- Home
- A-Z Publications
- Current Pharmaceutical Biotechnology
- Previous Issues
- Volume 25, Issue 10, 2024
Current Pharmaceutical Biotechnology - Volume 25, Issue 10, 2024
Volume 25, Issue 10, 2024
-
-
Effects of Antimicrobial Photosensitizers of Photodynamic Therapy (PDT) to Treat Periodontitis
Antimicrobial photodynamic therapy or aPDT is an alternative therapeutic approach in which lasers and different photosensitizing agents are used to eradicate periodontopathic bacteria in periodontitis. Periodontitis is a localized infectious disease caused by periodontopathic bacteria and can destroy bones and tissues surrounding and supporting the teeth. The aPDT system has been shown by in vitro studies to have high bactericidal efficacy. It was demonstrated that aPDT has low local toxicity, can speed up dental therapy, and is cost-effective. Several photosensitizers (PSs) are available for each type of light source which did not induce any damage to the patient and are safe. In recent years, significant advances have been made in aPDT as a non-invasive treatment method, especially in treating infections and cancers. Besides, aPDT can be perfectly combined with other treatments. Hence, this survey focused on the effectiveness and mechanism of aPDT of periodontitis by using lasers and the most frequently used antimicrobial PSs such as methylene blue (MB), toluidine blue ortho (TBO), indocyanine green (ICG), malachite green (MG) (Triarylmethanes), erythrosine dyes (ERY) (Xanthenes dyes), rose bengal (RB) (Xanthenes dyes), eosin-Y (Xanthenes dyes), radachlorin group and curcumin. The aPDT with these PSs can reduce pathogenic bacterial loads in periodontitis. Therefore, it is clear that there is a bright future for using aPDT to fight microorganisms causing periodontitis.
-
-
-
Engineering Platelet Membrane Imitating Nanoparticles for Targeted Therapeutic Delivery
Platelet Membrane Imitating Nanoparticles (PMINs) is a novel drug delivery system that imitates the structure and functionality of platelet membranes. PMINs imitate surface markers of platelets to target specific cells and transport therapeutic cargo. PMINs are engineered by incorporating the drug into the platelet membrane and encapsulating it in a nanoparticle scaffold. This allows PMINs to circulate in the bloodstream and bind to target cells with high specificity, reducing off-target effects and improving therapeutic efficacy. The engineering of PMINs entails several stages, including the separation and purification of platelet membranes, the integration of therapeutic cargo into the membrane, and the encapsulation of the membrane in a nanoparticle scaffold. In addition to being involved in a few pathological conditions including cancer, atherosclerosis, and rheumatoid arthritis, platelets are crucial to the body's physiological processes. This study includes the preparation and characterization of platelet membrane-like nanoparticles and focuses on their most recent advancements in targeted therapy for conditions, including cancer, immunological disorders, atherosclerosis, phototherapy, etc. PMINs are a potential drug delivery system that combines the advantages of platelet membranes with nanoparticles. The capacity to create PMMNs with particular therapeutic cargo and surface markers provides new possibilities for targeted medication administration and might completely change the way that medicine is practiced. Despite the need for more studies to optimize the engineering process and evaluate the effectiveness and safety of PMINs in clinical trials, this technology has a lot of potential.
-
-
-
Postbiotic as Novel Alternative Agent or Adjuvant for the Common Antibiotic Utilized in the Food Industry
Authors: Sama Sepordeh, Amir M. Jafari, Sara Bazzaz, Amin Abbasi, Ramin Aslani, Sousan Houshmandi and Aziz Homayouni RadBackground: Antibiotic resistance is a serious public health problem as it causes previously manageable diseases to become deadly infections that can cause serious disability or even death. Scientists are creating novel approaches and procedures that are essential for the treatment of infections and limiting the improper use of antibiotics in an effort to counter this rising risk. Objectives: With a focus on the numerous postbiotic metabolites formed from the beneficial gut microorganisms, their potential antimicrobial actions, and recent associated advancements in the food and medical areas, this review presents an overview of the emerging ways to prevent antibiotic resistance. Results: Presently, scientific literature confirms that plant-derived antimicrobials, RNA therapy, fecal microbiota transplantation, vaccines, nanoantibiotics, haemofiltration, predatory bacteria, immunotherapeutics, quorum-sensing inhibitors, phage therapies, and probiotics can be considered natural and efficient antibiotic alternative candidates. The investigations on appropriate probiotic strains have led to the characterization of specific metabolic byproducts of probiotics named postbiotics. Based on preclinical and clinical studies, postbiotics with their unique characteristics in terms of clinical (safe origin, without the potential spread of antibiotic resistance genes, unique and multiple antimicrobial action mechanisms), technological (stability and feasibility of largescale production), and economic (low production costs) aspects can be used as a novel alternative agent or adjuvant for the common antibiotics utilized in the production of animal-based foods. Conclusion: Postbiotic constituents may be a new approach for utilization in the pharmaceutical and food sectors for developing therapeutic treatments. Further metabolomics investigations are required to describe novel postbiotics and clinical trials are also required to define the sufficient dose and optimum administration frequency of postbiotics.
