Skip to content
2000
image of In vitro Antibiofilm Activity-directed In silico Identification of Natural Products Targeting Bacterial Biofilm Regulators SarA and LasR

Abstract

Background

Antibiofilm agents serve as an essential tool in the fight against antibiotic resistance, and natural products provide a promising source for potential drug leads.

Objective

This study investigates the activity of twenty Bangladeshi medicinal plants against and biofilms and predicts the interactions of selected phytochemicals from five of the best performing plants with the active sites of transcriptional regulatory proteins SarA of and LasR of .

Methods

The plant extracts were tested by microtiter plate-based assay against and biofilms. Molecular docking and molecular dynamics simulation (MD) were conducted using PyRx and GROMACS, respectively.

Results

The best activity was identified for and showing ≥ 75% inhibition of biofilm formation. -Epicatechin-(4α→8)-epiafzelechin (EEE) of , cyanidin-3,3',5-tri--β-D-glucopyranoside (CTG) of , and 7--(4-hydroxy--cinnamoyl)-spinoside of showed the best predictive binding affinity (-7.6, -7.6 and -7.7 kcal/mol, respectively) for SarA. EEE was the only ligand to exhibit a stable ligand-protein complex with SarA in the MD simulation of 200 ns (binding energy of MMPBSA analysis -39.899 kJ/mol). Chrysophanol, epicatechin and physcion, of (-10.5, -10.5, and -11.0 kcal/mol, respectively) and auraptene of (-10.8 kcal/mol) showed the best predictive binding affinity for LasR. Epicatechin showed the most stable ligand-protein complex with LasR (binding energy of MMPBSA analysis -63.717 kJ/mol).

Conclusion

Epicatechin and its derivative EEE could be used as scaffolds for the development of new antibiofilm agents against and , respectively.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010348855241113031323
2025-02-18
2025-03-26
Loading full text...

Full text loading...

