Skip to content
2000
Volume 30, Issue 38
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

The beneficial effects of nicotinamide mononucleotide (NMN) on heart disease have been reported, but the effects of NMN on high-fat diet-induced hypertrophic cardiomyopathy (HCM) and its mechanisms of action are unclear. In this study, we systematically explored the effects and mechanism of action of NMN in HCM using network pharmacology and molecular docking.

Methods

Active targets of NMN were obtained from SWISS, CNKI, PubMed, DrugBank, BingingDB, and ZINC databases. HCM-related targets were retrieved from GEO datasets combined with GeneCards, OMIM, PharmGKB, and DisGeNET databases. A Protein-protein Interaction (PPI) network was built to screen the core targets. DAVID was used for GO and KEGG pathway enrichment analyses. The tissue and organ distribution of targets was evaluated. Interactions between potential targets and active compounds were assessed by molecular docking. A molecular dynamics simulation was conducted for the optimal core protein-compound complexes obtained by molecular docking.

Results

In total, 265 active targets of NMN and 3918 potential targets of HCM were identified. A topological analysis of the PPI network revealed 10 core targets. GO and KEGG pathway enrichment analyses indicated that the effects of NMN were mediated by genes related to inflammation, apoptosis, and oxidative stress, as well as the FOXO and PI3K-Akt signaling pathways. Molecular docking and molecular dynamics simulations revealed good binding ability between the active compounds and screened targets.

Conclusion

The possible targets and pathways of NMN in the treatment of HCM have been successfully predicted by this investigation. It provides a novel approach for further investigation into the molecular processes of NMN in HCM treatment.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128311226240730080713
2024-11-01
2025-01-10
Loading full text...

Full text loading...

