Skip to content
2000
Volume 30, Issue 35
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Introduction

As cancer therapy progresses, challenges remain due to the inherent drawbacks 
of conventional treatments such as chemotherapy, gene therapy, radiation therapy, and surgical removal. Moreover, due to their associated side effects, conventional treatments affect both cancerous and normal cells, making photodynamic therapy (PDT) an attractive alternative.

Methods

As a result of its minimal toxicity, exceptional specificity, and non-invasive characteristics, 
PDT represents an innovative and highly promising cancer treatment strategy using photosensitizers (PSs) and precise wavelength excitation light to introduce reactive oxygen species (ROS) in the vicinity of cancer cells.

Results

Poor aqueous solubility and decreased sensitivity of Rhodamine 6G (R6G) prevent its use as a photosensitizer in PDT, necessitating the development of oxidized sodium alginate (OSA) hydrogelated nanocarriers to enhance its bioavailability, targeted distribution, and ROS-quantum yield. The ROS quantum yield increased from 0.30 in an aqueous environment to 0.51 when using alginate-based formulations, and it was further enhanced to 0.81 in the case of OSA.

Conclusion

Furthermore, the nanoformulations produced fluorescent signals suitable for use as cellular 
imaging agents, demonstrating contrast-enhancing capabilities in medical imaging and showing minimal toxicity.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128307606240722072006
2024-08-06
2024-12-23
Loading full text...

Full text loading...

