- Home
- A-Z Publications
- Current Pharmaceutical Biotechnology
- Previous Issues
- Volume 23, Issue 12, 2022
Current Pharmaceutical Biotechnology - Volume 23, Issue 12, 2022
Volume 23, Issue 12, 2022
-
-
Nanoengineered Therapeutic Scaffolds for Burn Wound Management
Authors: Ziauddin, Tanveer Hussain, Ahsan Nazir, Urwa Mahmood, Misbah Hameed, Seeram Ramakrishna and Sharjeel AbidBackground: Wound healing is a complex process, and selecting an appropriate treatment is crucial and varies from one wound to another. Among injuries, burn wounds are more challenging to treat. Different dressings and scaffolds come into play when skin is injured. These scaffolds provide the optimum environment for wound healing. With the advancements in nanoengineering, scaffolds have been engineered to improve wound healing with lower fatality rates. Objectives: Nanoengineered systems have emerged as one of the most promising candidates for burn wound management. This review paper aims to provide an in-depth understanding of burn wounds and the role of nanoengineering in burn wound management. The advantages of nanoengineered scaffolds, their properties, and their proven effectiveness have been discussed. Nanoparticles and nanofibers-based nanoengineered therapeutic scaffolds provide optimum protection, infection management, and accelerated wound healing due to their unique characteristics. These scaffolds increase cell attachment and proliferation for desired results. Results: The literature review suggested that the utilization of nanoengineered scaffolds has accelerated burn wound healing. Nanofibers provide better cell attachment and proliferation among different nanoengineered scaffolds because their 3D structure mimics the body's extracellular matrix. Conclusion: With these advanced nanoengineered scaffolds, better burn wound management is possible due to sustained drug delivery, better cell attachment, and an infection-free environment.
-
-
-
Medicinal Herbs from Phytoinformatics: An Aid for Skin Burn Management
Authors: Deepti Sharma, Sapna Jain, Amit K. Mishra, Ruby Sharma and Ankit TanwarSkin burn injury is the most common cause of trauma that is still considered a dreadful condition in healthcare emergencies around the globe. Due to the availability of a variety of regimes, their management remains a dynamical challenge for the entire medical and paramedical community. Indeed, skin burn injuries are accompanied by a series of several devastating events that lead to sepsis and multiple organ dysfunction syndromes. Hence, the challenge lies in the development of a better understanding as well as clear diagnostic criteria and predictive biomarkers, which are important in their management. Though there are several regimes available in the market, there are still numerous limitations and challenges in the management. In this review article, we have discussed the various biomarkers that could be targeted for managing skin burn injuries. Instead of focusing on allopathic medication that has its adverse events per se, we have discussed the history, ethnopharmacology properties, and prospects of identified phytomedicines from a well-established herbal informatics model. This review article not only discusses the benefits of scrutinized phytocompounds but also the development of novel druggable phyto-compounds to target skin burn injury at a lower cost with no adverse effects.
-
-
-
Lipid Engineered Nanoparticle Therapy for Burn Wound Treatment
Authors: Abdul Qadir, Usama Ahmad, Asad Ali, Aisha Shahid, Mohd. Aqil, Nausheen Khan, Athar Ali, Waleed H. Almalki, Saad Alghamdi, Md. A. Barkat and Sarwar BegIntroduction: Skin is the largest organ of the human body protecting the underlying organs and tissues from any foreign attack. Any damage caused in the skin may sometimes result in serious consequences within the internal body tissues. Burn is one such issue that damages the layers of the skin and thereby making the skin vulnerable and prone to any foreign matter entering and causing serious diseases. Methods: An online literature assessment was steered for the lipid nanoparticles, burn wound treatments, and different types of nanoformulation. Appropriate information was taken from different electronic scientific databases such as Web of Science, Elsevier, Science Direct, Springer, PubMed, Google Scholar etc. Additional data was summarized from textbooks, local prints and scripts. Results: Recent innovations and developments in nanotechnology-based drug delivery systems have shown promising results in minimizing the drawbacks associated with conventional therapies. Lipid based nanoparticles possess capabilities to deliver active agents to their target site without the possibility of degradation. Conventional therapy of burn wound is costly and the treatment is long lasting, making the patient uncomfortable. Moreover, it also doesn’t yield satisfactory results or narrow effects. Encapsulation of bioactives inside the lipid core protects the active entity from pH and enzymatic degradations. Conclusion: This review highlights the drawbacks associated with conventional dosage forms. A lot of consideration is focused on the advancement of nanomaterials using innovative methods in wound care for treating burn wounds with a faster healing effect. This review article highlights recent developments in lipid based nanoformulations for the treatment of burn wound injury.