References

  1. AshourM.M. MabroukM. AboelnasrM.A. BehereiH.H. TohamyK.M. DasD.B. Anti-obesity drug delivery systems: Recent progress and challenges.Pharmaceutics20231511263510.3390/pharmaceutics15112635 38004612
    [Google Scholar]
  2. RellingD.P. EsbergL.B. FangC.X. High-fat diet-induced juvenile obesity leads to cardiomyocyte dysfunction and upregulation of FOXO3a transcription factor independent of lipotoxicity and apoptosis.J. Hypertens.200624354956110.1097/01.hjh.0000203846.34314.94 16467659
    [Google Scholar]
  3. SparksL.M. XieH. KozaR.A. A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle.Diabetes20055471926193310.2337/diabetes.54.7.1926 15983191
    [Google Scholar]
  4. MaronB.J. MaronM.S. Hypertrophic cardiomyopathy.Lancet2013381986224225510.1016/S0140‑6736(12)60397‑3 22874472
    [Google Scholar]
  5. FangC.X. DongF. ThomasD.P. MaH. HeL. RenJ. Hypertrophic cardiomyopathy in high-fat diet-induced obesity: Role of suppression of forkhead transcription factor and atrophy gene transcription.Am. J. Physiol. Heart Circ. Physiol.20082953H1206H121510.1152/ajpheart.00319.2008 18641278
    [Google Scholar]
  6. LiuY. GongJ.S. MarshallG. SuC. ShiJ.S. XuZ.H. Technology and functional insights into the nicotinamide mononucleotide for human health.Appl. Microbiol. Biotechnol.2023107154759477510.1007/s00253‑023‑12612‑2 37347262
    [Google Scholar]
  7. NakajoT. KitajimaN. KatayoshiT. Tsuji-NaitoK. Nicotinamide mononucleotide inhibits oxidative stress-induced damage in a SIRT1/NQO-1-dependent manner.Toxicol. In Vitro20239310568310.1016/j.tiv.2023.105683 37640247
    [Google Scholar]
  8. SanoH. KratzA. NishinoT. Nicotinamide mononucleotide (NMN) alleviates the poly(I:C)-induced inflammatory response in human primary cell cultures.Sci. Rep.20231311176510.1038/s41598‑023‑38762‑x 37474783
    [Google Scholar]
  9. TannousC. GhaliR. KarouiA. Nicotinamide riboside supplementation restores myocardial nicotinamide adenine dinucleotide levels, improves survival, and promotes protective environment post myocardial infarction. Cardiovasc. Drugs Ther.202310.1007/s10557‑023‑07525‑1 37999834Online ahead of print
    [Google Scholar]
  10. Saima LathaS. SharmaR. KumarA. Role of network pharmacology in prediction of mechanism of neuroprotective compounds.Methods Mol. Biol.2024276115917910.1007/978‑1‑0716‑3662‑6_13 38427237
    [Google Scholar]
  11. LuoT. LuY. YanS. XiaoX. RongX. GuoJ. Network pharmacology in research of chinese medicine formula: Methodology, application and prospective.Chin. J. Integr. Med.2020261728010.1007/s11655‑019‑3064‑0 30941682
    [Google Scholar]
  12. GevaertO. VillalobosV. SikicB.I. PlevritisS.K. Identification of ovarian cancer driver genes by using module network integration of multi-omics data.Interface Focus2013342013001310.1098/rsfs.2013.0013 24511378
    [Google Scholar]
  13. BarrettT. WilhiteS.E. LedouxP. NCBI GEO: Archive for functional genomics data sets-update.Nucleic Acids Res.201341Database issueD991D995 23193258
    [Google Scholar]
  14. GuS. XueY. GaoY. Mechanisms of indigo naturalis on treating ulcerative colitis explored by GEO gene chips combined with network pharmacology and molecular docking.Sci. Rep.20201011520410.1038/s41598‑020‑71030‑w 32938944
    [Google Scholar]
  15. RebhanM. Chalifa-CaspiV. PriluskyJ. LancetD. GeneCards: Integrating information about genes, proteins and diseases.Trends Genet.199713416310.1016/S0168‑9525(97)01103‑7 9097728
    [Google Scholar]
  16. KarimM.R. MorshedM.N. IqbalS. A network pharmacology and molecular-docking-based approach to identify the probable targets of short-chain fatty-acid-producing microbial metabolites against kidney cancer and inflammation.Biomolecules20231311167810.3390/biom13111678 38002360
    [Google Scholar]
  17. ZhouR. ZhaoZ. LiuJ. LiuM. XieF. Efficacy and safety of iloprost in the treatment of pulmonary arterial hypertension: A systematic review and meta-analysis.Heart Lung202464364510.1016/j.hrtlng.2023.11.006 37992575
    [Google Scholar]
  18. MarcusB. MarynenF. FieuwsS. Van BeerselD. RegaF. RexS. The perioperative use of inhaled prostacyclins in cardiac surgery: A systematic review and meta-analysis.Can. J. Anaesth.20237081381139310.1007/s12630‑023‑02520‑4 37380903