References

  1. TousianB. KhosraviA.R. Chitosan-based pulmonary particulate systems for anticancer and antiviral drug carriers: A promising delivery for COVID-19 vaccines.Results Chem2023610114610.1016/j.rechem.2023.101146
    [Google Scholar]
  2. DuanC. YuM. XuJ. LiB.Y. ZhaoY. KankalaR.K. Overcoming cancer multi-drug resistance (MDR): Reasons, mechanisms, nanotherapeutic solutions, and challenges.Biomed. Pharmacother.202316211464310.1016/j.biopha.2023.114643 37031496
    [Google Scholar]
  3. VedakumariS.W. SenthilR. SekarS. BabuC.S. SastryT.P. Enhancing anti-cancer activity of erlotinib by antibody conjugated nanofibrin - In vitro studies on lung adenocarcinoma cell lines.Mater. Chem. Phys.201922432833310.1016/j.matchemphys.2018.11.061
    [Google Scholar]
  4. GowthamP. GirigoswamiK. PallaviP. HariniK. GurubharathI. GirigoswamiA. Alginate-derivative encapsulated carbon coated manganese-ferrite nanodots for multimodal medical imaging.Pharmaceutics20221412255010.3390/pharmaceutics14122550 36559045
    [Google Scholar]
  5. MuralikumarM. Manoj JainS. GanesanH. DuttaroyA.K. PathakS. BanerjeeA. Current understanding of the mesenchymal stem cell-derived exosomes in cancer and aging.Biotechnol. Rep.202131e0065810.1016/j.btre.2021.e00658 34377681
    [Google Scholar]
  6. ThirumalaiA. GirigoswamiK. PallaviP. HariniK. GowthamP. GirigoswamiA. Cancer therapy with iRGD as a tumor-penetrating peptide.Bull. Cancer2023110121288130010.1016/j.bulcan.2023.08.009 37813754
    [Google Scholar]
  7. MengR.Y. ZhaoY. XiaH.Y. WangS.B. ChenA.Z. KankalaR.K. 2D architectures-transformed conformational nanoarchitectonics for light-augmented nanocatalytic chemodynamic and photothermal/photodynamic-based trimodal therapies.ACS Mater Lett2024641160117710.1021/acsmaterialslett.3c01615
    [Google Scholar]
  8. XiaH.Y. LiB.Y. YeY.T. WangS.B. ChenA.Z. KankalaR.K. Transition metal oxide‐decorated mxenes as drugless nanoarchitectonics for enriched nanocatalytic chemodynamic treatment.Adv. Healthc. Mater.20241310230358210.1002/adhm.202303582 38160261
    [Google Scholar]
  9. Mfouo-TyngaI.S. DiasL.D. InadaN.M. KurachiC. Features of third generation photosensitizers used in anticancer photodynamic therapy: Review.Photodiagn. Photodyn. Ther.20213410209110.1016/j.pdpdt.2020.102091 33453423
    [Google Scholar]
  10. PallaviP. HariniK. CrowderS. Rhodamine-conjugated anti-stokes gold nanoparticles with higher ROS quantum yield as theranostic probe to arrest cancer and MDR bacteria.Appl. Biochem. Biotechnol.2023195116979699310.1007/s12010‑023‑04475‑0 36976503
    [Google Scholar]
  11. LanM. ZhaoS. LiuW. LeeC.S. ZhangW. WangP. Photosensitizers for photodynamic therapy.Adv. Healthc. Mater.2019813190013210.1002/adhm.201900132 31067008
    [Google Scholar]
  12. YaoQ. FanJ. LongS. The concept and examples of type-III photosensitizers for cancer photodynamic therapy.Chem20228119720910.1016/j.chempr.2021.10.006
    [Google Scholar]
  13. ChenD. XuQ. WangW. ShaoJ. HuangW. DongX. Type I photosensitizers revitalizing photodynamic oncotherapy.Small20211731200674210.1002/smll.202006742 34038611
    [Google Scholar]
  14. YuY. WuS. ZhangL. Cationization to boost both type I and type II ROS generation for photodynamic therapy.Biomaterials202228012125510.1016/j.biomaterials.2021.121255 34810034
    [Google Scholar]
  15. QidwaiA Annu NabiB Role of nanocarriers in photodynamic therapy.Photodiagn. Photodyn. Ther.20203010178210.1016/j.pdpdt.2020.101782 32330611
    [Google Scholar]
  16. WangY.Y. LiuY.C. SunH. GuoD.S. Type I photodynamic therapy by organic–inorganic hybrid materials: From strategies to applications.Coord. Chem. Rev.2019395466210.1016/j.ccr.2019.05.016
    [Google Scholar]
  17. PallaviP. HariniK. ElboughdiriN. GowthamP. GirigoswamiK. GirigoswamiA. Infections associated with SARS-CoV-2 exploited via nanoformulated photodynamic therapy.ADMET DMPK202311451353110.5599/admet.1883 37937246
    [Google Scholar]
  18. WysockiM. Czarczynska-GoslinskaB. ZientalD. MichalakM. GüzelE. SobottaL. Excited state and reactive oxygen species against cancer and pathogens: A review on sonodynamic and sono‐photodynamic therapy.ChemMedChem20221713e20220018510.1002/cmdc.202200185 35507015
    [Google Scholar]
