Skip to content
2000
image of The Gut Health Revolution: Herbs and Dietary Phytochemicals in Balancing Gut Microbiota for Optimal Human Health

Abstract

The gut microbiota is a varied population of microorganisms that live in the human gastrointestinal system. Emerging research emphasizes the importance of this microbial ecology in general health and its influence on a variety of disorders. The review explores the synergy between herbal treatment and traditional medicine, emphasizing their cultural significance and therapeutic benefits. It delves into the intricate relationship between herbal remedies, traditional healing practices, and their sustained usage over centuries. The review highlights the pivotal role of the gut microbiota in herbal medicine, elucidating how treatments influence the gastrointestinal microorganisms, impacting overall health. Dietary phytochemicals are underscored for their significance in herbal medicine and nutritional well-being, along with the interdependence of plant extracts and botanicals. The investigation explores the molecular connections between phytoconstituents and gut microbiota, aiming to deepen the understanding of herbal medicine's tailored approach to specific health challenges. The summary concludes by emphasizing herbal treatments' unique ability to regulate gut flora, contributing to overall gastrointestinal well-being. In closing, the review provides a concise overview, serving as a valuable resource for integrative medicine research, with recommendations for future exploration of herbal medicine's potential in healthcare.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010313921240923125946
2024-09-27
2024-11-19
Loading full text...

Full text loading...

References

  1. Peter K.V. Nirmal Babu K. Introduction to herbs and spices: Medicinal uses and sustainable production. 2nd ed Handb. Herbs Spices 2012 2 1 16 10.1533/9780857095688.1
    [Google Scholar]
  2. Djordjevic S.M. From medicinal plant raw material to herbal remedies. Aromat. Med. Plants - Back to Nat. 2017 10.5772/66618
    [Google Scholar]
  3. Abdel-Aziz S.M. Aeron A. Kahil T.A. Health benefits and possible risks of herbal medicine. Microbes Food Heal. 2016 97 116 10.1007/978‑3‑319‑25277‑3_6
    [Google Scholar]
  4. Bone K Mills S Principles and practice of phytotherapy: Modern herbal medicine. Princip. Pract. Phytother. 2012 10.1016/C2009‑0‑48725‑7
    [Google Scholar]
  5. Fletcher G.F. Balady G. Froelicher V.F. Hartley L.H. Haskell W.L. Pollock M.L. Writing Group Exercise standards. Circulation 1995 91 2 580 615 10.1161/01.CIR.91.2.580 7805272
    [Google Scholar]
  6. Ahmad S. Zahiruddin S. Parveen B. Basist P. Parveen A. Gaurav Parveen R. Ahmad M. Indian medicinal plants and formulations and their potential against covid-19–preclinical and clinical research. Front. Pharmacol. 2021 11 578970 10.3389/fphar.2020.578970 33737875
    [Google Scholar]
  7. Abass S. Dar M.I. Zahiruddin S. Beg M.A. Nagar P. Jan B. Husain S.A. Ahmad S. Phytochemical and antibacterial analysis of Pistacia integerrima: An integrated in vitro and in silico approach. Process Biochem. 2023 132 236 247 10.1016/j.procbio.2023.07.020