    [Google Scholar]
  19. BakhshT. AbuzahrahS.S. QahlS.H. AkelaM.A. RatherI.A. Sugiol masters apoptotic precision to halt gastric cancer cell proliferation.Pharmaceuticals20231611152810.3390/ph16111528 38004394
    [Google Scholar]
  20. WangY. LiX. DouP. QiaoT. ChangY. Antiepileptic therapy of Abrus cantoniensis: Evidence from network pharmacology.Evid. Based Complement. Alternat. Med.2022202211210.1155/2022/7748787 35707480
    [Google Scholar]
  21. SzklarczykD. MorrisJ.H. CookH. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible.Nucleic Acids Res.201745D1D362D36810.1093/nar/gkw937 27924014
    [Google Scholar]
  22. WaheedA. RaiM.F. Osteoarthritis year in review 2023: Genetics, genomics, and epigenetics.Osteoarthritis Cartilage202432212813710.1016/j.joca.2023.11.006 37979669
    [Google Scholar]
  23. ShannonP. MarkielA. OzierO. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.1239303 14597658
    [Google Scholar]
  24. LoganathanY. JainM. ThiyagarajanS. An in silico evaluation of phytocompounds from Albizia amara and Phyla nodiflora as cyclooxygenase-2 enzyme inhibitors.Daru202129231132010.1007/s40199‑021‑00408‑6 34415547
    [Google Scholar]
  25. ShermanB.T. HuangD.W. TanQ. DAVID Knowledgebase: A gene-centered database integrating heterogeneous gene annotation resources to facilitate high-throughput gene functional analysis.BMC Bioinformatics20078142610.1186/1471‑2105‑8‑426 17980028
    [Google Scholar]
  26. AzmiM.B. JawedA. AhmedS.D.H. Understanding the impact of structural modifications at the NNAT gene’s post-translational acetylation site: In silico approach for predicting its drug-interaction role in anorexia nervosa.Eat. Weight Disord.20232819710.1007/s40519‑023‑01618‑4 37987927
    [Google Scholar]
  27. AzzopardiJ.G. EvansD.J. KrauszT. Endocrine differentiation in breast tumours.Histopathology198610777377410.1111/j.1365‑2559.1986.tb02535.x 3744310
    [Google Scholar]
  28. ArgiròA. ZampieriM. MarchiA. Therapeutic approaches in hypertrophic cardiomyopathy: From symptom relief to precision therapy.G. Ital. Cardiol. (Rome)20232410792799 37767831
    [Google Scholar]
  29. YagiM. DoY. HiraiH. Improving lysosomal ferroptosis with NMN administration protects against heart failure.Life Sci. Alliance2023612e20230211610.26508/lsa.202302116 37793777
    [Google Scholar]
  30. TuncayE. GandoI. HuoJ.Y. The cardioprotective role of sirtuins is mediated in part by regulating KATP channel surface expression.Am. J. Physiol. Cell Physiol.20233245C1017C102710.1152/ajpcell.00459.2022 36878847
    [Google Scholar]
  31. ZhangY. ZhuW. WangM. XiP. WangH. TianD. Nicotinamide mononucleotide alters body composition and ameliorates metabolic disorders induced by a high‐fat diet.IUBMB Life202375654856210.1002/iub.2707 36785893
    [Google Scholar]
  32. YiJ.S. PerlaS. EnyenihiL. BennettA.M. Tyrosyl phosphorylation of PZR promotes hypertrophic cardiomyopathy in PTPN11-associated Noonan syndrome with multiple lentigines.JCI Insight2020515e13775310.1172/jci.insight.137753 32584792
    [Google Scholar]
  33. XuM. BermeaK.C. AyatiM. Alteration in tyrosine phosphorylation of cardiac proteome and EGFR pathway contribute to hypertrophic cardiomyopathy.Commun. Biol.202251125110.1038/s42003‑022‑04021‑4 36380187
    [Google Scholar]
  34. Schulze-BergkamenH. BrennerD. KruegerA. Hepatocyte growth factor induces Mcl-1 in primary human hepatocytes and inhibits CD95-mediated apoptosis via Akt.Hepatology200439364565410.1002/hep.20138 14999683
    [Google Scholar]
  35. FrumanD.A. MeyersR.E. CantleyL.C. Phosphoinositide kinases.Annu. Rev. Biochem.199867148150710.1146/annurev.biochem.67.1.481 9759495
    [Google Scholar]
  36. AltomareD.A. LyonsG.E. MitsuuchiY. ChengJ.Q. TestaJ.R. Akt2 mRNA is highly expressed in embryonic brown fat and the Akt2 kinase is activated by insulin.Oncogene199816182407241110.1038/sj.onc.1201750 9620559
    [Google Scholar]
  37. MengX. CuiJ. HeG. BCL-2 is involved in cardiac hypertrophy through PI3K-Akt pathway.BioMed Res. Int.202120211810.1155/2021/6615502 33778070
    [Google Scholar]