  19. PangE. ZhaoS. WangB. NiuG. SongX. LanM. Strategies to construct efficient singlet oxygen-generating photosensitizers.Coord. Chem. Rev.202247221478010.1016/j.ccr.2022.214780
    [Google Scholar]
  20. Garcia-DiazM. HuangY.Y. HamblinM.R. Use of fluorescent probes for ROS to tease apart Type I and Type II photochemical pathways in photodynamic therapy.Methods201610915816610.1016/j.ymeth.2016.06.025 27374076
    [Google Scholar]
  21. ImranM. ZhangX. WangZ. Electron spin dynamics in excited state photochemistry: Recent development in the study of intersystem crossing and charge transfer in organic compounds.Phys. Chem. Chem. Phys.20212330158351586810.1039/D1CP01937F 34318823
    [Google Scholar]
  22. AnasA. SobhananJ. SulfiyaK.M. JasminC. SreelakshmiP.K. BijuV. Advances in photodynamic antimicrobial chemotherapy.J. Photochem. Photobiol. Photochem. Rev.20214910045210.1016/j.jphotochemrev.2021.100452
    [Google Scholar]
  23. VergerA. BrandhonneurN. MolardY. From molecules to nanovectors: Current state of the art and applications of photosensitizers in photodynamic therapy.Int. J. Pharm.202160412076310.1016/j.ijpharm.2021.120763 34098054
    [Google Scholar]
  24. BaptistaM.S. CadetJ. GreerA. ThomasA.H. Photosensitization reactions of biomolecules: Definition, targets and mechanisms.Photochem. Photobiol.20219761456148310.1111/php.13470 34133762
    [Google Scholar]
  25. CaloriI.R. BiH. TedescoA.C. Expanding the limits of photodynamic therapy: The design of organelles and hypoxia-targeting nanomaterials for enhanced photokilling of cancer.ACS Appl. Bio Mater.20214119522810.1021/acsabm.0c00945 35014281
    [Google Scholar]
  26. SowaA. VoskuhlJ. Host-guest complexes – Boosting the performance of photosensitizers.Int. J. Pharm.202058611959510.1016/j.ijpharm.2020.119595 32629069
    [Google Scholar]
  27. GirigoswamiA. PallaviP. SharmiladeviP. HaribabuV. GirigoswamiK. A nano approach to formulate photosensitizers for photodynamic therapy.Curr. Nanosci.202218667568910.2174/1573413718666211222162041
    [Google Scholar]
  28. ZhouZ. NiK. DengH. ChenX. Dancing with reactive oxygen species generation and elimination in nanotheranostics for disease treatment.Adv. Drug Deliv. Rev.2020158739010.1016/j.addr.2020.06.006 32526453
    [Google Scholar]
  29. CoutoG.K. SeixasF.K. IglesiasB.A. CollaresT. Perspectives of photodynamic therapy in biotechnology.J. Photochem. Photobiol. B202021311205110.1016/j.jphotobiol.2020.112051 33074140
    [Google Scholar]
  30. KubrakT. KarakułaM. CzopM. Kawczyk-KrupkaA. AebisherD. Advances in management of bladder cancer-the role of photodynamic therapy.Molecules202227373110.3390/molecules27030731 35163996
    [Google Scholar]
  31. ChenJ. FanT. XieZ. Advances in nanomaterials for photodynamic therapy applications: Status and challenges.Biomaterials202023711982710.1016/j.biomaterials.2020.119827 32036302
    [Google Scholar]
  32. HuJ.J. LeiQ. ZhangX.Z. Recent advances in photonanomedicines for enhanced cancer photodynamic therapy.Prog. Mater. Sci.202011410068510.1016/j.pmatsci.2020.100685
    [Google Scholar]
  33. Jiménez-MancillaN.P. Aranda-LaraL. Morales-ÁvilaE. Electron transfer reactions in Rhodamine: Potential use in photodynamic therapy.J. Photochem. Photobiol. Chem.202140911313110.1016/j.jphotochem.2021.113131
    [Google Scholar]
  34. Araya-HermosillaE. MuñozD. OrellanaS. Immobilization of Rhodamine 6G in calcium alginate microcapsules based] on aromatic-aromatic interactions with poly(sodium 4-styrenesulfonate).React. Funct. Polym.201481142110.1016/j.reactfunctpolym.2014.03.017
    [Google Scholar]
  35. LvW. SongY. GuoR. LiuN. MoZ. Metal-organic frame material encapsulated Rhodamine 6G: A highly sensitive fluorescence sensing platform for the detection of picric acid contaminants in water.Spectrochim. Acta A Mol. Biomol. Spectrosc.202431612435510.1016/j.saa.2024.124355 38701575
    [Google Scholar]
  36. NesterovP.V. ShilovskikhV.V. SokolovA.D. Encapsulation of rhodamine 6G dye molecules for affecting symmetry of supramolecular crystals of melamine-barbiturate.Symmetry2021137111910.3390/sym13071119
    [Google Scholar]