    [Google Scholar]
  8. Husain S.A. Ahmad S. Abass S. Parveen R. Irfan M. Jan B. Synergy based extracts of medicinal plants: Future antimicrobials to combat multidrug resistance. Curr. Pharm. Biotechnol. 2022 23 13 1527 1540 10.2174/1389201023666220126115656 35081888
    [Google Scholar]
  9. Patwardhan B. Patwardhan A. Traditional medicine: Modern approach for affordable global health. Comm Intellect Prop Rights IaPHC, World Heal Organ. Geneva WHO 2005
    [Google Scholar]
  10. Yuan H. Ma Q. Ye L. Piao G. The traditional medicine and modern medicine from natural products. Molecules 2016 21 5 559 10.3390/molecules21050559 27136524
    [Google Scholar]
  11. Snashall D. An occupational perspective of health. Occup. Med. 65 2015 1 767 10.1093/occmed/kqv134
    [Google Scholar]
  12. Cassell E.J. The nature of healing. Pract. Med. 2012 10.1093/acprof:oso/9780195369052.001.0001
    [Google Scholar]
  13. Houghton P.J. The role of plants in traditional medicine and current therapy. J. Altern. Complement. Med. 1995 1 2 131 143 10.1089/acm.1995.1.131 9395610
    [Google Scholar]
  14. Giannenas I. Sidiropoulou E. Bonos E. Christaki E. Florou-Paneri P. The history of herbs, medicinal and aromatic plants, and their extracts: Past, current situation and future perspectives. Feed Addit. Aromat. Plants Herbs Anim. Nutr. Heal 2019 1 18 10.1016/B978‑0‑12‑814700‑9.00001‑7
    [Google Scholar]
  15. Balaramnavar V.P. A comprehensive review on turmeric benefits. SAJMMR 2021 11 11 169 174 10.5958/2249‑877X.2021.00126.0
    [Google Scholar]
  16. Buell P.D. Anderson E.N. Chinese Medicine, Origins, History. China Arab. Med 2021 9 53 10.1163/9789004447288_004
    [Google Scholar]
  17. Rehman F. ur Importance of medicinal plants in human and plant pathology: A review. Int. J. Pharm. Biomed. Res. 2021 8 1 11 10.18782/2394‑3726.1110
    [Google Scholar]
  18. Chopra A. Doiphode V.V. Ayurvedic medicine: Core concept, therapeutic principles, and current relevance. Med. Clin. North Am. 2002 86 1 75 89, vii 10.1016/S0025‑7125(03)00073‑7 11795092
    [Google Scholar]
  19. Mazid M. Khan T.A. Mohammad F. Medicinal plants of rural India: A review of use by indian folks. IGJPS 2012 2 3 286 304 10.35652/IGJPS.2012.35
    [Google Scholar]
  20. Wang H. Chen Y. Wang L. Liu Q. Yang S. Wang C. Advancing herbal medicine: Enhancing product quality and safety through robust quality control practices. Front. Pharmacol. 2023 14 1265178 10.3389/fphar.2023.1265178 37818188
    [Google Scholar]
  21. Klojdová I. Milota T. Smetanová J. Stathopoulos C. Encapsulation: A strategy to deliver therapeutics and bioactive compounds? Pharmaceuticals 2023 16 3 362 10.3390/ph16030362 36986462
    [Google Scholar]
  22. Barnes P.M. Powell-Griner E. McFann K. Nahin R.L. Complementary and alternative medicine use among adults: United States, 2002. Seminars in Integrative Medicine 2004 2 2 54 71 10.1016/j.sigm.2004.07.003 15188733
    [Google Scholar]
  23. Tovey P Easthope G Adams J Mainstreaming complementary and alternative medicine: Studies in social context. 1st ed Routledge London 2017 10.4324/9780203987902
    [Google Scholar]
