Skip to content
2000
Volume 30, Issue 34
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Skin cancer is a prevalent and sometimes lethal cancer that affects a wide range of people. UV radiation exposure is the main cause of skin cancer. Immunosuppression, environmental factors, and genetic predisposition are other contributing variables. Fair-skinned people and those with a history of sunburns or severe sun exposure are more likely to experience this condition. Melanoma, squamous cell carcinoma (SCC), and basal cell carcinoma (BCC) are the three main forms. Melanoma poses a bigger hazard because of its tendency for metastasis, while SCC and BCC have limited metastatic potential. Genetic mutations and changes to signalling pathways such as p53 and MAPK are involved in pathogenesis. Early diagnosis is essential, and molecular testing, biopsy, dermoscopy, and visual inspection can all help. In addition to natural medicines like curcumin and green tea polyphenols, treatment options include immunotherapy, targeted therapy, radiation, surgery, and chemotherapy. Reducing the incidence of skin cancer requires preventive actions, including sun protection and early detection programs. An overview of skin cancers, including their forms, pathophysiology, diagnosis, and treatment, highlighting herbal therapy, is given in this review.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128307653240710044902
2024-07-24
2025-01-08
Loading full text...

Full text loading...

References

  1. Di MeglioP. PereraG.K. NestleF.O. The multitasking organ: Recent insights into skin immune function.Immunity201135685786910.1016/j.immuni.2011.12.00322195743
    [Google Scholar]
  2. KashyapM.P. SinhaR. MukhtarM.S. AtharM. Epigenetic regulation in the pathogenesis of non-melanoma skin cancer.Semin. Cancer Biol.202283365610.1016/j.semcancer.2020.11.00933242578
    [Google Scholar]
  3. DidonaD. PaolinoG. BottoniU. CantisaniC. Nonmelanoma skin cancer pathogenesis overview.Biomedicines201861610.3390/biomedicines601000629301290
    [Google Scholar]
  4. CockerellC.J. The pathology of melanoma.Dermatol. Clin.201230344546810.1016/j.det.2012.04.00722800551
    [Google Scholar]
  5. ApallaZ. NashanD. WellerR.B. CastellsaguéX. Skin cancer: Epidemiology, disease burden, pathophysiology, diagnosis, and therapeutic approaches.Dermatol. Ther.20177S1Suppl. 151910.1007/s13555‑016‑0165‑y28150105
    [Google Scholar]
  6. FernandesA.R. SantosA.C. Sanchez-LopezE. KovačevićA.B. EspinaM. CalpenaA.C. VeigaF.J. GarciaM.L. SoutoE.B. Neoplastic multifocal skin lesions: Biology, etiology, and targeted therapies for nonmelanoma skin cancers.Skin Pharmacol. Physiol.2018312597310.1159/00047952929262420
    [Google Scholar]
  7. RojasK.D. PerezM.E. MarchettiM.A. NicholsA.J. PenedoF.J. JaimesN. Skin cancer: Primary, secondary, and tertiary prevention. Part II.J. Am. Acad. Dermatol.202287227128810.1016/j.jaad.2022.01.05335176398
    [Google Scholar]
  8. GlosterH.M.Jr NealK. Skin cancer in skin of color.J. Am. Acad. Dermatol.200655574176010.1016/j.jaad.2005.08.06317052479
    [Google Scholar]
  9. ReddyS.P. MartiresK. WuJ.J. The risk of melanoma and hematologic cancers in patients with psoriasis.J. Am. Acad. Dermatol.2017764639647.e210.1016/j.jaad.2016.09.04727876302
    [Google Scholar]
  10. BaldaA. WaniI. RoohiT.F. Suman KrishnaK.L. MehdiS. NadigaA.P.R. MakkapatiM. BaigM.D.A.I. Psoriasis and skin cancer – Is there a link?Int. Immunopharmacol.202312111046410.1016/j.intimp.2023.11046437390565
    [Google Scholar]
  11. FahradyanA. HowellA. WolfswinkelE. TsuhaM. ShethP. WongA. Updates on the management of non-melanoma skin cancer (NMSC).Healthcare2017548210.3390/healthcare504008229104226
    [Google Scholar]
  12. RatushnyV. GoberM.D. HickR. RidkyT.W. SeykoraJ.T. From keratinocyte to cancer: The pathogenesis and modeling of cutaneous squamous cell carcinoma.J. Clin. Invest.2012122246447210.1172/JCI5741522293185
    [Google Scholar]
  13. KasperM. JaksV. HohlD. ToftgårdR. Basal cell carcinoma - molecular biology and potential new therapies.J. Clin. Invest.2012122245546310.1172/JCI5877922293184
    [Google Scholar]
  14. Sánchez-DanésA. BlanpainC. Deciphering the cells of origin of squamous cell carcinomas.Nat. Rev. Cancer201818954956110.1038/s41568‑018‑0024‑529849070
    [Google Scholar]
  15. BurtonK.A. AshackK.A. KhachemouneA. Cutaneous squamous cell carcinoma: A review of high-risk and metastatic disease.Am. J. Clin. Dermatol.201617549150810.1007/s40257‑016‑0207‑327358187
    [Google Scholar]
  16. FarbergA.S. MarsonJ.W. GlazerA. LitchmanG.H. SvobodaR. WinkelmannR.R. BrownstoneN. RigelD.S. Expert consensus on the use of prognostic gene expression profiling tests for the management of cutaneous melanoma: Consensus from the skin cancer prevention working group.Dermatol. Ther.202212480782310.1007/s13555‑022‑00709‑x35353350
    [Google Scholar]
  17. CivesM. MannavolaF. LospallutiL. SergiM.C. CazzatoG. FiloniE. CavalloF. GiudiceG. StucciL.S. PortaC. TucciM. Non-melanoma skin cancers: Biological and clinical features.Int. J. Mol. Sci.20202115539410.3390/ijms2115539432751327