-
-
-
miR-488-3p Represses Malignant Behaviors and Facilitates Autophagy of Osteosarcoma Cells by Targeting Neurensin-2
Authors: Chao Yun, Jincai Zhang and MorigeleObjectives: Osteosarcoma (OS) is a primary bone sarcoma that primarily affects children and adolescents and poses significant challenges in terms of treatment. microRNAs (miRNAs) have been implicated in OS cell growth and regulation. This study sought to investigate the role of hsa-miR-488-3p in autophagy and apoptosis of OS cells. Methods: The expression of miR-488-3p was examined in normal human osteoblasts and OS cell lines (U2OS, Saos2, and OS 99-1) using RT-qPCR. U2OS cells were transfected with miR-488- 3p-mimic, and cell viability, apoptosis, migration, and invasion were assessed using CCK-8, flow cytometry, and Transwell assays, respectively. Western blotting and immunofluorescence were employed to measure apoptosis- and autophagy-related protein levels, as well as the autophagosome marker LC3. The binding sites between miR-488-3p and neurensin-2 (NRSN2) were predicted using online bioinformatics tools and confirmed by a dual-luciferase assay. Functional rescue experiments were conducted by co-transfecting miR-488-3p-mimic and pcDNA3.1-NRSN2 into U2OS cells to validate the effects of the miR-488-3p/NRSN2 axis on OS cell behaviors. Additionally, 3-MA, an autophagy inhibitor, was used to investigate the relationship between miR- 488-3p/NRSN2 and cell apoptosis and autophagy. Results: miR-488-3p was found to be downregulated in OS cell lines, and its over-expression inhibited the viability, migration, and invasion while promoting apoptosis of U2OS cells. NRSN2 was identified as a direct target of miR-488-3p. Over-expression of NRSN2 partially counteracted the inhibitory effects of miR-488-3p on malignant behaviors of U2OS cells. Furthermore, miR- 488-3p induced autophagy in U2OS cells through NRSN2-mediated mechanisms. The autophagy inhibitor 3-MA partially reversed the effects of the miR-488-3p/NRSN2 axis in U2OS cells. Conclusion: Our findings demonstrate that miR-488-3p suppresses malignant behaviors and promotes autophagy in OS cells by targeting NRSN2. This study provides insights into the role of miR-488-3p in OS pathogenesis and suggests its potential as a therapeutic target for OS treatment.
-
-
-
Protective Effect of Tertiary Butylhydroquinone against Obesity-induced Skeletal Muscle Pathology in Post-weaning High Fat Diet Fed Rats
By Le ZhangBackground: Obesity deleteriously affects skeletal muscle functionality starting from infancy to adulthood, leading to dysfunctional skeletal muscle. Objectives: This study, therefore, evaluated the protective action of tert-butylhydroquinone (tBHQ) against obesity-induced skeletal muscle pathology in high-fat diet (HFD) fed rats. Methods: Twenty post-weaning male albino rats were randomized into four groups of five rats each as: Group 1 (control), Group 2 (HFD), Group 3 (orlistat) and Group 4 (tBHQ). Group one received rat pellets for 12 weeks, while groups 2 to 4 received HFD for 12 weeks. At the end of week 8, obesity was confirmed with Lee Obesity Index and body mass index values of ≥ 303 and ≥ 0.68 gcm2, respectively. Group 3 was given oral administration of orlistat (10 mg/kg, once daily), while group 4 was given oral administration of tBHQ (25 mg/kg, once daily). Administration of orlistat and tBHQ commenced from week 9 to the end of the experiment. Results: Chronic exposure of post-weaning rats to HFD led to their development of the metabolic syndrome phenotypes in adulthood, characterized by obesity, hyperglycemia, dyslipidaemia, hyperinsulinaemia, insulin resistance as well as induction of oxidative stress and alteration of skeletal muscle markers, which were mitigated following supplementation with orlistat and tBHQ. Conclusion: The study showed the anti-obesity potentials of tBHQ and its protective action against HFD obesity-induced skeletal muscular pathology.