-
-
-
Polymer-based Nanotherapeutics for Burn Wounds
Authors: Rewati R. Ujjwal, Awesh Yadav, Shourya Tripathi and S.T.V. Sai KrishnaBurn wounds are complex and intricate injuries that have become a common cause of trauma leading to significant mortality and morbidity every year. Dressings are applied to burn wounds with the aim of promoting wound healing, preventing burn infection and restoring skin function. The dressing protects the injury and contributes to recovery of dermal and epidermal tissues. Polymer-based nanotherapeutics are increasingly being exploited as burn wound dressings. Natural polymers such as cellulose, chitin, alginate, collagen, gelatin and synthetic polymers like poly (lactic-co-glycolic acid), polycaprolactone, polyethylene glycol, and polyvinyl alcohol are being obtained as nanofibers by nanotechnological approaches like electrospinning and have shown wound healing and re-epithelialization properties. Their biocompatibility, biodegradability, sound mechanical properties and unique structures provide optimal microenvironment for cell proliferation, differentiation, and migration contributing to burn wound healing. The polymeric nanofibers mimic collagen fibers present in extracellular matrix and their high porosity and surface area to volume ratio enable increased interaction and sustained release of therapeutics at the site of thermal injury. This review is an attempt to compile all recent advances in the use of polymer-based nanotherapeutics for burn wounds. The various natural and synthetic polymers used have been discussed comprehensively and approaches being employed have been reported. With immense research effort that is currently being invested in this field and development of proper characterization and regulatory framework, future progress in burn treatment is expected to occur. Moreover, appropriate preclinical and clinical research will provide evidence for the great potential that polymer-based nanotherapeutics hold in the management of burn wounds.
-
-
-
Carbon-based Nanomaterials: Carbon Nanotubes, Graphene, and Fullerenes for the Control of Burn Infections and Wound Healing
Authors: Mohammad A. Rahman, Harshita Abul Barkat, Ranjit K. Harwansh and Rohitas DeshmukhBurn injuries are extremely debilitating, resulting in high morbidity and mortality rates around the world. The risk of infection escalates in correlation with impairment of skin integrity, creating a barrier to healing and possibly leading to sepsis. With its numerous advantages over traditional treatment methods, nanomaterial-based wound healing has an immense capability of treating and preventing wound infections. Carbon-based nanomaterials (CNMs), owing to their distinctive physicochemical and biological properties, have emerged as promising platforms for biomedical applications. Carbon nanotubes, graphene, fullerenes, and their nanocomposites have demonstrated broad antimicrobial activity against invasive bacteria, fungi, and viruses causing burn wound infection. The specific mechanisms that govern the antimicrobial activity of CNMs must be understood in order to ensure the safe and effective incorporation of these structures into biomaterials. However, it is challenging to decouple individual and synergistic contributions of the physical, chemical, and electrical effects of CNMs on cells. This review reported significant advances in the application of CNMs in burn wound infection and wound healing, with a brief discussion on the interaction between different families of CNMs and microorganisms to assess antimicrobial performance.
-
-
-
Antifungal Biofilm Strategies: A Less Explored Area in Wound Management
Authors: Shilpa Bharti, Foziyah Zakir, Mohd A. Mirza and Geeta AggarwalBackground: The treatment of wound-associated infections has always remained a challenge for clinicians, with the major deterring factor being microbial biofilms, majorly bacterial or fungal. Biofilm infections are becoming a global concern owing to resistance to antimicrobials. Various fungal pathogens form fungal biofilms, namely Candida sp., Aspergillus fumigates, Trichosporon sp., Saccharomyces cerevisiae, Cryptococcus neoformans, among others. The rising cases of fungal biofilm resistance add to the burden of wound care. Additionally, with an increase in the number of surgical procedures, transplantation, and the exponential use of medical devices, the fungal bioburden is rising. Objectives: The review discusses the methods of biofilm formation and the resistance mechanisms against conventional treatments. The potential of novel delivery strategies and the mechanisms involved therein are also highlighted. Further, the prospects of nanotechnology-based medical devices to combat fungal biofilm resistance have been explored. Some clinical trials and up-to-date patent technologies to eradicate biofilms are also mentioned. Conclusion: Due to the many challenges faced in preventing/eradicating biofilms, only a handful of approaches have made it to the market. Eradication of fungal biofilms are a fragmentary area that needs further exploration.
-
-
-
Biocompatible Nanomaterials for Burns
Authors: Mayank Handa, Sandeep K. Maharana, Kamlesh Pal and Rahul ShuklaThe skin being the largest organ, protects our body against harmful chemicals, pathogens, and physical agents. It constitutes primarily three layers: epidermis, dermis, and subcutaneous layers. Injuries occurring due to burning remain localized to the skin or other organic tissues caused by flame, extreme heat, and close contact with chemicals or heated objects. Conventional treatments are available for the treatment of burns; however, they are expensive and might completely replace autologous tissue transfer. Nanotechnology-based approaches include organic nanoparticles, dendrimers, hydrogels, etc. Biocompatibility usually refers to the ability of biomaterials to perform their respective functions centered on medical therapy without causing any systemic or local effects. Polymeric materials like a natural (chitosan and hyaluronic acid) and synthetic (polylactic acid and polycaprolactone) materials are employed as biomaterials. Various preclinical and clinical studies were performed in animal models. In this review, the authors have discussed elaborately the biocompatible polymers, which are used in the treatment of burn wounds. Afterwards, a brief discussion on the polymers, pre-clinical and clinical studies, and regulatory concerns related to nanomaterials have also been covered.
-
Volumes & issues
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)