    [Google Scholar]
  18. Di StefaniA. ChimentiS. Societa italiana di dermatologia e sifilografia. Basal cell carcinoma: Clinical and pathological features.Soc. Ital. Dermat. Sifilografia20151504385391
    [Google Scholar]
  19. AbbasO. RichardsJ.E. MahalingamM. Fibroblast-activation protein: A single marker that confidently differentiates morpheaform/infiltrative basal cell carcinoma from desmoplastic trichoepithelioma.Mod. Pathol.201023111535154310.1038/modpathol.2010.14220711172
    [Google Scholar]
  20. BettiR. MenniS. RadaelliG. BombonatoC. CrostiC. Micronodular basal cell carcinoma: A distinct subtype? Relationship with nodular and infiltrative basal cell carcinomas.J. Dermatol.201037761161610.1111/j.1346‑8138.2009.00772.x20629826
    [Google Scholar]
  21. TanC.Z. RiegerK.E. SarinK.Y. Basosquamous carcinoma: Controversy, advances, and future directions.Dermatol. Surg.2017431233110.1097/DSS.000000000000081527340741
    [Google Scholar]
  22. DennisL.K. WhiteE. LeeJ.A.H. Recent cohort trends in malignant melanoma by anatomic site in the United States.Cancer Causes Control1993429310010.1007/BF000531498481498
    [Google Scholar]
  23. HuW. FangL. NiR. ZhangH. PanG. Changing trends in the disease burden of non-melanoma skin cancer globally from 1990 to 2019 and its predicted level in 25 years.BMC Cancer202222183610.1186/s12885‑022‑09940‑335907848
    [Google Scholar]
  24. SchadendorfD. van AkkooiA.C.J. BerkingC. GriewankK.G. GutzmerR. HauschildA. StangA. RoeschA. UgurelS. Melanoma.Lancet20183921015197198410.1016/S0140‑6736(18)31559‑930238891
    [Google Scholar]
  25. EvansR.D. KopfA.W. LewR.A. RigelD.S. BartR.S. FriedmanR.J. RiversJ.K. Risk factors for the development of malignant melanoma: Review of case-control studies.J. Dermatol. Surg. Oncol.198814439340810.1111/j.1524‑4725.1988.tb03373.x3280634
    [Google Scholar]
  26. MarksR. Epidemiology of melanoma.Clin. Exp. Dermatol.200025645946310.1046/j.1365‑2230.2000.00693.x11044179
    [Google Scholar]
  27. RoomiM.W. RoomiN.W. KalinovskyT. IvanovV. RathM. NiedzwieckiA. Inhibition of 7,12-dimethylbenzanthracene-induced skin tumors by a nutrient mixture.Med. Oncol.200825333334010.1007/s12032‑008‑9041‑718204975
    [Google Scholar]
  28. PinchukI. ShovalH. DotanY. LichtenbergD. Evaluation of antioxidants: Scope, limitations and relevance of assays.Chem. Phys. Lipids2012165663864710.1016/j.chemphyslip.2012.05.00322721987
    [Google Scholar]
  29. The Fitzpatrick Skin Type Classification Scale.2008Available from: https://www.skininc.com/science/physiology/article/ 21882228/the-fitzpatrick-skin-type-classification-scale(accessed on 13-6-2024)
  30. FitzpatrickT.B. Ultraviolet-induced pigmentary changes: Benefits and hazards.Curr. Probl. Dermatol.198615253810.1159/0004120903512179
    [Google Scholar]
  31. PerezL. Luis Perez, DO, FAAFP, FACOFP Diagnosis and management of nonmelanoma skin cancer.Osteopath. Family Phys.2020123303410.33181/12032
    [Google Scholar]
  32. ApallaZ. LallasA. SotiriouE. LazaridouE. IoannidesD. Epidemiological trends in skin cancer.Dermatol. Pract. Concept.2017721610.5826/dpc.0702a0128515985
    [Google Scholar]
  33. LewisK.G. WeinstockM.A. Nonmelanoma skin cancer mortality (1988-2000): The Rhode Island follow-back study.Arch. Dermatol.2004140783784210.1001/archderm.140.7.83715262694
    [Google Scholar]
  34. DoranC.M. LingR. ByrnesJ. CraneM. ShakeshaftA.P. SearlesA. PerezD. Benefit cost analysis of three skin cancer public education mass-media campaigns implemented in New South Wales, Australia.PLoS One2016111e014766510.1371/journal.pone.014766526824695
    [Google Scholar]
  35. ReichrathJ. SaternusR. VogtT. Endocrine actions of vitamin D in skin: Relevance for photocarcinogenesis of non-melanoma skin cancer, and beyond.Mol. Cell. Endocrinol.20174539610210.1016/j.mce.2017.05.00128526240
    [Google Scholar]
  36. DragoF. CiccareseG. CogornoL. CalviC. MarsanoL.A. ParodiA. Prevention of non-melanoma skin cancers with nicotinamide in transplant recipients: A case-control study.Eur. J. Dermatol.201727438238510.1684/ejd.2017.302528468736
    [Google Scholar]
  37. CummingsS.R. TrippM.K. HerrmannN.B. Approaches to the prevention and control of skin cancer.Cancer Metastasis Rev.1997163/430932710.1023/A:10058043282689433642
    [Google Scholar]
  38. RodustP.M. StockflethE. UlrichC. LeverkusM. EberleJ. UV-induced squamous cell carcinoma - a role for antiapoptotic signalling pathways.Br. J. Dermatol.2009161s3Suppl. 310711510.1111/j.1365‑2133.2009.09458.x19775366
    [Google Scholar]
  39. TrakatelliM. UlrichC. del MarmolV. EuvrardS. StockflethE. AbeniD. Epidemiology of nonmelanoma skin cancer (NMSC) in Europe: Accurate and comparable data are needed for effective public health monitoring and interventions.Br. J. Dermatol.2007156s3Suppl. 31710.1111/j.1365‑2133.2007.07861.x17488399
    [Google Scholar]
  40. UrbachF. ForbesP.D. DaviesR.E. BergerD. Cutaneous photobiology: Past, present and future.J. Invest. Dermatol.197667120922410.1111/1523‑1747.ep12513042778294
    [Google Scholar]