-
-
-
Therapeutic Path to Triple Knockout: Investigating the Pan-inhibitory Mechanisms of AKT, CDK9, and TNKS2 by a Novel 2-phenylquinazolinone Derivative in Cancer Therapy- An In-silico Investigation Therapy
Background: Blocking the oncogenic Wnt//β-catenin pathway has of late been investigated as a viable therapeutic approach in the treatment of cancer. This involves the multi-targeting of certain members of the tankyrase-kinase family; Tankyrase 2 (TNKS2), Protein Kinase B (AKT), and Cyclin- Dependent Kinase 9 (CDK9), which propagate the oncogenic Wnt/β-catenin signalling pathway. Methods: During a recent investigation, the pharmacological activity of 2-(4-aminophenyl)-7-chloro- 3H-quinazolin-4-one was repurposed to serve as a ‘triple-target’ inhibitor of TNKS2, AKT and CDK9. Yet, the molecular mechanism that surrounds its multi-targeting activity remains unanswered. As such, this study aims to explore the pan-inhibitory mechanism of 2-(4-aminophenyl)-7-chloro-3H-quinazolin- 4-one towards AKT, CDK9, and TNKS2, using in silico techniques. Results: Results revealed favourable binding affinities of -34.17 kcal/mol, -28.74 kcal/mol, and -27.30 kcal/mol for 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one towards TNKS2, CDK9, and AKT, respectively. Pan-inhibitory binding of 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one is illustrated by close interaction with specific residues on tankyrase-kinase. Structurally, 2-(4-aminophenyl)-7-chloro- 3H-quinazolin-4-one had an impact on the flexibility, solvent-accessible surface area, and stability of all three proteins, which was illustrated by numerous modifications observed in the unbound as well as the bound states of the structures, which evidenced the disruption of their biological function. Prediction of the pharmacokinetics and physicochemical properties of 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4- one further established its inhibitory potential, evidenced by the favourable absorption, metabolism, excretion, and minimal toxicity properties. Conclusion: The following structural insights provide a starting point for understanding the paninhibitory activity of 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one. Determining the criticality of the interactions that exist between the pyrimidine ring and catalytic residues could offer insight into the structure-based design of innovative tankyrase-kinase inhibitors with enhanced therapeutic effects.
-
-
-
Acute Toxicity, Anti-diabetic, and Anti-cancerous Potential of Trillium Govanianum-conjugated Silver Nanoparticles in Balb/c Mice
Authors: Nazia Gulzar, Saiqa Andleeb, Abida Raza, Shaukat Ali, Iram Liaqat, Sadaf A. Raja, Nazish Mazhar Ali, Rida Khan and Uzma Azeem AwanBackground: The current study aimed to develop an economic plant-based therapeutic agent to improve the treatment strategies for diseases at the nano-scale because Cancer and Diabetes mellitus are major concerns in developing countries. Therefore, in vitro and in vivo antidiabetic and anti-cancerous activities of Trillium govanianum conjugated silver nanoparticles were assessed. Methods: In the current study synthesis of silver nanoparticles using Trillium govanianum and characterization were done using a scanning electron microscope, UV-visible spectrophotometer, and FTIR analysis. The in vitro and in vivo anti-diabetic and anti-cancerous potential (200 mg/kg and 400 mg/kg) were carried out. Results: It was discovered that Balb/c mice did not show any major alterations during observation of acute oral toxicity when administered orally both TGaqu (1000 mg/kg) and TGAgNPs (1000 mg/kg), and results revealed that 1000 mg/kg is not lethal dose as did not find any abnormalities in epidermal and dermal layers when exposed to TGAgNPs. In vitro studies showed that TGAgNPs could not only inhibit alpha-glucosidase and protein kinases but were also potent against the brine shrimp. Though, a significant reduction in blood glucose levels and significant anti-cancerous effects was recorded when alloxan-treated and CCl4-induced mice were treated with TGAgNPs and TGaqu. Conclusion: Both in vivo and in vitro studies revealed that TGaqu and TGAgNPs are not toxic at 200 mg/kg, 400 mg/kg, and 1000 mg/kg doses and possess strong anti-diabetic and anti-cancerous effects due to the presence of phyto-constituents. Further, suggesting that green synthesized silver nanoparticles could be used in pharmaceutical industries to develop potent therapeutic agents.