References

  1. Flemming H.C. Wingender J. The biofilm matrix. Nat. Rev. Microbiol. 2010 8 9 623 633 10.1038/nrmicro2415 20676145
    [Google Scholar]
  2. Rath S. Bal S.C.B. Dubey D. Oral Biofilm: Development mechanism, multidrug resistance, and their effective management with novel techniques Rambam Maimonides Med J. 2021 12 1 e0004 10.5041/RMMJ.10428
    [Google Scholar]
  3. Rabin N. Zheng Y. Opoku-Temeng C. Du Y. Bonsu E. Sintim H.O. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med. Chem. 2015 7 4 493 512 10.4155/fmc.15.6 25875875
    [Google Scholar]
  4. Watnick P. Kolter R. Biofilm, city of microbes. J. Bacteriol. 2000 182 10 2675 2679 10.1128/JB.182.10.2675‑2679.2000 10781532
    [Google Scholar]
  5. Shakib P. Saki R. Marzban A. Goudarzi G. Ghotekar S. Cheraghipour K. Zolfaghari M.R. Antibacterial effects of nanocomposites on efflux pump expression and biofilm production in Pseudomonas aeruginosa: A Systematic Review. Curr. Pharm. Biotechnol. 2024 25 1 77 92 10.2174/1389201024666230428121122 37132134
    [Google Scholar]
  6. Hoffman L.R. D’Argenio D.A. MacCoss M.J. Zhang Z. Jones R.A. Miller S.I. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 2005 436 7054 1171 1175 10.1038/nature03912 16121184
    [Google Scholar]
  7. Linares J.F. Gustafsson I. Baquero F. Martinez J.L. Antibiotics as intermicrobial signaling agents instead of weapons. Proc. Natl. Acad. Sci. USA 2006 103 51 19484 19489 10.1073/pnas.0608949103 17148599
    [Google Scholar]
  8. Costerton J.W. Stewart P.S. Greenberg E.P. Bacterial biofilms: A common cause of persistent infections. Science 1999 284 5418 1318 1322 10.1126/science.284.5418.1318 10334980
    [Google Scholar]
  9. Li X.H. Lee J.H. Antibiofilm agents: A new perspective for antimicrobial strategy. J. Microbiol. 2017 55 10 753 766 10.1007/s12275‑017‑7274‑x 28956348
    [Google Scholar]
  10. Lewis K. Riddle of biofilm resistance. Antimicrob. Agents Chemother. 2001 45 4 999 1007 10.1128/AAC.45.4.999‑1007.2001 11257008
    [Google Scholar]
  11. Khan M.S. Lee J. Novel strategies for combating pathogenic biofilms using plant products and microbial antibiosis. Curr. Pharm. Biotechnol. 2015 17 2 126 140 10.2174/1389201016666150907113228 26343132
    [Google Scholar]
  12. Liu Y. Manna A.C. Pan C.H. Kriksunov I.A. Thiel D.J. Cheung A.L. Zhang G. Structural and function analyses of the global regulatory protein SarA from Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 2006 103 7 2392 2397 10.1073/pnas.0510439103 16455801
    [Google Scholar]
  13. Bottomley M.J. Muraglia E. Bazzo R. Carfì A. Molecular insights into quorum sensing in the human pathogen Pseudomonas aeruginosa from the structure of the virulence regulator LasR bound to its autoinducer. J. Biol. Chem. 2007 282 18 13592 13600 10.1074/jbc.M700556200 17363368
    [Google Scholar]
  14. Roberts C. Anderson K.L. Murphy E. Projan S.J. Mounts W. Hurlburt B. Smeltzer M. Overbeek R. Disz T. Dunman P.M. Characterizing the effect of the Staphylococcus aureus virulence factor regulator, SarA, on log-phase mRNA half-lives. J. Bacteriol. 2006 188 7 2593 2603 10.1128/JB.188.7.2593‑2603.2006 16547047
    [Google Scholar]
  15. Rechtin T.M. Gillaspy A.F. Schumacher M.A. Brennan R.G. Smeltzer M.S. Hurlburt B.K. Characterization of the SarA virulence gene regulator of Staphylococcus aureus. Mol. Microbiol. 1999 33 2 307 316 10.1046/j.1365‑2958.1999.01474.x 10411747
    [Google Scholar]
  16. Heurlier K. Dénervaud V. Haas D. Impact of quorum sensing on fitness of Pseudomonas aeruginosa. Int. J. Med. Microbiol. 2006 296 2-3 93 102 10.1016/j.ijmm.2006.01.043 16503417