  24. Andrews G.J. Adams J. Segrott J. Complementary and alternative medicine (CAM): Production, consumption, research. A Companion to Health and Medical Geography Wiley 2009 587 603 10.1002/9781444314762.ch30
    [Google Scholar]
  25. Ellen R. Inventing the indigenous: Local knowledge and natural history in early modern europe. Comp. Stud. Soc. Hist. 2008 50 4 1047 1048 10.1017/S0010417508001163
    [Google Scholar]
  26. Enioutina E.Y. Salis E.R. Job K.M. Gubarev M.I. Krepkova L.V. Sherwin C.M.T. Herbal Medicines: Challenges in the modern world. Part 5. Status and current directions of complementary and alternative herbal medicine worldwide. Expert Rev. Clin. Pharmacol. 2016 10 3 1 12 10.1080/17512433.2017.1268917 27923318
    [Google Scholar]
  27. Costa M. Weese J.S. Methods and basic concepts for microbiota assessment. Vet. J. 2019 249 10 15 10.1016/j.tvjl.2019.05.005 31239159
    [Google Scholar]
  28. Barko P.C. McMichael M.A. Swanson K.S. Williams D.A. The gastrointestinal microbiome: A review. J. Vet. Intern. Med. 2018 32 1 9 25 10.1111/jvim.14875 29171095
    [Google Scholar]
  29. Yadav M. Verma M.K. Chauhan N.S. A review of metabolic potential of human gut microbiome in human nutrition. Arch. Microbiol. 2018 200 2 203 217 10.1007/s00203‑017‑1459‑x 29188341
    [Google Scholar]
  30. Zhu B. Wang X. Li L. Human gut microbiome: The second genome of human body. Protein Cell 2010 1 8 718 725 10.1007/s13238‑010‑0093‑z 21203913
    [Google Scholar]
  31. Macfarlane S. Macfarlane G.T. Bacterial diversity in the human gut. Adv. Appl. Microbiol. 2004 54 261 289 10.1016/S0065‑2164(04)54010‑8 15251284
    [Google Scholar]
  32. Yin R. Kuo H.C. Hudlikar R. Sargsyan D. Li S. Wang L. Wu R. Kong A.N. Gut microbiota, dietary phytochemicals and benefits to human health. Curr. Pharmacol. Rep. 2019 5 5 332 344 10.1007/s40495‑019‑00196‑3 33224717
    [Google Scholar]
  33. Robinson C.J. Bohannan B.J.M. Young V.B. From structure to function: The ecology of host-associated microbial communities. Microbiol. Mol. Biol. Rev. 2010 74 3 453 476 10.1128/MMBR.00014‑10 20805407
    [Google Scholar]
  34. Forgie A.J. Fouhse J.M. Willing B.P. Diet-microbe-host interactions that affect gut mucosal integrity and infection resistance. Front. Immunol. 2019 10 1802 10.3389/fimmu.2019.01802 31447837
    [Google Scholar]
  35. DiBaise J.K. Frank D.N. Mathur R. Impact of the gut microbiota on the development of obesity: Current concepts. Am. J. Gastroenterol. Suppl. 2012 1 1 22 27 10.1038/ajgsup.2012.5
    [Google Scholar]
  36. Gao R. Zhu C. Li H. Yin M. Pan C. Huang L. Kong C. Wang X. Zhang Y. Qu S. Qin H. Dysbiosis signatures of gut microbiota along the sequence from healthy, young patients to those with overweight and obesity. Obesity 2018 26 2 351 361 10.1002/oby.22088 29280312
    [Google Scholar]
  37. Zhang L. Virgous C. Si H. Synergistic anti-inflammatory effects and mechanisms of combined phytochemicals. J. Nutr. Biochem. 2019 69 19 30 10.1016/j.jnutbio.2019.03.009 31048206
    [Google Scholar]
  38. Rupa P. Mine Y. Recent advances in the role of probiotics in human inflammation and gut health. J. Agric. Food Chem. 2012 60 34 8249 8256 10.1021/jf301903t 22897745