-
-
-
Anticancer Effect of Dihydroartemisinin via Dual Control of ROS-induced Apoptosis and Protective Autophagy in Prostate Cancer 22Rv1 Cells
Authors: Jiaxin Yang, Tong Xia, Sijie Zhou, Sihao Liu, Tingyu Pan, Ying Li and Ziguo LuoBackground: Dihydroartemisinin (DHA), a natural agent, exhibits potent anticancer activity. However, its biological activity on prostate cancer (PCa) 22Rv1 cells has not been previously investigated. Objectives: In this study, we demonstrate that DHA induces anticancer effects through the induction of apoptosis and autophagy. Methods: Cell viability and proliferation rate were assessed using the CCK-8 assay and cell clone formation assay. The generation of reactive oxygen species (ROS) was detected by flow cytometry. The molecular mechanism of DHA-induced apoptosis and autophagy was examined using Western blot and RT-qPCR. The formation of autophagosomes and the changes in autophagy flux were observed using transmission electron microscopy (TEM) and confocal microscopy. The effect of DHA combined with Chloroquine (CQ) was assessed using the EdU assay and flow cytometry. The expressions of ROS/AMPK/mTOR-related proteins were detected using Western blot. The interaction between Beclin-1 and Bcl-2 was examined using Co-IP. Results: DHA inhibited 22Rv1 cell proliferation and induced apoptosis. DHA exerted its antiprostate cancer effects by increasing ROS levels. DHA promoted autophagy progression in 22Rv1 cells. Inhibition of autophagy enhanced the pro-apoptotic effect of DHA. DHA-induced autophagy initiation depended on the ROS/AMPK/mTOR pathway. After DHA treatment, the impact of Beclin- 1 on Bcl-2 was weakened, and its binding with Vps34 was enhanced. Conclusion: DHA induces apoptosis and autophagy in 22Rv1 cells. The underlying mechanism may involve the regulation of ROS/AMPK/mTOR signaling pathways and the interaction between Beclin-1 and Bcl-2 proteins. Additionally, the combination of DHA and CQ may enhance the efficacy of DHA in inhibiting tumor cell activity.
-
-
-
Biosynthesized Silver Nanoparticles from Cyperus conglomeratus Root Extract Inhibit Osteogenic Differentiation of Immortalized Mesenchymal Stromal Cells
Background: Silver nanoparticles (AgNPs) are a focus of huge interest in biological research, including stem cell research. AgNPs synthesized using Cyperus conglomeratus root extract have been previously reported but their effects on mesenchymal stromal cells have yet to be investigated. Objectives: The aim of this study is to investigate the effects of C. conglomeratus-derived AgNPs on adipogenesis and osteogenesis of mesenchymal stromal cells. Methods: AgNPs were synthesized using C. conglomeratus root extract, and the phytochemicals involved in AgNPs synthesis were analyzed using gas chromatography-mass spectrometry (GCMS). The cytotoxicity of the AgNPs was tested on telomerase-transformed immortalized human bone marrow-derived MSCs-hTERT (iMSC3) and human osteosarcoma cell line (MG-63) using MTT and apoptosis assays. The uptake of AgNPs by both cells was confirmed using inductively coupled plasma-optical emission spectrometry (ICP-OES). Furthermore, the effect of AgNPs on iMSC3 adipogenesis and osteogenesis was analyzed using stain quantification and reverse transcription- quantitative polymerase chain reaction (RT-qPCR). Results: The phytochemicals predominately identified in both the AgNPs and C. conglomeratus root extract were carbohydrates. The AgNP concentrations tested using MTT and apoptosis assays (0.5-64 µg/ml and 1,4 and 32 µg/ml, respectively) showed no significant cytotoxicity on iMSC3 and MG-63. The AgNPs were internalized in a concentration-dependent manner in both cell types. Additionally, the AgNPs exhibited a significant negative effect on osteogenesis but not on adipogenesis. Conclusion: C. conglomeratus-derived AgNPs had an impact on the differentiation capacity of iMSC3. Our results indicated that C. conglomeratus AgNPs and the associated phytochemicals could exhibit potential medical applications.
-
Volumes & issues
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)