    [Google Scholar]
  17. Lee J. Zhang L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 2015 6 1 26 41 10.1007/s13238‑014‑0100‑x 25249263
    [Google Scholar]
  18. Song X. Xia Y.X. He Z.D. Zhang H.J. A review of natural products with anti-biofilm activity. Curr. Org. Chem. 2018 22 8 789 817 10.2174/1385272821666170620110041
    [Google Scholar]
  19. Lu L. Hu W. Tian Z. Yuan D. Yi G. Zhou Y. Cheng Q. Zhu J. Li M. Developing natural products as potential anti-biofilm agents. Chin. Med. 2019 14 1 11 10.1186/s13020‑019‑0232‑2 30936939
    [Google Scholar]
  20. Siddique H. Pendry B. Rashid M.A. Rahman M.M. Medicinal plants used to treat infectious diseases in the central part and a northern district of Bangladesh - An ethnopharmacological perception. J. Herb. Med. 2021 29 100484 10.1016/j.hermed.2021.100484
    [Google Scholar]
  21. Heinrich M. Ethnobotany and its role in drug development. Phytother. Res. 2000 14 7 479 488 10.1002/1099‑1573(200011)14:7<479::AID‑PTR958>3.0.CO;2‑2 11054835
    [Google Scholar]
  22. Islam M.K. Saha S. Mahmud I. Mohamad K. Awang K. Jamal Uddin S. Rahman M.M. Shilpi J.A. An ethnobotanical study of medicinal plants used by tribal and native people of Madhupur forest area, Bangladesh. J. Ethnopharmacol. 2014 151 2 921 930 10.1016/j.jep.2013.11.056 24342778
    [Google Scholar]
  23. Wiegand I. Hilpert K. Hancock R.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008 3 2 163 175 10.1038/nprot.2007.521 18274517
    [Google Scholar]
  24. Zihad S.M.N.K. Hasan M.T. Sultana M.S. Nath S. Nahar L. Rashid M.A. Uddin S.J. Sarker S.D. Shilpi J.A. Isolation and characterization of antibacterial compounds from Aspergillus fumigatus: An endophytic fungus from a mangrove plant of the Sundarbans. Evid. Based Complement. Alternat. Med. 2022 2022 1 10 10.1155/2022/9600079 35497914
    [Google Scholar]
  25. O’Toole G.A. Microtiter dish biofilm formation assay. J. Vis. Exp. 2011 47 47 2437 10.3791/2437 21307833
    [Google Scholar]
  26. Zia G. Sadia H. Nazir S. Ejaz K. Ali S. Ihsan-ul-Haq Iqbal T. Khan M.A.R. Raza A. Andleeb S. In vitro studies on cytotoxic, DNA protecting, antibiofilm and antibacterial effects of biogenic silver nanoparticles prepared with Bergenia ciliata rhizome extract. Curr. Pharm. Biotechnol. 2018 19 1 68 78 10.2174/1389201019666180417160049 29667550
    [Google Scholar]
  27. Plyuta V. Zaitseva J. Lobakova E. Zagoskina N. Kuznetsov A. Khmel I. Effect of plant phenolic compounds on biofilm formation by Pseudomonas aeruginosa. J. Pathol. Microbiol. Immunol. 2013 121 11 1073 1081 10.1111/apm.12083
    [Google Scholar]
  28. Olszewska M.A. Gędas A. Simões M. The effects of eugenol, trans-cinnamaldehyde, citronellol, and terpineol on Escherichia coli biofilm control as assessed by culture-dependent and -independent methods. Molecules 2020 25 11 2641 10.3390/molecules25112641 32517201
    [Google Scholar]
  29. Arya R. Ravikumar R. Santhosh R.S. Princy S.A. SarA based novel therapeutic candidate against Staphylococcus aureus associated with vascular graft infections. Front. Microbiol. 2015 6 416 10.3389/fmicb.2015.00416 26074884
    [Google Scholar]
  30. Yu J. Jiang F. Zhang F. Pan Y. Wang J. Han P. Tang J. Shen H. Virtual screening for novel SarA inhibitors to prevent biofilm formation of Staphylococcus aureus in prosthetic joint infections. Front. Microbiol. 2020 11 587175 10.3389/fmicb.2020.587175 33224124
    [Google Scholar]
  31. Liu G.Y. Guo B.Q. Chen W.N. Cheng C. Zhang Q.L. Dai M.B. Sun J.R. Sun P.H. Chen W.M. Synthesis, molecular docking, and biofilm formation inhibitory activity of 5-substituted 3,4-dihalo-5h-furan-2-one derivatives on Pseudomonas aeruginosa. Chem. Biol. Drug Des. 2012 79 5 628 638 10.1111/j.1747‑0285.2012.01342.x 22268453