  38. PisklovaM. OsmakG. FavorovaO. Regulation of SMAD signaling pathway by miRNAs associated with myocardial fibrosis: In silico analysis of target gene networks.Biochemistry (Mosc.)202287883283810.1134/S0006297922080144 36171647
    [Google Scholar]
  39. RenB. FengJ. YangN. GuoY. ChenC. QinQ. Ginsenoside Rg3 attenuates angiotensin II-induced myocardial hypertrophy through repressing NLRP3 inflammasome and oxidative stress via modulating SIRT1/NF-κB pathway.Int. Immunopharmacol.20219810784110.1016/j.intimp.2021.107841 34153662
    [Google Scholar]
  40. HuangL.O. RauchA. MazzaferroE. Genome-wide discovery of genetic loci that uncouple excess adiposity from its comorbidities.Nat. Metab.20213222824310.1038/s42255‑021‑00346‑2 33619380
    [Google Scholar]
  41. TalwarD. MillerC.G. GrossmannJ. The GAPDH redox switch safeguards reductive capacity and enables survival of stressed tumour cells.Nat. Metab.20235466067610.1038/s42255‑023‑00781‑3 37024754
    [Google Scholar]
  42. JiangJ. XuJ. TangH. miR-490-3p alleviates cardiomyocyte injury via targeting FOXO1.Protein Pept. Lett.2022291191792410.2174/0929866529666220819120736 35986524
    [Google Scholar]
  43. LiuG.Y. SabatiniD.M. mTOR at the nexus of nutrition, growth, ageing and disease.Nat. Rev. Mol. Cell Biol.202021418320310.1038/s41580‑019‑0199‑y 31937935
    [Google Scholar]
  44. ZhangY. YanH. XuZ. YangB. LuoP. HeQ. Molecular basis for class side effects associated with PI3K/AKT/mTOR pathway inhibitors.Expert Opin. Drug Metab. Toxicol.201915976777410.1080/17425255.2019.1663169 31478386
    [Google Scholar]
  45. AoyagiT. MatsuiT. Phosphoinositide-3 kinase signaling in cardiac hypertrophy and heart failure.Curr. Pharm. Des.201117181818182410.2174/138161211796390976 21631421
    [Google Scholar]
  46. ZhouW.W. DaiC. LiuW.Z. Gentianella acuta improves TAC-induced cardiac remodelling by regulating the Notch and PI3K/Akt/FOXO1/3 pathways.Biomed. Pharmacother.202215411356410.1016/j.biopha.2022.113564 35988427
    [Google Scholar]
  47. FanC. LiY. YangH. Tamarixetin protects against cardiac hypertrophy via inhibiting NFAT and Akt pathway.J. Mol. Histol.201950434335410.1007/s10735‑019‑09831‑1 31111288
    [Google Scholar]
  48. HouH. ChenY. FengX. XuG. YanM. Tripartite motif containing 14 may aggravate cardiac hypertrophy via the Akt signalling pathway in neonatal rat cardiomyocytes and transgenic mice.Mol. Med. Rep.202328317310.3892/mmr.2023.13060 37503784
    [Google Scholar]
  49. GuanP. SunZ.M. WangN. Resveratrol prevents chronic intermittent hypoxia-induced cardiac hypertrophy by targeting the PI3K/AKT/mTOR pathway.Life Sci.201923311674810.1016/j.lfs.2019.116748 31412263
    [Google Scholar]
  50. ChengY. ShenA. WuX. Qingda granule attenuates angiotensin II-induced cardiac hypertrophy and apoptosis and modulates the PI3K/Akt pathway.Biomed. Pharmacother.202113311102210.1016/j.biopha.2020.111022 33378940
    [Google Scholar]
  51. TannoM. KunoA. HorioY. MiuraT. Emerging beneficial roles of sirtuins in heart failure.Basic Res. Cardiol.2012107427310.1007/s00395‑012‑0273‑5 22622703
    [Google Scholar]
  52. SpadariR.C. CavadasC. de CarvalhoA.E.T.S. OrtolaniD. de MouraA.L. VassaloP.F. Role of beta-adrenergic receptors and sirtuin signaling in the heart during aging, heart failure, and adaptation to stress.Cell. Mol. Neurobiol.201838110912010.1007/s10571‑017‑0557‑2 29063982
    [Google Scholar]
  53. WongA. WoodcockE.A. FOXO proteins and cardiac pathology.Adv. Exp. Med. Biol.2009665788910.1007/978‑1‑4419‑1599‑3_6 20429417
    [Google Scholar]
  54. ChistiakovD.A. OrekhovA.N. BobryshevY.V. The impact of FOXO-1 to cardiac pathology in diabetes mellitus and diabetes-related metabolic abnormalities.Int. J. Cardiol.201724523624410.1016/j.ijcard.2017.07.096 28781146
    [Google Scholar]
  55. CaoD.J. JiangN. BlaggA. Mechanical unloading activates FOXO3 to trigger Bnip3-dependent cardiomyocyte atrophy.J. Am. Heart Assoc.201322e00001610.1161/JAHA.113.000016 23568341
    [Google Scholar]
  56. KimM. HunterR.W. Garcia-MenendezL. Mutation in the γ2-subunit of AMP-activated protein kinase stimulates cardiomyocyte proliferation and hypertrophy independent of glycogen storage.Circ. Res.2014114696697510.1161/CIRCRESAHA.114.302364 24503893
    [Google Scholar]
