Skip to content
2000
Volume 30, Issue 34
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

Chemotherapy-induced Peripheral Neuropathy (CIPN) is a common complication that arises from the use of anticancer drugs. Huangqi Guizhi Wuwu Decoction (HGWWD) is an effective classic prescription for treating CIPN; however, the mechanism of the activity is not entirely understood.

Objective

This study aimed to investigate the remedial effects and mechanisms of HGWWD on CIPN.

Methods

Changes in behavioral, biochemical, histopathological, and biomarker indices were used to evaluate the efficacy of HGWWD treatment. Ultra-high-performance liquid chromatography/mass spectrometry combined with the pattern recognition method was used to screen biomarkers and metabolic pathways related to CIPN. The results of pathway analyses were verified by protein blotting experiments.

Results

A total of 29 potential biomarkers were identified and 13 metabolic pathways were found to be involved in CIPN. In addition HGWWD reversed the levels of 19 biomarkers. Prostaglandin H2 and 17α,21-dihydroxypregnenolone were targeted as core biomarkers.

Conclusion

This study provides scientific evidence to support the finding that HGWWD mainly inhibits the inflammatory response during CIPN by regulating arachidonic acid metabolism.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128308622240709102830
2024-07-31
2025-01-09
Loading full text...

Full text loading...