    [Google Scholar]
  32. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  33. Dallakyan S. Olson A.J. Small-molecule library screening by docking with PyRx. Chemical Biology: Methods and Protocols New York, NY Springer New York Hempel J.E. Williams C.H. Hong C.C. 2015 243 250 10.1007/978‑1‑4939‑2269‑7_19
    [Google Scholar]
  34. Abraham M.J. Murtola T. Schulz R. Páll S. Smith J.C. Hess B. Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015 1-2 19 25 10.1016/j.softx.2015.06.001
    [Google Scholar]
  35. Huang J. Rauscher S. Nawrocki G. Ran T. Feig M. de Groot B.L. Grubmüller H. MacKerell A.D. CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nat. Methods 2017 14 1 71 73 10.1038/nmeth.4067 27819658
    [Google Scholar]
  36. Vanommeslaeghe K. Hatcher E. Acharya C. Kundu S. Zhong S. Shim J. Darian E. Guvench O. Lopes P. Vorobyov I. Mackerell A.D. CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields. J. Comput. Chem. 2010 31 4 671 690 10.1002/jcc.21367 19575467
    [Google Scholar]
  37. Kumari R. Kumar R. Lynn A. g_mmpbsa - A GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model. 2014 54 7 1951 1962 10.1021/ci500020m 24850022
    [Google Scholar]
  38. Daina A. Michielin O. Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017 7 1 42717 10.1038/srep42717 28256516
    [Google Scholar]
  39. Lipinski C.A. Lombardo F. Dominy B.W. Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001 46 1-3 3 26 10.1016/S0169‑409X(00)00129‑0 11259830
    [Google Scholar]
  40. Messali M. Aouad M. El-Sayed W. Al-Sheikh Ali A. Ben Hadda T. Hammouti B. New eco-friendly 1-alkyl-3-(4-phenoxybutyl) imidazolium-based ionic liquids derivatives: A green ultrasound-assisted synthesis, characterization, antibacterial activity and POM analyses. Molecules 2014 19 8 11741 11759 10.3390/molecules190811741 25153856
    [Google Scholar]
  41. Budri P.E. Silva N.C.C. Bonsaglia E.C.R. Fernandes A. Araújo J.P. Doyama J.T. Gonçalves J.L. Santos M.V. Fitzgerald-Hughes D. Rall V.L.M. Effect of essential oils of Syzygium aromaticum and Cinnamomum zeylanicum and their major components on biofilm production in Staphylococcus aureus strains isolated from milk of cows with mastitis. J. Dairy Sci. 2015 98 9 5899 5904 10.3168/jds.2015‑9442 26142866
    [Google Scholar]
  42. Bazargani M.M. Rohloff J. Antibiofilm activity of essential oils and plant extracts against Staphylococcus aureus and Escherichia coli biofilms. Food Control 2016 61 156 164 10.1016/j.foodcont.2015.09.036
    [Google Scholar]
  43. Bakkiyaraj D. Nandhini J.R. Malathy B. Pandian S.K. The anti-biofilm potential of pomegranate ( Punica granatum L.) extract against human bacterial and fungal pathogens. Biofouling 2013 29 8 929 937 10.1080/08927014.2013.820825 23906229
    [Google Scholar]
  44. Caesar L.K. Cech N.B. Synergy and antagonism in natural product extracts: When 1 + 1 does not equal 2. Nat. Prod. Rep. 2019 36 6 869 888 10.1039/C9NP00011A 31187844
    [Google Scholar]
  45. Woo S.G. Lee S.Y. Lee S.M. Lim K.H. Ha E.J. Eom Y.B. Activity of novel inhibitors of Staphylococcus aureus biofilms. Folia Microbiol. (Praha) 2017 62 2 157 167 10.1007/s12223‑016‑0485‑4 27864779
    [Google Scholar]
  46. Kolouchová I. Maťátková O. Paldrychová M. Kodeš Z. Kvasničková E. Sigler K. Čejková A. Šmidrkal J. Demnerová K. Masák J. Resveratrol, pterostilbene, and baicalein: Plant-derived anti-biofilm agents. Folia Microbiol. (Praha) 2018 63 3 261 272 10.1007/s12223‑017‑0549‑0 28971316
    [Google Scholar]
