- Home
- A-Z Publications
- Current Pharmaceutical Biotechnology
- Previous Issues
- Volume 25, Issue 11, 2024
Current Pharmaceutical Biotechnology - Volume 25, Issue 11, 2024
Volume 25, Issue 11, 2024
-
-
Evolving Advances in the Cosmetic use of Probiotics and Postbiotics: Health, Regulatory and Marketing Aspects
Authors: Rashmi Arora, Rajwinder Kaur, Ritchu Babbar, Smriti Dhingra, Ashwani K. Dhingra and Ajmer S. GrewalOngoing development in cosmetics is increasingly making use of probiotics, which are defined as “live microorganisms with health-enhancing properties mediated through ingestion or topical application to the host”. The observation that several bacterial strains augment normal processes of healthy tissue maintenance, particularly for the skin, has opened up new avenues for the use of bacterial strains in cosmetics. A principal feature of such “cosmeceuticals” is an application of increasing insight into the biochemical nature of the skin’s normal microbial flora, also called its microbiome. The opportunity of manipulating the skin microbiome to address various skin disorders has revealed novel routes for treatment. The skin microbiome manipulation approaches to address various skin disorders include skin microbiome transplantation, skin bacteriotherapy, and prebiotic stimulation. Research in this field has revealed that medical outcome-targeted manipulation of skin microbiome bacterial strain makeup may significantly increase skin health and appearance. Commercial availability of probiotic skincare products is rapidly expanding worldwide due to satisfactory laboratory results and public perception of probiotics as being intrinsically more wholesome than other bioactive substances, such as synthetics. Major outcomes of probiotic use include a significant reduction in skin wrinkling, acne and other conditions adversely affecting skin appearance and healthy function. Moreover, probiotics may additionally promote normal skin hydration, resulting in a vibrant and lustrous appearance. Nevertheless, significant technical challenges remain for the full optimization of probiotics in cosmetic products. This article summarizes the evolving nature of this field and explores current probiotic research initiatives, along with regulatory aspects and significant challenges in the manufacturing of cosmetics in the context of market expansion for these products.
-
-
-
Zero-valent Iron Nanoparticles: Biogenic Synthesis and their Medical Applications; Existing Challenges and Future Prospects
Authors: Minahil Hayat, Sayyad A. R. Bukhari, Muhammad I. Ashraf and Sumreen HayatObjectives: In the last decade, nanobiotechnology is emerging as a keen prudence area owing to its widespread applications in the medical field. In this context, zero-valent iron nanoparticles (nZVI) have garnered tremendous attention attributed to their cheap, non-toxic, excellent paramagnetic nature, extremely reactive surface, and dual oxidation state that makes them excellent antioxidants and free-radical scavengers. Facile biogenic synthesis, in which a biological source is used as a template for the synthesis of NPs, is presumably dominant among other physical and chemical synthetic procedures. The purpose of this review is to elucidate plant-mediated synthesis of nZVI, although they have been successfully fabricated by microbes and other biological entities (such as starch, chitosan, alginate, cashew nut shell, etc.) as well. Methods: The methodology of the study involved keyword searches of electronic databases, including ScienceDirect, NCBI, and Google Scholar (2008-2023). Search terms of the review included ‘biogenic synthesis of nZVI’, ‘plant-mediated synthesis of nZVI’, ‘medical applications of nZVI’, and ‘Recent advancements and future prospects of nZVI’. Results: Various articles were identified and reviewed for biogenic fabrication of stable nZVI with the vast majority of studies reporting positive findings. The resultant nanomaterial found great interest for biomedical purposes such as their use as biocompatible anticancer, antimicrobial, antioxidant, and albumin binding agents that have not been adequately accessed in previous studies. Conclusion: This review shows that there are potential cost savings applications to be made when using biogenic nZVI for medical purposes. However, the encountering challenges concluded later, along with the prospects for sustainable future development.