References

  1. GrisoldW. CavalettiG. WindebankA.J. Peripheral neuropathies from chemotherapeutics and targeted agents: Diagnosis, treatment, and prevention.Neuro-oncol.201214Suppl 4Suppl. 4iv45iv5410.1093/neuonc/nos20323095830
    [Google Scholar]
  2. CavalettiG. PizzamiglioC. ManA. EngberT.M. ComiC. WilbrahamD. Studies to assess the utility of serum neurofilament light chain as a biomarker in chemotherapy-induced peripheral neuropathy.Cancers (Basel)20231517421610.3390/cancers1517421637686492
    [Google Scholar]
  3. MolassiotisA. ChengH.L. LopezV. AuJ.S.K. ChanA. BandlaA. LeungK.T. LiY.C. WongK.H. SuenL.K.P. ChanC.W. YorkeJ. FarrellC. SundarR. Are we mis-estimating chemotherapy-induced peripheral neuropathy? Analysis of assessment methodologies from a prospective, multinational, longitudinal cohort study of patients receiving neurotoxic chemotherapy.BMC Cancer201919113210.1186/s12885‑019‑5302‑430736741
    [Google Scholar]
  4. WangC.Y. LinT.T. HuL. XuC.J. HuF. WanL. YangX. WuX.F. ZhangX.T. LiY. YinH.Y. JiangC.Y. XinH.L. LiuW.T. Neutrophil extracellular traps as a unique target in the treatment of chemotherapy-induced peripheral neuropathy.EBioMedicine20239010449910.1016/j.ebiom.2023.10449936870200
    [Google Scholar]
  5. PostmaT.J. VermorkenJ.B. LieftingA.J.M. PinedoH.M. HeimansJ.J. Paclitaxel-induced neuropathy.Ann. Oncol.19956548949410.1093/oxfordjournals.annonc.a0592207669713
    [Google Scholar]
  6. YangC.C. WangM.H. SoungH.S. TsengH.C. LinF.H. ChangK.C. TsaiC.C. Through its powerful antioxidative properties, L-theanine ameliorates vincristine-induced neuropathy in rats.Antioxidants202312480310.3390/antiox1204080337107178
    [Google Scholar]
  7. MaJ. KavelaarsA. DoughertyP.M. HeijnenC.J. Beyond symptomatic relief for chemotherapy-induced peripheral neuropathy: Targeting the source.Cancer2018124112289229810.1002/cncr.3124829461625
    [Google Scholar]
  8. DesforgesA.D. HebertC.M. SpenceA.L. ReidB. DhaibarH.A. Cruz-TopeteD. CornettE.M. KayeA.D. UritsI. ViswanathO. Treatment and diagnosis of chemotherapy-induced peripheral neuropathy: An update.Biomed. Pharmacother.202214711267110.1016/j.biopha.2022.11267135104697
    [Google Scholar]
  9. StaffN.P. GrisoldA. GrisoldW. WindebankA.J. Chemotherapy-induced peripheral neuropathy: A current review.Ann. Neurol.201781677278110.1002/ana.2495128486769
    [Google Scholar]
  10. QuasthoffS. HartungH.P. Chemotherapy-induced peripheral neuropathy.J. Neurol.2002249191710.1007/PL0000785311954874
    [Google Scholar]
  11. ZhangS. Chemotherapy-induced peripheral neuropathy and rehabilitation: A review.Semin. Oncol.202148319320710.1053/j.seminoncol.2021.09.00434607709
    [Google Scholar]
  12. MalacridaA. MeregalliC. Rodriguez-MenendezV. NicoliniG. Chemotherapy-induced peripheral neuropathy and changes in cytoskeleton.Int. J. Mol. Sci.2019209228710.3390/ijms2009228731075828
    [Google Scholar]
  13. BoukelmouneN. LaumetG. TangY. MaJ. MahantI. SinghS.K. NijboerC. BendersM. KavelaarsA. HeijnenC.J. Nasal administration of mesenchymal stem cells reverses chemotherapy-induced peripheral neuropathy in mice.Brain Behav. Immun.202193435410.1016/j.bbi.2020.12.01133316379
    [Google Scholar]
  14. XuN. HanX. ZhangX. WangJ. YuanJ. WangM. WuH. HuangF. ShiH. YangL. WuX. Huangqi-Guizhi-Wuwu decoction regulates differentiation of CD4+ T cell and prevents against experimental autoimmune encephalomyelitis progression in mice.Phytomedicine202312515523910.1016/j.phymed.2023.15523938308917
    [Google Scholar]
  15. ChengX. HuoJ. WangD. CaiX. SunX. LuW. YangY. HuC. WangX. CaoP. Herbal medicine AC591 prevents oxaliplatin-induced peripheral neuropathy in animal model and cancer patients.Front. Pharmacol.2017834410.3389/fphar.2017.0034428638341