  47. Mishra R. Panda A.K. De Mandal S. Shakeel M. Bisht S.S. Khan J. Natural anti-biofilm agents: Strategies to control biofilm-forming pathogens. Front. Microbiol. 2020 11 566325 10.3389/fmicb.2020.566325 33193155
    [Google Scholar]
  48. Rosato A. Sblano S. Salvagno L. Carocci A. Clodoveo M.L. Corbo F. Fracchiolla G. Anti-biofilm inhibitory synergistic effects of combinations of essential oils and antibiotics. Antibiotics (Basel) 2020 9 10 637 10.3390/antibiotics9100637 32987638
    [Google Scholar]
  49. Yang Y. Zhang Z. Li S. Ye X. Li X. He K. Synergy effects of herb extracts: Pharmacokinetics and pharmacodynamic basis. Fitoterapia 2014 92 133 147 10.1016/j.fitote.2013.10.010 24177191
    [Google Scholar]
  50. Duraipandiyan V. Ignacimuthu S. Antibacterial and antifungal activity of Cassia fistula L.: An ethnomedicinal plant. J. Ethnopharmacol. 2007 112 3 590 594 10.1016/j.jep.2007.04.008 17532583
    [Google Scholar]
  51. Mwangi R.W. Macharia J.M. Wagara I.N. Bence R.L. The medicinal properties of Cassia fistula L: A review. Biomed. Pharmacother. 2021 144 112240 10.1016/j.biopha.2021.112240 34601194
    [Google Scholar]
  52. Gani Soulissa A. Lombardo B. Sari Widyarman A. Antibacterial and antibiofilm efficacy of pineapple hump (Ananas comosus) on Porphyromonas gingivalis in vitro. J. Dent. Indoness 2021 28 3 153 157 10.14693/jdi.v28i3.1267
    [Google Scholar]
  53. Gupta M. Sharma R. Kumar A. Docking techniques in pharmacology: How much promising? Comput. Biol. Chem. 2018 76 210 217 10.1016/j.compbiolchem.2018.06.005 30067954
    [Google Scholar]
  54. Qun T. Zhou T. Hao J. Wang C. Zhang K. Xu J. Wang X. Zhou W. Antibacterial activities of anthraquinones: Structure–activity relationships and action mechanisms. RSC Med. Chem. 2023 14 8 1446 1471 10.1039/D3MD00116D 37593578
    [Google Scholar]
  55. Song Z.M. Zhang J.L. Zhou K. Yue L.M. Zhang Y. Wang C.Y. Wang K.L. Xu Y. Anthraquinones as potential antibiofilm agents against methicillin-resistant Staphylococcus aureus. Front. Microbiol. 2021 12 709826 10.3389/fmicb.2021.709826 34539607
    [Google Scholar]
  56. Farooq U. Khan S. Naz S. Khan A. Khan A. Ahmed A. Rauf A. Bukhari S.M. Khan S.A. Kamil A. Riaz N. Khan A.R. Three new anthraquinone derivatives isolated from Symplocos racemosa and their antibiofilm activity. Chin. J. Nat. Med. 2017 15 12 944 949 10.1016/S1875‑5364(18)30011‑6 29329652
    [Google Scholar]
  57. Kim G. Xu Y.J. Farha A.K. Sui Z.Q. Corke H. Bactericidal and antibiofilm properties of Rumex japonicus Houtt. on multidrug-resistant Staphylococcus aureus isolated from milk. J. Dairy Sci. 2022 105 3 2011 2024 10.3168/jds.2021‑21221 34955261
    [Google Scholar]
  58. Tajani A.S. Amiri Tehranizadeh Z. Pourmohammad A. Pourmohammad A. Iranshahi M. Farhadi F. Soheili V. Fazly Bazzaz B.S. Anti-quorum sensing and antibiofilm activity of coumarin derivatives against Pseudomonas aeruginosa PAO1: Insights from in vitro and in silico studies. Iran. J. Basic Med. Sci. 2023 26 4 445 452 10.22038/ijbms.2023.69016.15047 37009015
    [Google Scholar]
  59. Durrant J.D. McCammon J.A. Molecular dynamics simulations and drug discovery. BMC Biol. 2011 9 1 71 10.1186/1741‑7007‑9‑71 22035460
    [Google Scholar]
  60. Ta C. Arnason J. Mini review of phytochemicals and plant taxa with activity as microbial biofilm and quorum sensing inhibitors. Molecules 2015 21 1 29 10.3390/molecules21010029 26712734
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010348855241113031323
Loading
/content/journals/cpb/10.2174/0113892010348855241113031323
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test