    [Google Scholar]
  39. Farrar W.E. Jr Serious infections due to “non-pathogenic” organisms of the genus bacillus. Am. J. Med. 1963 34 1 134 141 10.1016/0002‑9343(63)90047‑0 13944444
    [Google Scholar]
  40. Gomaa E.Z. Human gut microbiota/microbiome in health and diseases: A review. Antonie van Leeuwenhoek 2020 113 12 2019 2040 10.1007/s10482‑020‑01474‑7 33136284
    [Google Scholar]
  41. Dave M. Higgins P.D. Middha S. Rioux K.P. The human gut microbiome: Current knowledge, challenges, and future directions. Transl. Res. 2012 160 4 246 257 10.1016/j.trsl.2012.05.003 22683238
    [Google Scholar]
  42. Nagpal R. Kumar M. Yadav A.K. Hemalatha R. Yadav H. Marotta F. Yamashiro Y. Gut microbiota in health and disease: An overview focused on metabolic inflammation. Benef. Microbes 2016 7 2 181 194 10.3920/bm2015.0062 26645350
    [Google Scholar]
  43. Lin L. Zhang J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol. 2017 18 1 2 10.1186/s12865‑016‑0187‑3 28061847
    [Google Scholar]
  44. Moszak M. Szulińska M. Bogdański P. You are what you eat—the relationship between diet, microbiota, and metabolic disorders— A review. Nutrients 2020 12 4 1096 10.3390/nu12041096 32326604
    [Google Scholar]
  45. Lau A.W.Y. Tan L.T.H. Ab Mutalib N.S. Wong S.H. Letchumanan V. Lee L.H. The chemistry of gut microbiome in health and diseases. Progress In Microbes & Molecular Biology 2021 4 1 10.36877/pmmb.a0000175
    [Google Scholar]
  46. Di Vincenzo F. Del Gaudio A. Petito V. Lopetuso L.R. Scaldaferri F. Gut microbiota, intestinal permeability, and systemic inflammation: A narrative review. Intern. Emerg. Med. 2023 10.1007/s11739‑023‑03374‑w 37505311
    [Google Scholar]
  47. Feng X. Cao S. Qiu F. Zhang B. Traditional application and modern pharmacological research of Artemisia annua L. Pharmacol. Ther. 2020 216 107650 10.1016/j.pharmthera.2020.107650 32758647
    [Google Scholar]
  48. Bilia A.R. Santomauro F. Sacco C. Bergonzi M.C. Donato R. Essential oil of artemisia annua L.: An extraordinary component with numerous antimicrobial properties. Evid. Based Complement. Alternat. Med. 2014 2014 1 159819 10.1155/2014/159819 24799936
    [Google Scholar]
  49. Thumann T.A. Pferschy-Wenzig E.M. Moissl-Eichinger C. Bauer R. The role of gut microbiota for the activity of medicinal plants traditionally used in the European Union for gastrointestinal disorders. J. Ethnopharmacol. 2019 245 112153 10.1016/j.jep.2019.112153 31408679
    [Google Scholar]
  50. Husseiny S. Dishisha T. Soliman H.A. Adeleke R. Raslan M. Characterization of growth promoting bacterial endophytes isolated from Artemisia annua L. S. Afr. J. Bot. 2021 143 238 247 10.1016/j.sajb.2021.07.042
    [Google Scholar]
  51. Zhang B. Ren D. Zhao Y. Liu Y. Zhai X. Yang X. Artemisia sphaerocephala Krasch polysaccharide prevents hepatic steatosis in high fructose-fed mice associated with changes in the gut microbiota. Food Funct. 2019 10 12 8137 8148 10.1039/C9FO01890E 31746883
    [Google Scholar]
  52. Ibrahim K.G. Mukonowenzou N.C. Usman D. Adeshina K.A. Erlwanger K.H. The potential of Artemisia species for use as broad-spectrum agents in the management of metabolic syndrome: A review. Arch. Physiol. Biochem. 2023 129 3 752 770 10.1080/13813455.2021.1871761 33569991