  41. GandiniS. SeraF. CattaruzzaM.S. PasquiniP. PicconiO. BoyleP. MelchiC.F. Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure.Eur. J. Cancer2005411456010.1016/j.ejca.2004.10.01615617990
    [Google Scholar]
  42. MiligiL Ultraviolet radiation exposure: Some observations and considerations, focusing on some italian experiences, on cancer risk, and primary prevention.Environments2020721010.3390/environments7020010
    [Google Scholar]
  43. TyrrellR.M. Induction of pyrimidine dimers in bacterial DNA by 365 nm radiation.Photochem. Photobiol.1973171697310.1111/j.1751‑1097.1973.tb06334.x4568994
    [Google Scholar]
  44. KongY. JiangJ. HuangY. LiL. LiuX. JinZ. WeiF. LiuX. ZhangS. DuanX. ZhangY. TongQ. ChenH. Endoplasmic reticulum stress in melanoma pathogenesis and resistance.Biomed. Pharmacother.202215511374110.1016/j.biopha.2022.11374136271543
    [Google Scholar]
  45. KavasiR.M. NeaguM. ConstantinC. MunteanuA. SurcelM. TsatsakisA. TzanakakisG.N. NikitovicD. Matrix effectors in the pathogenesis of keratinocyte-derived carcinomas.Front. Med.2022987950010.3389/fmed.2022.87950035572966
    [Google Scholar]
  46. BaldT. QuastT. LandsbergJ. RogavaM. GloddeN. Lopez-RamosD. KohlmeyerJ. RiesenbergS. van den Boorn-KonijnenbergD. Hömig-HölzelC. ReutenR. SchadowB. WeighardtH. WenzelD. HelfrichI. SchadendorfD. BlochW. BianchiM.E. LugassyC. BarnhillR.L. KochM. FleischmannB.K. FörsterI. KastenmüllerW. KolanusW. HölzelM. GaffalE. TütingT. Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma.Nature2014507749010911310.1038/nature1311124572365
    [Google Scholar]
  47. MohammadT. MorrisonH. HogenEschH. Urocanic acid photochemistry and photobiology.Photochem. Photobiol.199969211513510.1111/j.1751‑1097.1999.tb03264.x10048307
    [Google Scholar]
  48. ZanconatoF. CordenonsiM. PiccoloS. YAP/TAZ at the roots of cancer.Cancer Cell201629678380310.1016/j.ccell.2016.05.00527300434
    [Google Scholar]
  49. WalkoG. WoodhouseS. PiscoA.O. RognoniE. Liakath-AliK. LichtenbergerB.M. MishraA. TelermanS.B. ViswanathanP. LogtenbergM. RenzL.M. DonatiG. QuistS.R. WattF.M. A genome-wide screen identifies YAP/WBP2 interplay conferring growth advantage on human epidermal stem cells.Nat. Commun.2017811474410.1038/ncomms1474428332498
    [Google Scholar]
  50. HowardA. BojkoJ. FlynnB. BowenS. JungwirthU. WalkoG. Targeting the Hippo/YAP/TAZ signalling pathway: Novel opportunities for therapeutic interventions into skin cancers.Exp. Dermatol.202231101477149910.1111/exd.1465535913427
    [Google Scholar]
  51. GallagherR.P. BajdikC.D. FinchamS. HillG.B. KeefeA.R. ColdmanA. McLeanD.I. Chemical exposures, medical history, and risk of squamous and basal cell carcinoma of the skin.Cancer Epidemiol. Biomarkers Prev.1996564194248781736
    [Google Scholar]
  52. AzzamE.I. Jay-GerinJ.P. PainD. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury.Cancer Lett.20123271-2486010.1016/j.canlet.2011.12.01222182453
    [Google Scholar]
  53. AsgariM.M. KiviatN.B. CritchlowC.W. SternJ.E. ArgenyiZ.B. RaugiG.J. BergD. OdlandP.B. HawesS.E. de VilliersE.M. Detection of human papillomavirus DNA in cutaneous squamous cell carcinoma among immunocompetent individuals.J. Invest. Dermatol.200812861409141710.1038/sj.jid.570122718185530
    [Google Scholar]
  54. BavinckJ.N.B. PlasmeijerE.I. FeltkampM.C.W. β-papillomavirus infection and skin cancer.J. Invest. Dermatol.200812861355135810.1038/jid.2008.12318478011
    [Google Scholar]
  55. AldabaghB. AngelesJ.G.C. CardonesA.R. ArronS.T. Cutaneous squamous cell carcinoma and human papillomavirus: Is there an association?Dermatol. Surg.201339112310.1111/j.1524‑4725.2012.02558.x22928516
    [Google Scholar]
  56. LanY.J. ChenH. ChenJ.Q. LeiQ.H. ZhengM. ShaoZ.R. Immunolocalization of vimentin, keratin 17, Ki-67, involucrin, β- catenin and E-cadherin in cutaneous squamous cell carcinoma.Pathol. Oncol. Res.201420226326610.1007/s12253‑013‑9690‑523999979
    [Google Scholar]
  57. ShenJ. AbelE.L. RiggsP.K. RepassJ. HensleyS.C. SchroederL.J. TempleA. ChauA. McClellanS.A. RhoO. KiguchiK. WardM.D. SemmesO.J. PersonM.D. AngelJ.M. DiGiovanniJ. Proteomic and pathway analyses reveal a network of inflammatory genes associated with differences in skin tumor promotion susceptibility in DBA/2 and C57BL/6 mice.Carcinogenesis201233112208221910.1093/carcin/bgs21322782996
    [Google Scholar]
  58. MoloneyF.J. ComberH. O’LorcainP. O’KellyP. ConlonP.J. MurphyG.M. A population-based study of skin cancer incidence and prevalence in renal transplant recipients.Br. J. Dermatol.2006154349850410.1111/j.1365‑2133.2005.07021.x16445782
    [Google Scholar]
  59. YesantharaoP. WangW. IoannidisN.M. DemehriS. WhittemoreA.S. AsgariM.M. Cutaneous squamous cell cancer (cSCC) risk and the human leukocyte antigen (HLA) system.Hum. Immunol.201778432733510.1016/j.humimm.2017.02.00228185865
    [Google Scholar]
  60. GloverM.T. BrownJ. NavarreteC. KwanJ.T.C. BodmerJ. BodmerW. KennedyL.J. LeighI.M. HLA antigen frequencies in renal transplant recipients and non-immunosuppressed patients with non-melanoma skin cancer.Eur. J. Cancer199329452052410.1016/S0959‑8049(05)80143‑18435203
    [Google Scholar]