    [Google Scholar]
  16. ChaiY. ZhaoF. YeP. MaF. WangJ. ZhangP. LiQ. WangJ. WangW. LiQ. XuB. A prospective, randomized, placebo- controlled study assessing the efficacy of Chinese herbal medicine (Huangqi Guizhi Wuwu decoction) in the treatment of albumin-bound paclitaxel-induced peripheral neuropathy.J. Clin. Med.202312250510.3390/jcm1202050536675434
    [Google Scholar]
  17. LvZ. ShenJ. GaoX. RuanY. LingJ. SunR. DaiJ. FanH. ChengX. CaoP. Herbal formula Huangqi Guizhi Wuwu decoction attenuates paclitaxel-related neurotoxicity via inhibition of inflammation and oxidative stress.Chin. Med.20211617610.1186/s13020‑021‑00488‑134376246
    [Google Scholar]
  18. ZhangZ. YeJ. LiuX. ZhaoW. ZhaoB. GaoX. LanH. WuY. YangY. CaoP. Huangqi Guizhi Wuwu decoction alleviates oxaliplatin-induced peripheral neuropathy via the gut-peripheral nerve axis.Chin. Med.202318111410.1186/s13020‑023‑00826‑537679804
    [Google Scholar]
  19. LiM. LiZ. MaX. JinS. CaoY. WangX. ZhaoJ. WangJ. WangX. XuJ. Huangqi Guizhi Wuwu decoction can prevent and treat oxaliplatin-induced neuropathic pain by TNFα/IL-1β/IL-6/MAPK/NF-kB pathway.Aging (Albany NY)202214125013502210.18632/aging.20379435759577
    [Google Scholar]
  20. RenJ. YangL. QiuS. ZhangA.H. WangX.J. Efficacy evaluation, active ingredients, and multitarget exploration of herbal medicine.Trends Endocrinol. Metab.202334314615710.1016/j.tem.2023.01.00536710216
    [Google Scholar]
  21. Schrimpe-RutledgeA.C. CodreanuS.G. SherrodS.D. McLeanJ.A. Untargeted metabolomics strategies-challenges and emerging directions.J. Am. Soc. Mass Spectrom.201627121897190510.1007/s13361‑016‑1469‑y27624161
    [Google Scholar]
  22. ZhaoX. ModurV. CarayannopoulosL.N. LaterzaO.F. Biomarkers in pharmaceutical research.Clin. Chem.201561111343135310.1373/clinchem.2014.23171226408531
    [Google Scholar]
  23. MarchevA.S. VasilevaL.V. AmirovaK.M. SavovaM.S. Balcheva-SivenovaZ.P. GeorgievM.I. Metabolomics and health: From nutritional crops and plant-based pharmaceuticals to profiling of human biofluids.Cell. Mol. Life Sci.20217819-206487650310.1007/s00018‑021‑03918‑334410445
    [Google Scholar]
  24. JohnsonC.H. IvanisevicJ. SiuzdakG. Metabolomics: Beyond biomarkers and towards mechanisms.Nat. Rev. Mol. Cell Biol.201617745145910.1038/nrm.2016.2526979502
    [Google Scholar]
  25. ZhangA. FangH. WangY. YanG. SunH. ZhouX. WangY. LiuL. WangX. Discovery and verification of the potential targets from bioactive molecules by network pharmacology-based target prediction combined with high-throughput metabolomics.RSC Advances2017781510695107810.1039/C7RA09522H
    [Google Scholar]
  26. XieJ. ZhangA. WangX. Metabolomic applications in hepatocellular carcinoma: toward the exploration of therapeutics and diagnosis through small molecules.RSC Advances2017728172171722610.1039/C7RA00698E
    [Google Scholar]
  27. LiX. ZhangA. SunH. LiuZ. ZhangT. QiuS. LiuL. WangX. Metabolic characterization and pathway analysis of berberine protects against prostate cancer.Oncotarget2017839650226504110.18632/oncotarget.1753129029409
    [Google Scholar]
  28. KhamisM.M. AdamkoD.J. El-AneedA. Mass spectrometric based approaches in urine metabolomics and biomarker discovery.Mass Spectrom. Rev.201736211513410.1002/mas.2145525881008
    [Google Scholar]
  29. LiH.Y. SunH. ZhangA.H. HeL.W. QiuS. XueJ.R. WuF. WangX.J. Therapeutic effect and mechanism of Si-Miao-Yong-An-Tang on thromboangiitis obliterans based on the urine metabolomics approach.Front. Pharmacol.20221382773310.3389/fphar.2022.82773335273504
    [Google Scholar]