-
-
-
FDA-approved CAR T-cell Therapy: A Decade of Progress and Challenges
CAR T-cell therapy is a promising approach for cancer treatment, utilizing a patient's own T-cells (autologous cell) or T-cells from a healthy donor (allogeneic cell) to target and destroy cancer cells. Over the last decade, significant advancements have been made in this field, including the development of novel CAR constructs, improved understanding of biology and mechanisms of action, and expanded clinical applications for treating a wider range of cancers. In this review, we provide an overview of the steps involved in the production of CAR T-cells and their mechanism of action. We also introduce different CAR T-cell therapies available, including their implementation, dosage, administration, treatment cost, efficacy, and resistance. Common side effects of CAR T-cell therapy are also discussed. The CAR T-cell products highlighted in this review are FDA-approved products, which include Kymriah® (tisagenlecleucel), Tecartus® (brexucabtagene autoleucel), Abecma® (Idecabtagene vicleucel), Breyanzi® (lisocabtagene maraleucel), and Yescarta® (axicabtagene ciloleucel). In conclusion, CAR T-cell therapy has made tremendous progress over the past decade and has the potential to revolutionize cancer treatment. This review paper provides insights into the progress, challenges, and future directions of CAR T-cell therapy, offering valuable information for researchers, clinicians, and patients.
-
-
-
Main Aspects of Pharmaceutical Development of In situ Immunobiological Drugs for Intranasal Administration
Introduction: The review presents the latest developments in the area of intranasal in situ delivery systems of immunobiological drugs (IBDs). Interest in intranasal administration for IBDs has increased significantly due to the COVID-19 pandemic. However, not only intranasal delivery of vaccines is developing, but also bacteriophages, interferons, etc. In situ systems that make a selective phase transition can be a modern solution to intranasal delivery problems caused by mucociliary clearance. In addition, smart-polymers used as the main excipients in in situ systems can be used as specific adjuvants. Methods: A scientific search was conducted on the PubMed database of medical publications for the period from 2000 to 2022, using the keywords "intranasal in situ vaccine" "intranasal in situ immunization". There were analyzed in detail more than 70 scientific studies on intranasal in situ delivery of IBDs. Results and Conclusions: Despite the large number of new studies, the potential of possibilities of intranasal in situ systems is not being realized. Based on the results of the literature review an algorithm was created for the development of in situ systems for intranasal delivery of IBDs. Such algorithms and the methods of study design organization described in the review will help to facilitate the R process and bring the drug to commercial market, which will help to improve the quality of medical care.
-
-
-
A Glance on Nanovaccine: A Potential Approach for Disease Prevention
Authors: Akash Garg, Rutvi Agrawal, Himansu Chopra, Talever Singh, Ramkumar Chaudhary and Abhishek TankaraThere are several vaccines available for preventing various bacterial and viral infections, but still, there are many challenges that require the development of noninvasive, more efficient, and active vaccines. The advancement in biotechnological tools has provided safer antigens, such as nucleic acids, proteins etc., but due to their lower immunogenic property, adjuvants of stronger immune response are required. Nanovaccines are effective vaccines when compared with conventional vaccines as they can induce both Humoral and cell-mediated immune responses and also provide longer immunogenic memory. The nanocarriers used in vaccines act as adjuvant. They provide site-specific delivery of antigens and can be used in conjugation with immunostimulatory molecules for enhancing adjuvant therapy. The nanovaccines avoid degrading cell pathways and provide effective absorption into blood vessels. The higher potential of nanovaccines to treat various diseases, such as acquired immuno deficiency syndrome, cancer, tuberculosis, malaria and many others, along with their immunological mechanisms and different types, have been discussed in the review.
-
-
-
Bioactive Exploration in Functional Foods: Unlocking Nature's Treasures
Authors: Ravi K. Mittal, Raghav Mishra, Vikram Sharma and Priyank PurohitBackground: Functional foods offer an appealing way to improve health and prevent chronic diseases, and this subject has received much attention lately. They are effective in preventing chronic diseases like cancer, diabetes, heart disease, and obesity, according to research. Objective: This work presents an in-depth analysis of functional foods, covering key challenges from a scientific, legal, and commercial perspective. Methods: Multiple databases were searched to find studies on functional foods included in the systematic literature review. Various aspects of functional foods, from their classification, impact on human wellness, effectiveness in inhibiting chronic diseases, the regulatory environment, global market trends, and industry challenges, are all clarified in this thorough review. Results: This study aims to enhance understanding and establish a pathway for functional foods to be acknowledged as valid choices in the field of dietary supplements. It provides a thorough investigation of bioactive compounds present in functional foods, including but not limited to polyphenols, carotenoids, omega fatty acids, prebiotics, probiotics, and dietary fiber, along with an overview of their potential to mitigate chronic illnesses. We engage in an in-depth exploration of regulatory frameworks, shed light on groundbreaking research advancements, and meticulously examine strategies for commercialization and the variety of global challenges that accompany them. Establishing scientific consensus, navigating complex regulatory processes, dealing with skeptical consumers, and rising levels of competition are all problems that need to be solved in this field. Conclusion: The field of functional foods can advance further, promoting better public health outcomes, by deeply comprehending and addressing these complex dimensions.