    [Google Scholar]
  53. Zhao T. Tang H. Xie L. Zheng Y. Ma Z. Sun Q. Li X. Scutellaria baicalensis Georgi. (Lamiaceae): A review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. J. Pharm. Pharmacol. 2019 71 9 1353 1369 10.1111/jphp.13129 31236960
    [Google Scholar]
  54. Wang Z.L. Wang S. Kuang Y. Hu Z.M. Qiao X. Ye M. A comprehensive review on phytochemistry, pharmacology, and flavonoid biosynthesis of Scutellaria baicalensis. Pharm. Biol. 2018 56 1 465 484 10.1080/13880209.2018.1492620 31070530
    [Google Scholar]
  55. Cui L. Guan X. Ding W. Luo Y. Wang W. Bu W. Song J. Tan X. Sun E. Ning Q. Liu G. Jia X. Feng L. Scutellaria baicalensis Georgi polysaccharide ameliorates DSS-induced ulcerative colitis by improving intestinal barrier function and modulating gut microbiota. Int. J. Biol. Macromol. 2021 166 1035 1045 10.1016/j.ijbiomac.2020.10.259 33157130
    [Google Scholar]
  56. Peng L.Y. Shi H.T. Tan Y.R. Shen S.Y. Yi P.F. Shen H.Q. Fu B.D. Baicalin inhibits APEC-induced lung injury by regulating gut microbiota and SCFA production. Food Funct. 2021 12 24 12621 12633 10.1039/D1FO02407H 34821232
    [Google Scholar]
  57. Guan Y. Chen K. Quan D. Kang L. Yang D. Wu H. Yan M. Wu S. Lv L. Zhang G. The combination of scutellaria baicalensis georgi and Sophora japonica L. ameliorate renal function by regulating gut microbiota in spontaneously hypertensive rats. Front. Pharmacol. 2021 11 575294 10.3389/fphar.2020.575294 33643031
    [Google Scholar]
  58. Ali M Malik AR Sharma KR Vegetative propagation of Berberis aristata DC. An endangered Himalayan shrub. J. Med. 2008 2
    [Google Scholar]
  59. Chander V. Aswal J.S. Dobhal R. Uniyal D.P. A review on pharmacological potential of berberine; An active component of Himalayan Berberis aristata. Journal of Phytopharmacology 2017 6 1 53 65 10.31254/phyto.2017.6108
    [Google Scholar]
  60. Potdar D. Hirwani R.R. Dhulap S. Phyto-chemical and pharmacological applications of Berberis aristata. Fitoterapia 2012 83 5 817 830 10.1016/j.fitote.2012.04.012 22808523
    [Google Scholar]
  61. Shailja Choudhary Hemlata Kaurav Madhusudan S Gitika Chaudhary Daruharidra (Berberis aristata): Review based upon its Ayurvedic Properties. IJRASB 2021 8 2 98 106 10.31033/ijrasb.8.2.12
    [Google Scholar]
  62. Ullah F. Ayaz M. Sadiq A. Ullah F. Hussain I. Shahid M. Yessimbekov Z. Adhikari-Devkota A. Devkota H.P. Potential role of plant extracts and phytochemicals against foodborne pathogens. Appl. Sci. 2020 10 13 4597 10.3390/app10134597
    [Google Scholar]
  63. Yu M. Jin X. Liang C. Bu F. Pan D. He Q. Ming Y. Little P. Du H. Liang S. Hu R. Li C. Hu Y.J. Cao H. Liu J. Fei Y. Berberine for diarrhea in children and adults: A systematic review and meta-analysis. Therap. Adv. Gastroenterol. 2020 13 10.1177/1756284820961299 33149763
    [Google Scholar]
  64. Vignesh A. Amal T.C. Selvakumar S. Vasanth K. Unraveling the role of medicinal plants and Gut microbiota in colon cancer: Towards microbiota- based strategies for prevention and treatment. Health Sci. Rep. 2023 9 100115 10.1016/j.hsr.2023.100115