  30. HeY. ZhangM. LiT. TanZ. ZhangA. OuM. HuangD. WuF. WangX. Metabolomics analysis coupled with UPLC/MS on therapeutic effect of jigucao capsule against dampness-heat jaundice syndrome.Front. Pharmacol.20221382219310.3389/fphar.2022.82219335153793
    [Google Scholar]
  31. HanD. WangS.S. TangS.Y. SunH. YanG.L. ZhangA.H. WangX.J. Chemical composition analysis and characterization of reference sample of Huangqi Guizhi Wuwutang based on UPLC-Q-TOF-MS.Zhongguo Shiyan Fangjixue Zazhi202128141149
    [Google Scholar]
  32. MiharaY. EgashiraN. SadaH. KawashiriT. UshioS. YanoT. IkesueH. OishiR. Involvement of spinal NR2B-containing NMDA receptors in oxaliplatin-induced mechanical allodynia in rats.Mol. Pain201171744-8069-7-810.1186/1744‑8069‑7‑821247499
    [Google Scholar]
  33. LiQ. RenJ. YangL. SunH. ZhangX. YanG. HanY. WangX. Parsing the Q-markers of Baoyin Jian to treat abnormal uterine bleeding by high-throughput chinmedomics strategy.Pharmaceuticals (Basel)202316571910.3390/ph1605071937242503
    [Google Scholar]
  34. ZhangZ. YiP. YangJ. HuangJ. XuP. HuM. ZhangC. WangB. PengW. Integrated network pharmacology analysis and serum metabolomics to reveal the cognitive improvement effect of Bushen Tiansui formula on Alzheimer’s disease.J. Ethnopharmacol.202024911237110.1016/j.jep.2019.11237131683034
    [Google Scholar]
  35. YamamotoS. OnoH. KumeK. OhsawaM. Oxaliplatin treatment changes the function of sensory nerves in rats.J. Pharmacol. Sci.2016130418919310.1016/j.jphs.2015.12.00426790975
    [Google Scholar]
  36. FrieslandA. WengZ. DuenasM. MassaS.M. LongoF.M. LuQ. Amelioration of cisplatin-induced experimental peripheral neuropathy by a small molecule targeting p75NTR.Neurotoxicology201445819010.1016/j.neuro.2014.09.00525277379
    [Google Scholar]
  37. AraldiD. KhomulaE.V. BonetI.J.M. BogenO. GreenP.G. LevineJ.D. Role of pattern recognition receptors in chemotherapy-induced neuropathic pain.Brain202414731025104210.1093/brain/awad33937787114
    [Google Scholar]
  38. LiY. NorthR.Y. RhinesL.D. TatsuiC.E. RaoG. EdwardsD.D. CassidyR.M. HarrisonD.S. JohanssonC.A. ZhangH. DoughertyP.M. DRG voltage-gated sodium channel 1.7 is upregulated in paclitaxel-induced neuropathy in rats and in humans with neuropathic pain.J. Neurosci.20183851124113610.1523/JNEUROSCI.0899‑17.201729255002
    [Google Scholar]
  39. CavalettiG. TrediciG. PetruccioliM.G. DondèE. TrediciP. MarmiroliP. MinoiaC. RonchiA. BayssasM. Griffon EtienneG. Effects of different schedules of oxaliplatin treatment on the peripheral nervous system of the rat.Eur. J. Cancer200137182457246310.1016/S0959‑8049(01)00300‑811720843
    [Google Scholar]
  40. SommerC. KressM. Recent findings on how proinflammatory cytokines cause pain: Peripheral mechanisms in inflammatory and neuropathic hyperalgesia.Neurosci. Lett.20043611-318418710.1016/j.neulet.2003.12.00715135924
    [Google Scholar]
  41. WangX.M. LehkyT.J. BrellJ.M. DorseyS.G. Discovering cytokines as targets for chemotherapy-induced painful peripheral neuropathy.Cytokine20125913910.1016/j.cyto.2012.03.02722537849
    [Google Scholar]
  42. WoolfC.J. Recent advances in the pathophysiology of acute pain.Br. J. Anaesth.198963213914610.1093/bja/63.2.1392669905
    [Google Scholar]
  43. KwonJ. ChoiY.I. JoH.J. LeeS.H. LeeH.K. KimH. MoonJ.Y. JungS.J. The role of prostaglandin E1 as a pain mediator through facilitation of hyperpolarization-activated cyclic nucleotide-gated channel 2 via the EP2 receptor in trigeminal ganglion neurons of mice.Int. J. Mol. Sci.202122241353410.3390/ijms22241353434948328
    [Google Scholar]
  44. Zhi-hongL. Qi-bingM. Research progress on the role of cyclooxygenase in neuropathic pain.Foreign Med Sci Sect Pharm200431274
    [Google Scholar]