-
-
-
Hydrogel Breakthroughs in Biomedicine: Recent Advances and Implications
Authors: Ravi K Mittal, Raghav Mishra, Rehan Uddin and Vikram SharmaObjective: The objective of this review is to present a succinct summary of the latest advancements in the utilization of hydrogels for diverse biomedical applications, with a particular focus on their revolutionary impact in augmenting the delivery of drugs, tissue engineering, along with diagnostic methodologies. Methods: Using a meticulous examination of current literary works, this review systematically scrutinizes the nascent patterns in applying hydrogels for biomedical progress, condensing crucial discoveries to offer a comprehensive outlook on their ever-changing importance. Results: The analysis presents compelling evidence regarding the growing importance of hydrogels in biomedicine. It highlights their potential to significantly enhance drug delivery accuracy, redefine tissue engineering strategies, and advance diagnostic techniques. This substantiates their position as a fundamental element in the progress of modern medicine. Conclusion: In summary, the constantly evolving advancement of hydrogel applications in biomedicine calls for ongoing investigation and resources, given their diverse contributions that can revolutionize therapeutic approaches and diagnostic methods, thereby paving the way for improved patient well-being.
-
-
-
Synthesis, Characterization, Acute Dermal Toxicity, Anti-inflammatory, and Wound Healing Potential of Biogenic Silver Nanoparticles in Balb C Mice
Authors: Saiqa Andleeb, Zafar Iqbal, Nazia Gulzar, Abida Raza and Ashfaq AhmadAim: The current study aimed to develop an economic plant-based therapeutic agent to improve the treatment strategies for diseases at the nano-scale. Methods: In the current research, silver nanoparticles were synthesized using Trillium govanianum aqueous extract. Characterizations were done using UV–visible spectrophotometer, X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy. In vivo biological activities such as acute dermal toxicity, wound healing, and anti-inflammatory were done on Balb C mice. Absorbance at 295 nm corresponds to the out-of-plane quadrupole Plasmonresonance while at 350 nm corresponds to in-plane dipole resonance. SEM images showed the morphology of TGAgNPs is not exactly spherical while XRD analysis shows that highly crystalline TGAgNPs with an average size of 27.94 nm. The FTIR spectrum represents sharp peaks of aldehyde, amide I, aromatic rings, and polysaccharides. The microscopic assessment did not find any epidermal and dermal layer abnormalities in Blab C mice when exposed to TGAgNPs during acute dermal toxicity. Results & Discussion: Results revealed that 1000 mg/kg is not a lethal dose. In the wound healing activity, no mortality and no abnormal signs were observed when petroleum jelly, nitrofuranose, TGaqu, and TGAgNPs-based ointments were applied. Enhanced epithelization was recorded in TGaqu and TGAgNPs treated mice (p≤0.001). The wound contraction percentage was higher in nitrofuranose-treated mice (74%) followed by TGAgNPs (71%), and TGaqu (69%) compared to vehicle-treated and open-wounded mice. The paw edema model proved the potential use of TGAgNPs and TGaqu as anti-inflammatory agents. Conclusion: Hence, the results proved that both TGaqu and TGAgNPs are not toxic and possessed strong anti-inflammatory and wound-healing effects due to the presence of phytochemical constituents and could be used in various drug production as a therapeutic agent.