    [Google Scholar]
  65. Gao Y. Dong Y. Guo Q. Wang H. Feng M. Yan Z. Bai D. Study on supramolecules in traditional chinese medicine decoction. Molecules 2022 27 10 3268 10.3390/molecules27103268 35630743
    [Google Scholar]
  66. Huang J. Zhu Y. Xiao H. Liu J. Li S. Zheng Q. Tang J. Meng X. Formation of a traditional Chinese medicine self-assembly nanostrategy and its application in cancer: A promising treatment. Chin. Med. 2023 18 1 66 10.1186/s13020‑023‑00764‑2 37280646
    [Google Scholar]
  67. Wee J.J. Park K.M. Chung A.S. Biological activities of ginseng and its application to human health. Herb. Med. Biomol. Clin. Asp 2011 157 174 10.1201/b10787‑9
    [Google Scholar]
  68. Kim K.H. Lee D. Lee H.L. Kim C.E. Jung K. Kang K.S. Beneficial effects of Panax ginseng for the treatment and prevention of neurodegenerative diseases: past findings and future directions. J. Ginseng Res. 2018 42 3 239 247 10.1016/j.jgr.2017.03.011 29989012
    [Google Scholar]
  69. Ratan Z.A. Haidere M.F. Hong Y.H. Park S.H. Lee J.O. Lee J. Cho J.Y. Pharmacological potential of ginseng and its major component ginsenosides. J. Ginseng Res. 2021 45 2 199 210 10.1016/j.jgr.2020.02.004 33841000
    [Google Scholar]
  70. Sun Y. Chen S. Wei R. Xie X. Wang C. Fan S. Zhang X. Su J. Liu J. Jia W. Wang X. Metabolome and gut microbiota variation with long-term intake of Panax ginseng extracts on rats. Food Funct. 2018 9 6 3547 3556 10.1039/C8FO00025E 29896600
    [Google Scholar]
  71. Quan L.H. Zhang C. Dong M. Jiang J. Xu H. Yan C. Liu X. Zhou H. Zhang H. Chen L. Zhong F.L. Luo Z.B. Lam S.M. Shui G. Li D. Jin W. Myristoleic acid produced by enterococci reduces obesity through brown adipose tissue activation. Gut 2020 69 7 1239 1247 10.1136/gutjnl‑2019‑319114 31744910
    [Google Scholar]
  72. Semwal D.K. Badoni R. Semwal R. Kothiyal S.K. Singh G.J.P. Rawat U. The genus Stephania (Menispermaceae): Chemical and pharmacological perspectives. J. Ethnopharmacol. 2010 132 2 369 383 10.1016/j.jep.2010.08.047 20801207
    [Google Scholar]
  73. Liang D. Li Q. Du L. Dou G. Pharmacological effects and clinical prospects of cepharanthine. Molecules 2022 27 24 8933 10.3390/molecules27248933 36558061
    [Google Scholar]
  74. Cheung M.K. Yue G.G.L. Chiu P.W.Y. Lau C.B.S. A review of the effects of natural compounds, medicinal plants, and mushrooms on the gut microbiota in colitis and cancer. Front. Pharmacol. 2020 11 744 10.3389/fphar.2020.00744 32499711
    [Google Scholar]
  75. Doré J. E06 The commensal intestinal microbiota in health and immune diseases. J. Crohn’s Colitis Suppl. 2010 4 1 5 10.1016/S1873‑9954(10)70010‑0
    [Google Scholar]
  76. Ahmed S. Ding X. Sharma A. Exploring scientific validation of Triphala Rasayana in ayurveda as a source of rejuvenation for contemporary healthcare: An update. J. Ethnopharmacol. 2021 273 113829 10.1016/j.jep.2021.113829 33465446
    [Google Scholar]
  77. Lal U.R. Joshi D. Banerjee S. Anticancer agents: Plants used in Ayurveda. Herbal Med.: Back to Future 2019 181 214 10.2174/9789811411205119030008
    [Google Scholar]