  61. ChenA.C. HallidayG.M. DamianD.L. Non-melanoma skin cancer: Carcinogenesis and chemoprevention.Pathology201345333134110.1097/PAT.0b013e32835f515c23478234
    [Google Scholar]
  62. UllrichS.E. Mechanisms underlying UV-induced immune suppression.Mutat. Res.20055711-218520510.1016/j.mrfmmm.2004.06.05915748647
    [Google Scholar]
  63. SchwarzA. NoordegraafM. MaedaA. ToriiK. ClausenB.E. SchwarzT. Langerhans cells are required for UVR-induced immunosuppression.J. Invest. Dermatol.201013051419142710.1038/jid.2009.42920090769
    [Google Scholar]
  64. FlorenceM.E.B. MassudaJ.Y. BröckerE.B. MetzeK. CintraM.L. de SouzaE.M. Angiogenesis in the progression of cutaneous squamous cell carcinoma: An immunohistochemical study of endothelial markers.Clinics (São Paulo)201166346546810.1590/S1807‑5932201100030001821552674
    [Google Scholar]
  65. PaulitschkeV. GernerC. HofstätterE. MohrT. MayerR.L. PehambergerH. KunstfeldR. Proteome profiling of keratinocytes transforming to malignancy.Electrophoresis201536456457610.1002/elps.20140030925395074
    [Google Scholar]
  66. VilliotouV. DeliconstantinosG. Nitric oxide, peroxynitrite and nitroso-compounds formation by ultraviolet A (UVA) irradiated human squamous cell carcinoma: Potential role of nitric oxide in cancer prognosis.Anticancer Res.19951539319427544092
    [Google Scholar]
  67. MaedaA. NakataM. YasudaK. YukawaT. SaishoS. OkitaR. HiramiY. ShimizuK. Influence of vascular endothelial growth factor single nucleotide polymorphisms on non-small cell lung cancer tumor angiogenesis.Oncol. Rep.2013291394410.3892/or.2012.207523064377
    [Google Scholar]
  68. RuizM.T. BiselliP.M. ManigliaJ.V. Pavarino-BertelliE.C. Goloni-BertolloE.M. Genetic variability of vascular endothelial growth factor and prognosis of head and neck cancer in a Brazilian population.Braz. J. Med. Biol. Res.201043212713310.1590/S0100‑879X200900750003620098841
    [Google Scholar]
  69. GuoD. WangQ. LiC. WangY. ChenX. VEGF stimulated the angiogenesis by promoting the mitochondrial functions.Oncotarget2017844770207702710.18632/oncotarget.2033129100366
    [Google Scholar]
  70. WooY.R. ChoS.H. LeeJ.D. KimH.S. The human microbiota and skin cancer.Int. J. Mol. Sci.2022233181310.3390/ijms2303181335163734
    [Google Scholar]
  71. WoodD.L.A. LachnerN. TanJ.M. TangS. AngelN. LainoA. LinedaleR. Lê CaoK.A. MorrisonM. FrazerI.H. SoyerH.P. HugenholtzP. A natural history of actinic keratosis and cutaneous squamous cell carcinoma microbiomes.MBio201895e01432-1810.1128/mBio.01432‑1830301852
    [Google Scholar]
  72. NakatsujiT. ChenT.H. ButcherA.M. TrzossL.L. NamS.J. ShirakawaK.T. ZhouW. OhJ. OttoM. FenicalW. GalloR.L. A commensal strain of Staphylococcus epidermidis protects against skin neoplasia.Sci. Adv.201842eaao450210.1126/sciadv.aao450229507878
    [Google Scholar]
  73. GlatthardtT. CamposJ.C.M. ChamonR.C. de Sá CoimbraT.F. RochaG.A. de MeloM.A.F. ParenteT.E. LoboL.A. AntunesL.C.M. dos SantosK.R.N. FerreiraR.B.R. Small molecules produced by commensal Staphylococcus epidermidis disrupt formation of biofilms by Staphylococcus aureus.Appl. Environ. Microbiol.2020865e02539-1910.1128/AEM.02539‑1931862721
    [Google Scholar]
  74. LiH. GohB.N. TehW.K. JiangZ. GohJ.P.Z. GohA. WuG. HoonS.S. RaidaM. CamattariA. YangL. O’DonoghueA.J. DawsonT.L.Jr Skin commensal Malassezia globosa secreted protease attenuates Staphylococcus aureus biofilm formation.J. Invest. Dermatol.201813851137114510.1016/j.jid.2017.11.03429246799
    [Google Scholar]
  75. HaenssleH.A. FinkC. SchneiderbauerR. TobererF. BuhlT. BlumA. KallooA. HassenA.B.H. ThomasL. EnkA. UhlmannL. AltC. ArenbergerovaM. BakosR. BaltzerA. BertlichI. BlumA. Bokor-BillmannT. BowlingJ. BraghiroliN. BraunR. Buder-BakhayaK. BuhlT. CaboH. CabrijanL. CevicN. ClassenA. DeltgenD. FinkC. GeorgievaI. Hakim-MeibodiL.E. HannerS. HartmannF. HartmannJ. HausG. HoxhaE. KarlsR. KogaH. KreuschJ. LallasA. MajenkaP. MarghoobA. MassoneC. MekokishviliL. MestelD. MeyerV. NeubergerA. NielsenK. OlivieroM. PampenaR. PaoliJ. PawlikE. RaoB. RendonA. RussoT. SadekA. SamhaberK. SchneiderbauerR. SchweizerA. TobererF. TrennheuserL. VlahovaL. WaldA. WinklerJ. WölbingP. ZalaudekI. Reader study level-I and level-II Groups Man against machine: Diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists.Ann. Oncol.20182981836184210.1093/annonc/mdy16629846502
    [Google Scholar]
  76. KhanM.Q. HussainA. RehmanS.U. KhanU. MaqsoodM. MehmoodK. KhanM.A. Classification of melanoma and nevus in digital images for diagnosis of skin cancer.IEEE Access20197901329014410.1109/ACCESS.2019.2926837
    [Google Scholar]
  77. KousisI. PerikosI. HatzilygeroudisI. VirvouM. Deep learning methods for accurate skin cancer recognition and mobile application.Electronics (Basel)2022119129410.3390/electronics11091294
    [Google Scholar]
  78. PoserI. TatzelJ. KuphalS. BosserhoffA.K. Functional role of MIA in melanocytes and early development of melanoma.Oncogene200423366115612410.1038/sj.onc.120779715208686
    [Google Scholar]