-
-
-
N-acetylcysteine Attenuates Cigarette Smoke-induced Alveolar Epithelial Cell Apoptosis through Reactive Oxygen Species Depletion and Glutathione Replenish In vivo and In vitro
Authors: Jie Zhao, Mi Han, Yange Tian, Peng Zhao, Xuefang Liu, Haoran Dong, Suxiang Feng and Jiansheng LiBackground: Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide. N-acetylcysteine (NAC) is well known for its antioxidant properties, along with potential protective effects on COPD. However, the molecular mechanism of NAC against the apoptosis of alveolar epithelial cells (AECs) in COPD remains unclear. Objective: This study aimed to explore the anti-apoptosis effect of NAC in COPD mice and alveolar epithelial cells. Methods: In the present study, the mouse model of COPD was established by cigarette smoke (CS), and mouse alveolar epithelial (MLE-12) cells were treated with cigarette smoke extract (CSE). TdT-mediated dUTP nick-end labeling (TUNEL) assay, reverse transcription polymerase chain reaction (RT-PCR), and western blot were performed to evaluate the effects of NAC on apoptosis, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction. Meanwhile, Lbuthionine- sulfoximine (BSO), a glutathione (GSH) inhibitor, was used to uncover the mechanism of COPD treatment by NAC. Results: We found that NAC pretreatment could attenuate the protein levels of apoptosis, ER stress, and mitochondrial dysfunction-related genes caused by CS in vivo. Meanwhile, CSE could decrease MLE-12 cell viability, which was prevented by apoptosis inhibitor ZVAD-FMK but not necroptosis inhibitor necrostatin-1. Pretreatment of MLE-12 cells with NAC increased cellular GSH levels, inhibited cellular and mitochondrial reactive oxygen species (ROS) accumulation, and decreased protein level of apoptosis, ER stress, and mitochondrial dysfunction-related genes. Moreover, experiment results showed that BSO could completely reverse the beneficial effects of NAC. Conclusion: Our study confirmed that NAC can attenuate CS-induced AEC apoptosis via alleviating ROS-mediated ER stress and mitochondrial dysfunction pathway, and the mechanism was found to be related to replenishing the cellular GSH content.
-
-
-
Marine Microalgae Schizochytrium sp. S31: Potential Source for New Antimicrobial and Antibiofilm Agent
More LessBackground: The rise of antibiotic-resistant bacteria necessitates the discovery of new, safe, and bioactive antimicrobial compounds. The antibacterial and antibiofilm activity of microalgae makes them a potential candidate for developing natural antibiotics to limit microbial infection in various fields. Objective: This study aimed to analyze the antibacterial effect of the methanolic extract of Schizochytrium sp. S31 microalgae by broth microdilution and spot plate assays. Methods: The antibacterial effects of Schizochytrium sp. S31 extract was studied on gramnegative pathogens, Pseudomonas aeruginosa, Escherichia coli 35218, Klebsiella pneumonia, which cause many different human infections, and the gram-positive pathogen Streptococcus mutans. At the same time, the antibiofilm activity of the Schizochytrium sp. S31 extract on Pseudomonas aeruginosa and Escherichia coli 35218 bacteria were investigated by crystal violet staining method. Results: Schizochytrium sp. S31 extract at a 60% concentration for 8 hours displayed the highest antibacterial activity against P. aeruginosa, E. coli 35218, and K. pneumonia, with a decrease of 87%, 92%, and 98% in cell viability, respectively. The experiment with Streptococcus mutans revealed a remarkable antibacterial effect at a 60% extract concentration for 24 hours, leading to a notable 93% reduction in cell viability. Furthermore, the extract exhibited a dose-dependent inhibition of biofilm formation in P. aeruginosa and E. coli 35218. The concentration of 60% extract was identified as the most effective dosage in terms of inhibition. Conclusion: This research emphasizes the potential of Schizochytrium sp. S31 as a natural antibacterial and antibiofilm agent with promising applications in the pharmaceutical sectors. This is the first study to examine the antibacterial activity of Schizochytrium sp. S31 microalgae using broth microdilution, spot plate assays, and the antibiofilm activity by a crystal staining method. The findings of this study show that Schizochytrium sp. S31 has antibacterial and antibiofilm activities against critical bacterial pathogens.
-
Volumes & issues
-
Volume 26 (2025)
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)