  37. LiC. FengX. YangS. XuH. YinX. YuY. Capture, detection, and simultaneous identification of rare circulating tumor cells based on a Rhodamine 6G-loaded metal-organic framework.ACS Appl. Mater. Interfaces20211344524065241610.1021/acsami.1c15838 34709779
    [Google Scholar]
  38. MakovecD. ČampeljS. BeleM. Nanocomposites containing embedded superparamagnetic iron oxide nanoparticles and Rhodamine 6G.Colloids Surf. A Physicochem. Eng. Asp.20093341-3747910.1016/j.colsurfa.2008.10.006
    [Google Scholar]
  39. CalixtoG.M.F. de AnnunzioS.R. VictorelliF.D. Chitosan-based drug delivery systems for optimization of photodynamic therapy: A review.AAPS PharmSciTech201920725310.1208/s12249‑019‑1407‑y 31309346
    [Google Scholar]
  40. XieJ. WangY. ChoiW. Overcoming barriers in photodynamic therapy harnessing nano-formulation strategies.Chem. Soc. Rev.202150169152920110.1039/D0CS01370F 34223847
    [Google Scholar]
  41. GirigoswamiK. GirigoswamiA. Encapsulation of beta-lactam antibiotic amoxicillin in chitosan-alginate nanohydrogels to improve antibacterial efficacy.J. Nanomed. Res.202384335344
    [Google Scholar]
  42. PsS.S. GuhaA. DeepikaB. Nanocargos designed with synthetic and natural polymers for ovarian cancer management.Naunyn Schmiedebergs Arch. Pharmacol.2023396123407341510.1007/s00210‑023‑02608‑0 37421430
    [Google Scholar]
  43. YaoB. HuT. CuiX. SongW. FuX. HuangS. Enzymatically degradable alginate/gelatin bioink promotes cellular behavior and degradation in vitro and in vivo. Biofabrication201911404502010.1088/1758‑5090/ab38ef 31387086
    [Google Scholar]
  44. VolpattiL.R. BochenekM.A. FacklamA.L. Partially oxidized alginate as a biodegradable carrier for glucose‐responsive insulin delivery and islet cell replacement therapy.Adv. Healthc. Mater.2023122220182210.1002/adhm.202201822 36325648
    [Google Scholar]
  45. XuY. LiL. YuX. GuZ. ZhangX. Feasibility study of a novel crosslinking reagent (alginate dialdehyde) for biological tissue fixation.Carbohydr. Polym.20128721589159510.1016/j.carbpol.2011.09.059
    [Google Scholar]
  46. GhanbariM. Salavati-NiasariM. MohandesF. FirouziZ. MousaviS.D. The impact of zirconium oxide nanoparticles content on alginate dialdehyde-gelatin scaffolds in cartilage tissue engineering.J. Mol. Liq.202133511653110.1016/j.molliq.2021.116531
    [Google Scholar]
  47. SalemD.M.S.A. SallamM.A.E. YoussefT.N.M.A. Synthesis of compounds having antimicrobial activity from alginate.Bioorg. Chem.20198710311110.1016/j.bioorg.2019.03.013 30878809
    [Google Scholar]
  48. GowthamP. GirigoswamiK. PrabhuA.D. PallaviP. ThirumalaiA. HariniK. Hydrogels of alginate derivative-encased nanodots] featuring carbon-coated manganese ferrite cores with gold shells to offer antiangiogenesis with multimodal imaging-based theranostics.Adv. Ther.202476240005410.1002/adtp.202400054
    [Google Scholar]
  49. WangW. HuangW.C. ZhengJ. XueC. MaoX. Preparation and comparison of dialdehyde derivatives of polysaccharides as cross-linking agents.Int. J. Biol. Macromol.202323612391310.1016/j.ijbiomac.2023.123913 36868335
    [Google Scholar]
  50. Abou-ZeidR.E. AwwadN.S. NabilS. SalamaA. YoussefM.A. Oxidized alginate/gelatin decorated silver nanoparticles as new nanocomposite for dye adsorption.Int. J. Biol. Macromol.20191411280128610.1016/j.ijbiomac.2019.09.076 31518618
    [Google Scholar]
  51. YouF. WuX. KellyM. ChenX. Bioprinting and in vitro characterization of alginate dialdehyde–gelatin hydrogel bio-ink.Biodes. Manuf.202031485910.1007/s42242‑020‑00058‑8
    [Google Scholar]
  52. VimaladeviM. DivyaK.C. GirigoswamiA. Liposomal nanoformulations of Rhodamine for targeted photodynamic inactivation of multidrug resistant gram negative bacteria in sewage treatment plant.J. Photochem. Photobiol. B201616214615210.1016/j.jphotobiol.2016.06.034 27371913
    [Google Scholar]
  53. ShurfaM.K. GirigoswamiA. Sakthi DeviR. Combinatorial effect of doxorubicin entrapped in alginate-chitosan hybrid polymer and cerium oxide nanocomposites on skin cancer management in mice.J. Pharm. Sci.2023112112891290010.1016/j.xphs.2023.08.014 37611665
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128307606240722072006
Loading
/content/journals/cpd/10.2174/0113816128307606240722072006
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test