  45. WangB. WuL. ChenJ. DongL. ChenC. WenZ. HuJ. FlemingI. WangD.W. Metabolism pathways of arachidonic acids: Mechanisms and potential therapeutic targets.Signal Transduct. Target. Ther.2021619410.1038/s41392‑020‑00443‑w33637672
    [Google Scholar]
  46. CavalettiG. MarmiroliP. Chemotherapy-induced peripheral neurotoxicity.Curr. Opin. Neurol.201528550050710.1097/WCO.000000000000023426197027
    [Google Scholar]
  47. TofthagenC.S. ChevilleA.L. LoprinziC.L. The physical consequences of chemotherapy-induced peripheral neuropathy.Curr. Oncol. Rep.20202255010.1007/s11912‑020‑00903‑032323068
    [Google Scholar]
  48. BalayssacD. FerrierJ. DescoeurJ. LingB. PezetD. EschalierA. AuthierN. Chemotherapy-induced peripheral neuropathies: From clinical relevance to preclinical evidence.Expert Opin. Drug Saf.201110340741710.1517/14740338.2011.54341721210753
    [Google Scholar]
  49. CavalettiG. MarmiroliP. Chemotherapy-induced peripheral neurotoxicity.Nat. Rev. Neurol.201061265766610.1038/nrneurol.2010.16021060341
    [Google Scholar]
  50. MaihöfnerC. DielI. TeschH. QuandelT. BaronR. Chemotherapy-induced peripheral neuropathy (CIPN): Current therapies and topical treatment option with high-concentration capsaicin.Support. Care Cancer20212984223423810.1007/s00520‑021‑06042‑x33624117
    [Google Scholar]
  51. JuliusD. BasbaumA.I. Molecular mechanisms of nociception.Nature2001413685220321010.1038/3509301911557989
    [Google Scholar]
  52. BrancaJ.J.V. MarescaM. MorucciG. BecattiM. PaternostroF. GulisanoM. GhelardiniC. SalveminiD. Di Cesare MannelliL. PaciniA. Oxaliplatin-induced blood brain barrier loosening: A new point of view on chemotherapy-induced neurotoxicity.Oncotarget2018934234262343810.18632/oncotarget.2519329805744
    [Google Scholar]
  53. CarozziV.A. CantaA. ChiorazziA. Chemotherapy-induced peripheral neuropathy: What do we know about mechanisms?Neurosci. Lett.20155969010710.1016/j.neulet.2014.10.01425459280
    [Google Scholar]
  54. Abd-ElmawlaM.A. AbdelalimE. AhmedK.A. RizkS.M. The neuroprotective effect of pterostilbene on oxaliplatin-induced peripheral neuropathy via its anti-inflammatory, anti-oxidative and anti-apoptotic effects: Comparative study with celecoxib.Life Sci.202331512136410.1016/j.lfs.2022.12136436610639
    [Google Scholar]
  55. Meyer-ter-VehnT. GebhardtS. SebaldW. ButtmannM. GrehnF. SchlunckG. KnausP. p38 inhibitors prevent TGF-beta-induced myofibroblast transdifferentiation in human tenon fibroblasts.Invest. Ophthalmol. Vis. Sci.20064741500150910.1167/iovs.05‑036116565385
    [Google Scholar]
  56. PierreS. ZhangD.D. SuoJ. KernK. TarighiN. ScholichK. Myc binding protein 2 suppresses M2-like phenotypes in macrophages during zymosan-induced inflammation in mice.Eur. J. Immunol.201848223924910.1002/eji.20174712929067676
    [Google Scholar]
  57. MaP. CuiX. WangS. ZhangJ. NishanianE.V. WangW. WesleyR.A. DannerR.L. Nitric oxide post-transcriptionally up- regulates LPS-induced IL-8 expression through p38 MAPK activation.J. Leukoc. Biol.200476127828710.1189/jlb.120365315178710
    [Google Scholar]
  58. BaulieuE.E. Neurosteroids: A novel function of the brain.Psychoneuroendocrinology199823896398710.1016/S0306‑4530(98)00071‑79924747
    [Google Scholar]
  59. BenarrochE.E. Neurosteroids.Neurology2007681294594710.1212/01.wnl.0000257836.09570.e117372131
    [Google Scholar]
  60. KrisanovaN. SivkoR. KasatkinaL. BorisovaT. Neuroprotection by lowering cholesterol: A decrease in membrane cholesterol content reduces transporter-mediated glutamate release from brain nerve terminals.Biochim. Biophys. Acta Mol. Basis Dis.20121822101553156110.1016/j.bbadis.2012.06.00522713486
    [Google Scholar]