  57. UcarA. GuptaS.K. FiedlerJ. The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy.Nat. Commun.201231107810.1038/ncomms2090 23011132
    [Google Scholar]
  58. AlcendorR.R. KirshenbaumL.A. ImaiS. VatnerS.F. SadoshimaJ. Silent information regulator 2alpha, a longevity factor and class III histone deacetylase, is an essential endogenous apoptosis inhibitor in cardiac myocytes.Circ. Res.2004951097198010.1161/01.RES.0000147557.75257.ff 15486319
    [Google Scholar]
  59. AlcendorR.R. GaoS. ZhaiP. SIRT1 regulates aging and resistance to oxidative stress in the heart.Circ. Res.2007100101512152110.1161/01.RES.0000267723.65696.4a 17446436
    [Google Scholar]
  60. SundaresanN.R. GuptaM. KimG. RajamohanS.B. IsbatanA. GuptaM.P. SIRT3 blocks the cardiac hypertrophic response by augmenting FOXO3a-dependent antioxidant defense mechanisms in mice.J. Clin. Invest.200911992758277110.1172/JCI39162 19652361
    [Google Scholar]
  61. HsuC.P. ZhaiP. YamamotoT. Silent information regulator 1 protects the heart from ischemia/reperfusion.Circulation2010122212170218210.1161/CIRCULATIONAHA.110.958033 21060073
    [Google Scholar]
  62. AlonsoD. Pinyol-GallemíA. AlcoverroT. ArthurR. Fish community reassembly after a coral mass mortality: Higher trophic groups are subject to increased rates of extinction.Ecol. Lett.201518545146110.1111/ele.12426 25782022
    [Google Scholar]
  63. HafnerA.V. DaiJ. GomesA.P. Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy.Aging (Albany NY)201021291492310.18632/aging.100252 21212461
    [Google Scholar]
  64. LeeJ.J. van de VenR.A.H. ZaganjorE. Inhibition of epithelial cell migration and Src/FAK signaling by SIRT3.Proc. Natl. Acad. Sci. USA2018115277057706210.1073/pnas.1800440115 29915029
    [Google Scholar]
  65. LiY. HossainE. ArifenN. SrivastavaA.K. Anand-SrivastavaM.B. Sirtuin1 contributes to the overexpression of Giα proteins and hyperproliferation of vascular smooth muscle cells from spontaneously hypertensive rats.J. Hypertens.202240111712710.1097/HJH.0000000000002985 34420010
    [Google Scholar]
  66. WangS. BaiJ. CheY. QuW. LiJ. Fucoidan inhibits apoptosis and improves cardiac remodeling by inhibiting p53 transcriptional activation through USP22/SIRT1.Front. Pharmacol.202314116433310.3389/fphar.2023.1164333 37324479
    [Google Scholar]
  67. WangH. DongX. LiuZ. Resveratrol suppresses rotenone‐induced neurotoxicity through activation of SIRT1/Akt1 signaling pathway.Anat. Rec. (Hoboken)201830161115112510.1002/ar.23781 29350822
    [Google Scholar]
  68. ImperatoreF. MaurizioJ. Vargas AguilarS. SIRT1 regulates macrophage self‐renewal.EMBO J.201736162353237210.15252/embj.201695737 28701484
    [Google Scholar]
  69. SunH.J. XiongS.P. CaoX. Polysulfide-mediated sulfhydration of SIRT1 prevents diabetic nephropathy by suppressing phosphorylation and acetylation of p65 NF-κB and STAT3.Redox Biol.20213810181310.1016/j.redox.2020.101813 33279869
    [Google Scholar]
  70. Mustafa RizviS.H. ShaoD. TsukaharaY. Oxidized GAPDH transfers S-glutathionylation to a nuclear protein Sirtuin-1 leading to apoptosis.Free Radic. Biol. Med.2021174738310.1016/j.freeradbiomed.2021.07.037 34332079
    [Google Scholar]
  71. RajmanL. ChwalekK. SinclairD.A. Therapeutic potential of NAD-boosting molecules: The in vivo evidence.Cell Metab.201827352954710.1016/j.cmet.2018.02.011 29514064
    [Google Scholar]
  72. ChenC. ZhouM. GeY. WangX. SIRT1 and aging related signaling pathways.Mech. Ageing Dev.202018711121510.1016/j.mad.2020.111215 32084459
    [Google Scholar]
  73. ShenS. ShenM. KuangL. SIRT1/SREBPs-mediated regulation of lipid metabolism.Pharmacol. Res.202419910703710.1016/j.phrs.2023.107037 38070792
    [Google Scholar]
  74. LiX. SIRT1 and energy metabolism.Acta Biochim. Biophys. Sin. (Shanghai)2013451516010.1093/abbs/gms108 23257294
    [Google Scholar]
  75. Alves-FernandesD.K. JasiulionisM.G. The role of SIRT1 on DNA damage response and epigenetic alterations in cancer.Int. J. Mol. Sci.20192013315310.3390/ijms20133153 31261609
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128311226240730080713
Loading
/content/journals/cpd/10.2174/0113816128311226240730080713
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test