lotus.Green Process Synth202091879610.1515/gps‑2020‑0010
    [Google Scholar]
  36. AziziS. Mahdavi ShahriM. RahmanH. Abdul RahimR. RasedeeA. MohamadR. Green synthesis palladium nanoparticles mediated by white tea (Camellia sinensis) extract with antioxidant, antibacterial, and antiproliferative activities toward the human leukemia (MOLT-4) cell line [Retraction]..Int. J. Nanomed2022171227122810.2147/IJN.S366532 35330696
    [Google Scholar]
  37. BhakyaS. MuthukrishnanS. SukumaranM. MuthukumarM. Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity.Appl. Nanosci.20166575576610.1007/s13204‑015‑0473‑z
    [Google Scholar]
  38. KeshariA. Fabrication and characterization of biosynthesized silver nanoparticles using cymbopogon citratus and evaluation of its antioxidant, free radicals and reducing power activity.Nanomed Res J202052132142
    [Google Scholar]
  39. YugandharP. SavithrammaN. Biosynthesis, characterization and antimicrobial studies of green synthesized silver nanoparticles from fruit extract of Syzygium alternifolium (Wt.) Walp. an endemic, endangered medicinal tree taxon.Appl. Nanosci.20166222323310.1007/s13204‑015‑0428‑4
    [Google Scholar]
  40. VanajaM. PaulkumarK. BaburajaM. Degradation of methylene blue using biologically synthesized silver nanoparticles.Bioinorg. Chem. Appl.2014201411810.1155/2014/742346 24772055
    [Google Scholar]
  41. HayatK. KhanA. BibiF. Effect of cadmium and copper exposure on growth, physio-Chemicals and medicinal properties of Cajanus cajan L. (Pigeon pea).Metabolites2021111176910.3390/metabo11110769 34822427
    [Google Scholar]
  42. LiaqatN. JahanN. Khalil-ur-Rahman, Anwar T, Qureshi H. Green synthesized silver nanoparticles: Optimization, characterization, antimicrobial activity, and cytotoxicity study by hemolysis assay.Front Chem.20221095200610.3389/fchem.2022.952006 36105303
    [Google Scholar]
  43. GavamukulyaY. MainaE.N. MerokaA.M. Green synthesis and characterization of highly stable silver nanoparticles from ethanolic extracts of fruits of Annona muricata.J. Inorg. Organomet. Polym. Mater.20203041231124210.1007/s10904‑019‑01262‑5
    [Google Scholar]
  44. BegumH.A. Antifungal activity of six medicinal plants of Pakistan against selected fungi.Bangladesh J. Botany.202150244144310.3329/bjb.v50i2.54105
    [Google Scholar]
  45. LathaD. ArulvasuC.D. PrabuP.D. NarayananV.D. Photocatalytic activity of biosynthesized silver nanoparticle from leaf extract of Justicia adhatoda.Mech Mater Sci Eng J (NY)201791
    [Google Scholar]
  46. RaviS.S. ChristenaL.R. SaiSubramanian N, Anthony SP. Green synthesized silver nanoparticles for selective colorimetric sensing of Hg2+ in aqueous solution at wide pH range.Analyst (Lond.)2013138154370437710.1039/c3an00320e 23741735
    [Google Scholar]
  47. VijayarajV. LinéC. CadarsiS. Transfer and ecotoxicity of titanium dioxide nanoparticles in terrestrial and aquatic ecosystems: A microcosm study.Environ. Sci. Technol.20185221127571276410.1021/acs.est.8b02970 30335981
    [Google Scholar]
  48. KrishnadhasL. SanthiR. AnnapuraniS. Green synthesis of silver nanoparticles from the leaf extract of Volkameria inermis.Int J Pharmaceut Clin Res20179861061610.25258/ijpcr.v9i08.9587
    [Google Scholar]
  49. Perea VélezY.S. Carrillo-GonzálezR. González-ChávezM.C.A. Interaction of metal nanoparticles-plants-microorganisms in agriculture and soil remediation.J. Nanopart. Res.202123920610.1007/s11051‑021‑05269‑3
    [Google Scholar]
  50. JahanI. ErciF. IsildakI. Rapid green synthesis of non-cytotoxic silver nanoparticles using aqueous extracts of ‘Golden Delicious’ apple pulp and cumin seeds with antibacterial and antioxidant activity.SN Appl Sci2021319410.1007/s42452‑020‑04046‑6
    [Google Scholar]
  51. ZadaA. KhanM. QureshiM.N. LiuS. WangR. Accelerating photocatalytic hydrogen production and pollutant degradation by functionalizing g-C3N4 with SnO2.Front Chem.2020794110.3389/fchem.2019.00941 32133336
    [Google Scholar]
  52. RaufA. AhmadT. KhanA. Green synthesis and biomedicinal applications of silver and gold nanoparticles functionalized with methanolic extract of Mentha longifolia.Artif. Cells Nanomed. Biotechnol.202149119420310.1080/21691401.2021.1890099 33629627
    [Google Scholar]
  53. ChiguvareH. OyedejiO. MatewuR. Synthesis of silver nanoparticles using Buchu plant extracts and their analgesic properties.Molecules201621677410.3390/molecules21060774 27314316
    [Google Scholar]
  54. RavichandranV. VasanthiS. ShaliniS. Ali ShahS.A. HarishR. Green synthesis of silver nanoparticles using Atrocarpus altilis leaf extract and the study of their antimicrobial and antioxidant activity.Mater. Lett.201618026426710.1016/j.matlet.2016.05.172
    [Google Scholar]
  55. KumarB. SmitaK. Aqueous phase lavender leaf mediated green synthesis of gold nanoparticles and evaluation of its antioxidant activity.Biol. Med. (Aligarh)201683110.4172/0974‑8369.1000290
    [Google Scholar]
  56. NguyenD.H. VoT.N.N. LeN.T.T. ThiD.P.N. ThiT.T.H. Evaluation of saponin-rich/poor leaf extract-mediated silver nanoparticles and their antifungal capacity.Green Process Synth20209142943910.1515/gps‑2020‑0044
    [Google Scholar]
  57. Al-ZahraniS.S. Al-GarniS.M. Biosynthesis of silver nanoparticles from Allium ampeloprasum leaves extract and its antifungal activity.J. Biomater. Nanobiotechnol.2019101112510.4236/jbnb.2019.101002
    [Google Scholar]
  58. VorobyovaV. Synthesis of silver nanoparticles using ionic liquid solvent-based Grape Pomace extracts. Nanoelectronics, Nanooptics, Nanochemistry and Nanobiotechnology, and Their Applications.ChamSpringer2022
    [Google Scholar]
  59. CittrarasuV. BalasubramanianB. KaliannanD. Biological mediated Ag nanoparticles from Barleria longiflora for antimicrobial activity and photocatalytic degradation using methylene blue.Artif. Cells Nanomed. Biotechnol.20194712424243010.1080/21691401.2019.1626407 31187650
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128319010240730115613
Loading
/content/journals/cpd/10.2174/0113816128319010240730115613
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): biomedical applications; Euphorbia royleana; Nanotechnology; SEM; silver nanoparticles; XRD
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test