  79. RawsonR.V. VergaraI.A. StretchJ.R. SawR.P.M. ThompsonJ.F. LoS.N. ScolyerR.A. BusamK.J. Representativeness of initial skin biopsies showing pure desmoplastic melanoma: Implications for management.Pathology202355221422210.1016/j.pathol.2022.12.34636646575
    [Google Scholar]
  80. HogartyD.T. SuJ.C. PhanK. AttiaM. HossnyM. NahavandiS. LenaneP. MoloneyF.J. YazdabadiA. Artificial intelligence in dermatology-where we are and the way to the future: A review.Am. J. Clin. Dermatol.2020211414710.1007/s40257‑019‑00462‑631278649
    [Google Scholar]
  81. JahnA.S. NavariniA.A. CerminaraS.E. KostnerL. HuberS.M. KunzM. MaulJ.T. DummerR. SommerS. NeunerA.D. LevesqueM.P. ChengP.F. MaulL.V. Over-detection of melanoma-suspect lesions by a CE-certified smartphone app: Performance in comparison to dermatologists, 2D and 3D convolutional neural networks in a prospective data set of 1204 pigmented skin lesions involving patients’ perception.Cancers (Basel)20221415382910.3390/cancers1415382935954491
    [Google Scholar]
  82. PawlikL. MorgenrothS. DummerR. Recent progress in the diagnosis and treatment of melanoma and other skin cancers.Cancers (Basel)2023156182410.3390/cancers1506182436980709
    [Google Scholar]
  83. ŻółkiewiczJ. SławińskaM. MaińskaU. NowickiR.J. SobjanekM. ThomasL. Dermoscopy of umbilical lesions-A systematic review.J. Clin. Med.2024136179010.3390/jcm1306179038542014
    [Google Scholar]
  84. FaradyI. FurqonE.N. KuoC-C. JanY-K. LinC-Y. Pseudo Skin Image Generator (PSIG-Net): Ambiguity-free sample generation and outlier control for skin lesion classification.Biomed. Signal Process. Control20249310611210.1016/j.bspc.2024.106112
    [Google Scholar]
  85. SchuhS. RuiniC. PerweinM.K.E. DaxenbergerF. GustC. SattlerE.C. WelzelJ. Line-field confocal optical coherence tomography: A new tool for the differentiation between nevi and melanomas?Cancers (Basel)2022145114010.3390/cancers1405114035267448
    [Google Scholar]
  86. ViegasJ. SarmentoB. Bridging the gap between testing and clinics exploring alternative pre-clinical models in melanoma research.Adv. Drug Deliv. Rev.202420811529510.1016/j.addr.2024.11529538527625
    [Google Scholar]
  87. TragerM.H. GeskinL.J. SamieF.H. LiuL. Biomarkers in melanoma and non-melanoma skin cancer prevention and risk stratification.Exp. Dermatol.202231141210.1111/exd.1411432415889
    [Google Scholar]
  88. BosserhoffA.K. Melanoma inhibitory activity (MIA): An important molecule in melanoma development and progression.Pigment Cell Res.200518641141610.1111/j.1600‑0749.2005.00274.x16280006
    [Google Scholar]
  89. VučetićB. RoganS.A. HrabačP. HudorovićN. ČupićH. LukinacL. LedinskyM. MatejčićA. LovričevićI. ZekanM. Biological value of melanoma inhibitory activity serum concentration in patients with primary skin melanoma.Melanoma Res.200818320120710.1097/CMR.0b013e328302192918477894
    [Google Scholar]
  90. ShalhoutS.Z. KaufmanH.L. EmerickK.S. MillerD.M. Immunotherapy for nonmelanoma skin cancer: Facts and hopes.Clin. Cancer Res.202228112211222010.1158/1078‑0432.CCR‑21‑297135121622
    [Google Scholar]
  91. CarreiraB. AcúrcioR.C. MatosA.I. PeresC. PozziS. Vaskovich-KoubiD. KleinerR. BentoM. Satchi-FainaroR. FlorindoH.F. Nanomedicines as multifunctional modulators of melanoma immune microenvironment.Adv. Ther. (Weinh.)202141200014710.1002/adtp.202000147
    [Google Scholar]
  92. AzharF. NaureenH. ShahnazG. HamdaniS.D.A. KianiM.H. KhattakS. MannaM.K. BabarM.M. RajadasJ. RahdarA. Díez-PascualA.M. Development of chitosan based β-carotene mucoadhesive formulation for skin cancer treatment.Int. J. Biol. Macromol.2023253Pt 112665910.1016/j.ijbiomac.2023.12665937660856
    [Google Scholar]
  93. ConfortiC. CorneliP. HarwoodC. ZalaudekI. Evolving role of systemic therapies in non-melanoma skin cancer.Clin. Oncol. (R. Coll. Radiol.)2019311175976810.1016/j.clon.2019.08.01131522944
    [Google Scholar]
  94. TagliaferriL. CiardoFG. Non-melanoma skin cancer treated by contact high-dose-rate radiotherapy (brachytherapy): A mono-institutional series and literature review.In Vivo.20213542313231910.21873/invivo.1250534182511
    [Google Scholar]
  95. McDanielW.E. Therapy for basal cell epitheliomas by curettage only. Further study.Arch. Dermatol.19831191190190310.1001/archderm.1983.016503500290096639109
    [Google Scholar]
  96. KauvarA.N.B. ArpeyC.J. HruzaG. OlbrichtS.M. BennettR. MahmoudB.H. Consensus for nonmelanoma skin cancer treatment, part II: Squamous cell carcinoma, including a cost analysis of treatment methods.Dermatol. Surg.201541111214124010.1097/DSS.000000000000047826445288
    [Google Scholar]
  97. KennedyJ.C. PottierR.H. ProssD.C. Photodynamic therapy with endogenous protoporphyrin.J. Photochem. Photobiol. B199061-214314810.1016/1011‑1344(90)85083‑92121931
    [Google Scholar]
  98. RhodesL.E. de RieM. EnströmY. GrovesR. MorkenT. GouldenV. WongG.A. GrobJ.J. VarmaS. WolfP. Photodynamic therapy using topical methyl aminolevulinate vs. surgery for nodular basal cell carcinoma: Results of a multicenter randomized prospective trial.Arch. Dermatol.20041401172310.1001/archderm.140.1.1714732655
    [Google Scholar]