  61. NingY. ChenS. LiX. MaY. ZhaoF. YinL. Cholesterol, LDL, and 25-hydroxycholesterol regulate expression of the steroidogenic acute regulatory protein in microvascular endothelial cell line (bEnd.3).Biochem. Biophys. Res. Commun.200634241249125610.1016/j.bbrc.2006.02.09316516145
    [Google Scholar]
  62. PeriA. Neuroprotective effects of estrogens: The role of cholesterol.J. Endocrinol. Invest.2016391111810.1007/s40618‑015‑0332‑526084445
    [Google Scholar]
  63. ReylandM.E. EvansR.M. WhiteE.K. Lipoproteins regulate expression of the steroidogenic acute regulatory protein (StAR) in mouse adrenocortical cells.J. Biol. Chem.200027547366373664410.1074/jbc.M00645620010960482
    [Google Scholar]
  64. ChenJ.H. SunY. JuP.J. WeiJ.B. LiQ.J. WinstonJ.H. Estrogen augmented visceral pain and colonic neuron modulation in a double-hit model of prenatal and adult stress.World J. Gastroenterol.202127305060507510.3748/wjg.v27.i30.506034497435
    [Google Scholar]
  65. Mechanism of estrogen and estrogen receptors in pathologic pain.Chinese General Pract202316
    [Google Scholar]
  66. DongF. XieW. StrongJ.A. ZhangJ.M. Mineralocorticoid receptor blocker eplerenone reduces pain behaviors in vivo and decreases excitability in small-diameter sensory neurons from local inflamed dorsal root ganglia in vitro.Anesthesiology201211751102111210.1097/ALN.0b013e318270038323023156
    [Google Scholar]
  67. RickardA.J. YoungM.J. Corticosteroid receptors, macrophages and cardiovascular disease.J. Mol. Endocrinol.200942644945910.1677/JME‑08‑014419158233
    [Google Scholar]
  68. LiX. MengY. WuP. ZhangZ. YangX. Angiotensin II and Aldosterone stimulating NF-κB and AP-1 activation in hepatic fibrosis of rat.Regul. Pept.20071381152510.1016/j.regpep.2006.07.01116971004
    [Google Scholar]
  69. NevesM.F. AmiriF. VirdisA. DiepQ.N. SchiffrinE.L. Role of aldosterone in angiotensin II-induced cardiac and aortic inflammation, fibrosis, and hypertrophy.Can. J. Physiol. Pharmacol.20058311999100610.1139/y05‑06816391708
    [Google Scholar]
  70. ZangY. HeX.H. XinW.J. PangR.P. WeiX.H. ZhouL.J. LiY.Y. LiuX.G. Inhibition of NF-kappaB prevents mechanical allodynia induced by spinal ventral root transection and suppresses the re-expression of Nav1.3 in DRG neurons in vivo and in vitro.Brain Res.2010136315115810.1016/j.brainres.2010.09.04820858468
    [Google Scholar]
  71. LiW.X. LiM.M. NiuL. ZhangS.Q. ZhangH. WangX.Y. TangJ.F. LiX.L. Study on the mechanism of activating blood and removing stasis of naoxintong capsule based on plasma metabolomics and network pharmacology.Chinese J. Integ. Trad. Western Med.202343441448
    [Google Scholar]
  72. NicholsonJ.K. WilsonI.D. Opinion: Understanding ‘global’ systems biology: Metabonomics and the continuum of metabolism.Nat. Rev. Drug Discov.20032866867610.1038/nrd115712904817
    [Google Scholar]
  73. BujakR. Struck-LewickaW. MarkuszewskiM.J. KaliszanR. Metabolomics for laboratory diagnostics.J. Pharm. Biomed. Anal.201511310812010.1016/j.jpba.2014.12.01725577715
    [Google Scholar]
  74. PangH. JiaW. HuZ. Emerging applications of metabolomics in clinical pharmacology.Clin. Pharmacol. Ther.2019106354455610.1002/cpt.153831173340
    [Google Scholar]
  75. CaoD. YangL. GaoX. HuangD. ZhanX. QiuS. SunH. YanG. WangX. A non-targeted metabolomics reveals therapeutical effect and mechanism of sanmiao pill on adjuvant-induced arthritis rats.Curr. Pharm. Des.202329171379138910.2174/138161282966623051116130837171005
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128308622240709102830
Loading
/content/journals/cpd/10.2174/0113816128308622240709102830
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test