  99. Suárez-ValladaresM.J. Rodriguez-PrietoM.Á. Serra-LlusàR. Penetration of 630 nm laser and 5-aminolevulinic acid in tissue with intralesional photodynamic therapy.Photodiagn. Photodyn. Ther.20161616616810.1016/j.pdpdt.2016.09.00627645917
    [Google Scholar]
  100. LuiH. HobbsL. TopeW.D. LeeP.K. ElmetsC. ProvostN. ChanA. NeyndorffH. SuX.Y. JainH. HamzaviI. McLeanD. BissonnetteR. Photodynamic therapy of multiple nonmelanoma skin cancers with verteporfin and red light-emitting diodes: Two-year results evaluating tumor response and cosmetic outcomes.Arch. Dermatol.20041401263210.1001/archderm.140.1.2614732656
    [Google Scholar]
  101. DąbrowskiJ.M. ArnautL.G. Photodynamic therapy (PDT) of cancer: From local to systemic treatment.Photochem. Photobiol. Sci.201514101765178010.1039/c5pp00132c26219737
    [Google Scholar]
  102. Calzavara-PintonP.G. VenturiniM. SalaR. CapezzeraR. ParrinelloG. SpecchiaC. ZaneC. Methylaminolaevulinate-based photodynamic therapy of Bowen’s disease and squamous cell carcinoma.Br. J. Dermatol.2008159113714410.1111/j.1365‑2133.2008.08593.x18489606
    [Google Scholar]
  103. GriffinL. LearJ. Photodynamic therapy and non-melanoma skin cancer.Cancers (Basel)20168109810.3390/cancers810009827782094
    [Google Scholar]
  104. JalianH.R. AvramM.M. StankiewiczK.J. ShofnerJ.D. TannousZ. Combined 585 nm pulsed-dye and 1,064 nm Nd:YAG lasers for the treatment of basal cell carcinoma.Lasers Surg. Med.20144611710.1002/lsm.2220124272664
    [Google Scholar]
  105. SoleymaniT. AbroukM. KellyK.M. An analysis of laser therapy for the treatment of nonmelanoma skin cancer.Dermatol. Surg.201743561562410.1097/DSS.000000000000104828195845
    [Google Scholar]
  106. KimD.J. KimJ. SpaunhurstK. MontoyaJ. KhodoshR. ChandraK. FuT. GilliamA. MolgoM. BeachyP.A. TangJ.Y. Open-label, exploratory phase II trial of oral itraconazole for the treatment of basal cell carcinoma.J. Clin. Oncol.201432874575110.1200/JCO.2013.49.952524493717
    [Google Scholar]
  107. KwonS. DongZ.M. WuP.C. Sentinel lymph node biopsy for high- risk cutaneous squamous cell carcinoma: Clinical experience and review of literature.World J. Surg. Oncol.2011918010.1186/1477‑7819‑9‑8021771334
    [Google Scholar]
  108. BenkhaledS. Van GestelD. Gomes da Silveira CauduroC. PalumboS. MarmolV. DesmetA. The state of the art of radiotherapy for non-melanoma skin cancer: A review of the literature.Front. Med.2022991326910.3389/fmed.2022.91326935833108
    [Google Scholar]
  109. ChenA.C. MartinA.J. ChoyB. Fernández-PeñasP. DalziellR.A. McKenzieC.A. ScolyerR.A. DhillonH.M. VardyJ.L. KrickerA. St GeorgeG. ChinniahN. HallidayG.M. DamianD.L. A phase 3 randomized trial of nicotinamide for skin-cancer chemoprevention.N. Engl. J. Med.2015373171618162610.1056/NEJMoa150619726488693
    [Google Scholar]
  110. AbramsonA.K. KrasnyM.J. GoldmanG.D. Tangential shave removal of basal cell carcinoma.Dermatol. Surg.201339338739210.1111/dsu.1210623279298
    [Google Scholar]
  111. GhareebE.R. DulmageB.O. VargoJ.A. BalasubramaniG.K. BeriwalS. Underutilization of Mohs micrographic surgery for less common cutaneous malignancies in the United States.Dermatol. Surg.201642565366210.1097/DSS.000000000000070527054447
    [Google Scholar]
  112. SchellA.E. RussellM.A. ParkS.S. Suggested excisional margins for cutaneous malignant lesions based on Mohs micrographic surgery.JAMA Facial Plast. Surg.201315533734310.1001/jamafacial.2013.101123744451
    [Google Scholar]
  113. KrähnG. LeiterU. KaskelP. UdartM. UtikalJ. BezoldG. PeterR.U. Coexpression patterns of EGFR, HER2, HER3 and HER4 in non-melanoma skin cancer.Eur. J. Cancer200137225125910.1016/S0959‑8049(00)00364‑611166154
    [Google Scholar]
  114. AmaralT. GarbeC. Non-melanoma skin cancer: New and future synthetic drug treatments.Expert Opin. Pharmacother.201718768969910.1080/14656566.2017.131637228414587
    [Google Scholar]
  115. Micali G, Lacarrubba F, Nasca MR, Ferraro S, Schwartz RA. Topical pharmacotherapy for skin cancer: Part II. Clinical applications.J Am Acad Dermatol2014706979
    [Google Scholar]
  116. BargmanH. HochmanJ. Topical treatment of Bowen’s disease with 5-Fluorouracil.J. Cutan. Med. Surg.20037210110510.1177/12034754030070020112447619
    [Google Scholar]
  117. PerisK. FargnoliM.C. GarbeC. KaufmannR. BastholtL. SeguinN.B. BatailleV. MarmolV. DummerR. HarwoodC.A. HauschildA. HöllerC. HaedersdalM. MalvehyJ. MiddletonM.R. MortonC.A. NagoreE. StratigosA.J. SzeimiesR.M. TagliaferriL. TrakatelliM. ZalaudekI. EggermontA. GrobJ.J. Diagnosis and treatment of basal cell carcinoma: European consensus–based interdisciplinary guidelines.Eur. J. Cancer2019118103410.1016/j.ejca.2019.06.00331288208
    [Google Scholar]
  118. DanialC. SarinK.Y. OroA.E. ChangA.L.S. An investigator-initiated open-label trial of sonidegib in advanced basal cell carcinoma patients resistant to vismodegib.Clin. Cancer Res.20162261325132910.1158/1078‑0432.CCR‑15‑158826546616
    [Google Scholar]
  119. CortesJ.E. Douglas SmithB. WangE.S. MerchantA. OehlerV.G. ArellanoM. DeAngeloD.J. PollyeaD.A. SekeresM.A. RobakT. MaW.W. ZeremskiM. Naveed ShaikM. Douglas LairdA. O’ConnellA. ChanG. SchroederM.A. Glasdegib in combination with cytarabine and daunorubicin in patients with AML or high-risk MDS: Phase 2 study results.Am. J. Hematol.201893111301131010.1002/ajh.2523830074259
    [Google Scholar]
  120. MartinezJ.C. CookJ.L. High-risk cutaneous squamous cell carcinoma without palpable lymphadenopathy: Is there a therapeutic role for elective neck dissection?Dermatol. Surg.200733441042010.1097/00042728‑200704000‑0000317430374
    [Google Scholar]
  121. AgrawalA.D. Pharmacological activities of flavonoids: A review.Int J Pharm Sci Nanotechnol2011421394139810.37285/ijpsn.2011.4.2.3
    [Google Scholar]
  122. SaeidniaS. AbdollahiM. Antioxidants: Friends or foe in prevention or treatment of cancer: The debate of the century.Toxicol. Appl. Pharmacol.20132711496310.1016/j.taap.2013.05.00423680455
    [Google Scholar]
  123. StahlW. SiesH. Bioactivity and protective effects of natural carotenoids.Biochim. Biophys. Acta Mol. Basis Dis.20051740210110710.1016/j.bbadis.2004.12.00615949675
    [Google Scholar]
  124. TanakaT. ShnimizuM. MoriwakiH. Cancer chemoprevention by carotenoids.Molecules20121733202324210.3390/molecules1703320222418926
    [Google Scholar]
  125. LeeJ.H. KishikawaM. KumazoeM. YamadaK. TachibanaH. Vitamin A enhances antitumor effect of a green tea polyphenol on melanoma by upregulating the polyphenol sensing molecule 67-kDa laminin receptor.PLoS One201056e1105110.1371/journal.pone.001105120548792
    [Google Scholar]
  126. FeskanichD. WillettW.C. HunterD.J. ColditzG.A. Dietary intakes of vitamins A, C, and E and risk of melanoma in two cohorts of women.Br. J. Cancer20038891381138710.1038/sj.bjc.660088212778065
    [Google Scholar]
  127. UddinA.N. LabudaI. BurnsF.J. A novel mechanism of filaggrin induction and sunburn prevention by β-damascenone in Skh-1 mice.Toxicol. Appl. Pharmacol.2012265333534110.1016/j.taap.2012.08.03522982537
    [Google Scholar]
  128. DelmasD. LançonA. ColinD. JanninB. LatruffeN. Resveratrol as a chemopreventive agent: A promising molecule for fighting cancer.Curr. Drug Targets20067442344210.2174/13894500677635933116611030
    [Google Scholar]
  129. QiuY. YuT. WangW. PanK. ShiD. SunH. Curcumin-induced melanoma cell death is associated with mitochondrial permeability transition pore (mPTP) opening.Biochem. Biophys. Res. Commun.20144481152110.1016/j.bbrc.2014.04.02424735534
    [Google Scholar]
  130. HamsaT.P. ThejassP. KuttanG. Induction of apoptosis by sulforaphane in highly metastatic B16F-10 melanoma cells.Drug Chem. Toxicol.201134333234010.3109/01480545.2010.53869421649489
    [Google Scholar]
  131. DavidsL.M. KleemannB. KacerovskáD. PizingerK. KidsonS.H. Hypericin phototoxicity induces different modes of cell death in melanoma and human skin cells.J. Photochem. Photobiol. B2008912-3677610.1016/j.jphotobiol.2008.01.01118342534
    [Google Scholar]
  132. ZhangH. SamadiA.K. CohenM.S. TimmermannB.N. Antiproliferative withanolides from the Solanaceae: A structure–activity study.Pure Appl. Chem.20128461353136710.1351/PAC‑CON‑11‑10‑0824098060
    [Google Scholar]
  133. Mandlik IngawaleD.S. NamdeoA.G. Pharmacological evaluation of Ashwagandha highlighting its healthcare claims, safety, and toxicity aspects.J. Diet. Suppl.202118218322610.1080/19390211.2020.174148432242751
    [Google Scholar]
  134. GreayS. IrelandD. Induction of necrosis and cell cycle arrest in murine cancer cell lines by Melaleuca alternifolia (tea tree) oil and terpinen-4-ol.Chemother Pharmacol.201065877888
    [Google Scholar]
  135. NigamN. BhuiK. PrasadS. GeorgeJ. ShuklaY. [6]-Gingerol induces reactive oxygen species regulated mitochondrial cell death pathway in human epidermoid carcinoma A431 cells.Chem. Biol. Interact.20091811778410.1016/j.cbi.2009.05.01219481070
    [Google Scholar]
  136. YoonT.J. YooY.C. KangT.B. SongS.K. LeeK.B. HerE. SongK.S. KimJ.B. Antitumor activity of the Korean Mistletoe Lectin is attributed to activation of macrophages and NK cells.Arch. Pharm. Res.2003261086186710.1007/BF0298003314609136
    [Google Scholar]
  137. UkiyaM. AkihisaT. YasukawaK. TokudaH. SuzukiT. KimuraY. Anti-inflammatory, anti-tumor-promoting, and cytotoxic activities of constituents of marigold (Calendula officinalis) flowers.J. Nat. Prod.200669121692169610.1021/np068016b17190444
    [Google Scholar]
  138. NgoS.N.T. WilliamsD.B. HeadR.J. Rosemary and cancer prevention: Preclinical perspectives.Crit. Rev. Food Sci. Nutr.2011511094695410.1080/10408398.2010.49088321955093
    [Google Scholar]
  139. DebnathS. KumarS. ChanduA.N. BhattacharjeeC. Cytotoxicity study of plant Aloe vera (Linn).Chron. Young Sci.20123323323510.4103/2229‑5186.99595
    [Google Scholar]
  140. PriestapH.A. GalvisA. RiveroN. CostantinoV. LopezL.A. BarbieriM.A. Dehydroleucodine and dehydroparishin-B inhibit proliferation and motility of B16 melanoma cells.Phytochem. Lett.20125358158510.1016/j.phytol.2012.05.018
    [Google Scholar]
  141. LeeC.C. ChiuC.C. LiaoW.T. WuP.F. ChenY.T. HuangK.C. ChouY.T. WenZ.H. WangH.M. Alpinia oxyphylla Miq. bioactive extracts from supercritical fluid carbon dioxide extraction.Biochem. Eng. J.20137810110710.1016/j.bej.2013.03.009
    [Google Scholar]
  142. LoC.Y. LiuP.L. LinL.C. ChenY.T. HseuY.C. WenZ.H. WangH.M. Antimelanoma and antityrosinase from Alpinia galangal constituents.ScientificWorldJournal201320131510.1155/2013/18650524027439
    [Google Scholar]
  143. UzzamanS. Pharmacological activities of neem (Azadirachta indica): A review.Int. J. Pharmacog. Life Sci.202011384110.33545/27072827.2020.v1.i1a.8
    [Google Scholar]
  144. NaginiS. NivethaR. PalrasuM. MishraR. Nimbolide, a neem limonoid, is a promising candidate for the anticancer drug arsenal.J. Med. Chem.20216473560357710.1021/acs.jmedchem.0c0223933739088
    [Google Scholar]
  145. DhamaK. SharunK. GugjooM.B. TiwariR. AlagawanyM. Iqbal YatooM. ThakurP. IqbalH.M.N. ChaicumpaW. MichalakI. ElnesrS.S. FaragM.R. A comprehensive review on chemical profile and pharmacological activities of Ocimum basilicum.Food Rev. Int.202339111914710.1080/87559129.2021.1900230
    [Google Scholar]
  146. AhmadB. HafeezN. RaufA. Phyllanthus emblica: A comprehensive review of its therapeutic benefits.Front. Pharmacol.2021138278310
    [Google Scholar]
  147. SanthaS. DwivediC. Anticancer effects of sandalwood (Santalum album).Anticancer Res.20153563137314526026073
    [Google Scholar]
  148. TiwariP. NayakP. PrustyS.K. SahuP.K. Phytochemistry and pharmacology of Tinospora cordifolia: A review.Syst. Rev. Pharm.201891707810.5530/srp.2018.1.14
    [Google Scholar]
  149. BurgeiroA. BentoA.C. GajateC. OliveiraP.J. MollinedoF. Rapid human melanoma cell death induced by sanguinarine through oxidative stress.Eur. J. Pharmacol.20137051-310911810.1016/j.ejphar.2013.02.03523499690
    [Google Scholar]
  150. GoldbergL.H. LandauJ.M. MoodyM.N. Vergilis-KalnerI.J. Treatment of Bowen’s disease on the penis with low concentration of a standard mixture of solasodine glycosides and liquid nitrogen.Dermatol. Surg.201137685886110.1111/j.1524‑4725.2011.02014.x21605251
    [Google Scholar]
  151. SolimanE. HendersonK.L. DanellA.S. Van DrossR. Arachidonoyl-ethanolamide activates endoplasmic reticulum stress-apoptosis in tumorigenic keratinocytes: Role of cyclooxygenase-2 and novel J-series prostamides.Mol. Carcinog.201655211713010.1002/mc.2225725557612
    [Google Scholar]
  152. BlázquezC. CarracedoA. BarradoL. José RealP. Luis Fernández-LunaJ. VelascoG. MalumbresM. GuzmánM. BlázquezC. CarracedoA. BarradoL. José RealP. Luis Fernández-LunaJ. VelascoG. MalumbresM. GuzmánM. Cannabinoid receptors as novel targets for the treatment of melanoma.FASEB J.200620142633263510.1096/fj.06‑6638fje17065222
    [Google Scholar]
  153. DheerajA. RigbyC.M. O’BryantC.L. AgarwalC. SinghR.P. DeepG. AgarwalR. Silibinin treatment inhibits the growth of Hedgehog inhibitor-resistant basal cell carcinoma cells via targeting EGFR-MAPK-Akt and Hedgehog signaling.Photochem. Photobiol.2017934999100710.1111/php.1272728120452
    [Google Scholar]
  154. BerlandaJ. KiesslichT. OberdannerC.B. ObermairF.J. KrammerB. PlaetzerK. Characterization of apoptosis induced by photodynamic treatment with hypericin in A431 human epidermoid carcinoma cells.J. Environ. Pathol. Toxicol. Oncol.2006251-217318810.1615/JEnvironPatholToxicolOncol.v25.i1‑2.10016566716
    [Google Scholar]
  155. GuptaN. GuptaG.D. SinghD. Localized topical drug delivery systems for skin cancer: Current approaches and future prospects.Front. Nanotechnol.20224100662810.3389/fnano.2022.1006628
    [Google Scholar]
  156. ShahK. DateA. JoshiM. PatravaleV. Solid lipid nanoparticles (SLN) of tretinoin: Potential in topical delivery.Int. J. Pharm.20073451-216317110.1016/j.ijpharm.2007.05.06117644288
    [Google Scholar]
  157. RavikumarP. TatkeP. Advances in encapsulated dermal formulations in chemoprevention of melanoma: An overview.J. Cosmet. Dermatol.20191861606161210.1111/jocd.1310531436386
    [Google Scholar]
  158. SlominskiA.T. BrożynaA.A. ZmijewskiM.A. JóźwickiW. JettenA.M. MasonR.S. TuckeyR.C. ElmetsC.A. Vitamin D signaling and melanoma: Role of vitamin D and its receptors in melanoma progression and management.Lab. Invest.201797670672410.1038/labinvest.2017.328218743
    [Google Scholar]
  159. BarbeeM.S. OgunniyiA. HorvatT.Z. DangT.O. Current status and future directions of the immune checkpoint inhibitors ipilimumab, pembrolizumab, and nivolumab in oncology.Ann. Pharmacother.201549890793710.1177/106002801558621825991832
    [Google Scholar]
  160. WeinsteinD. LeiningerJ. HambyC. SafaiB. Diagnostic and prognostic biomarkers in melanoma.J. Clin. Aesthet. Dermatol.201476132425013535
    [Google Scholar]
  161. VennepureddyA. ThumallapallyN. NehruV.M. AtallahJ.P. TerjanianT. Novel drugs and combination therapies for the treatment of metastatic melanoma.J. Clin. Med. Res.201682637510.14740/jocmr2424w26767073
    [Google Scholar]
  162. DavarD. TarhiniA.A. KirkwoodJ.M. Adjuvant therapy for melanoma.Cancer J.201218219220210.1097/PPO.0b013e31824f118b22453021
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128307653240710044902
Loading
/content/journals/cpd/10.2174/0113816128307653240710044902
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test