  78. Tarasiuk A. Mosińska P. Fichna J. Triphala: Current applications and new perspectives on the treatment of functional gastrointestinal disorders. Chin. Med. 2018 13 1 39 10.1186/s13020‑018‑0197‑6 30034512
    [Google Scholar]
  79. Kushwah A.S. Joshi Y. Rani H. Kaur G. Kumar M. Sindhu R.K. Mittal R. Herbal and Ayurvedic plants as remedial approach for viral diseases with focus on COVID-19: A narrative review. Curr. Tradit. Med. 2023 9 3 e220822207856 10.2174/2215083808666220822124541
    [Google Scholar]
  80. Li X. Lin Y. Jiang Y. Wu B. Yu Y. Aqueous extract of Phyllanthus emblica L. Alleviates functional dyspepsia through regulating gastrointestinal hormones and gut microbiome in vivo. Foods 2022 11 10 1491 10.3390/foods11101491 35627061
    [Google Scholar]
  81. Sharma D. Namdeo P. Singh P. Phytochemistry and pharmacological studies of glycyrrhiza glabra: A medicinal plant review. Int. J. Pharm. Sci. Rev. Res. 2021 67 1 187 194 10.47583/ijpsrr.2021.v67i01.030
    [Google Scholar]
  82. Mubarik F. Noreen S. Farooq F. Khan M. Khan A.U. Pane Y.S. Medicinal uses of licorice (Glycyrrhiza glabra L.): A comprehensive review. Open Access Maced. J. Med. Sci. 2021 9 F 668 675 10.3889/oamjms.2021.7526
    [Google Scholar]
  83. Zhang Y. Xu Y. Zhang L. Chen Y. Wu T. Liu R. Sui W. Zhu Q. Zhang M. Licorice extract ameliorates hyperglycemia through reshaping gut microbiota structure and inhibiting TLR4/NF-κB signaling pathway in type 2 diabetic mice. Food Res. Int. 2022 153 110945 10.1016/j.foodres.2022.110945 35227470
    [Google Scholar]
  84. Liu F. Tang X. Mao B. Zhang Q. Zhao J. Cui S. Chen W. Ethanol extract of licorice alleviates hfd-induced liver fat accumulation in association with modulation of gut microbiota and intestinal metabolites in obesity mice. Nutrients 2022 14 19 4180 10.3390/nu14194180 36235833
    [Google Scholar]
  85. Karantonis H.C. Tsoupras A. Moran D. Zabetakis I. Nasopoulou C. Olive, apple, and grape pomaces with antioxidant and anti-inflammatory bioactivities for functional foods. Funct. Foods their Implic. Heal. Promot 2022 131 159 10.1016/B978‑0‑12‑823811‑0.00007‑9
    [Google Scholar]
  86. Saini N. Gahlawat S.K. Lather V. Flavonoids: A nutraceutical and its role as anti-inflammatory and anticancer agent. Plant Biotechnol. Recent Adv. Dev 2017 255 270 10.1007/978‑981‑10‑4732‑9_13
    [Google Scholar]
  87. Urbi Z. Hossain S. Hafizur Rahman K.M. Zayed T.M. Grape: A medicinal fruit species in the holy Qur’an and its ethnomedinical importance. World Appl. Sci. J. 2014 30 253 265 10.5829/idosi.wasj.2014.30.03.81114
    [Google Scholar]
  88. Yang J. Kurnia P. Henning S.M. Lee R. Huang J. Garcia M.C. Surampudi V. Heber D. Li Z. Effect of standardized grape powder consumption on the gut microbiome of healthy subjects: A pilot study. Nutrients 2021 13 11 3965 10.3390/nu13113965 34836220
    [Google Scholar]
  89. Nash V. Ranadheera C.S. Georgousopoulou E.N. Mellor D.D. Panagiotakos D.B. McKune A.J. Kellett J. Naumovski N. The effects of grape and red wine polyphenols on gut microbiota – A systematic review. Food Res. Int. 2018 113 277 287 10.1016/j.foodres.2018.07.019 30195522
    [Google Scholar]
  90. Rodriguez-Lopez P. Rueda-Robles A. Borrás-Linares I. Quirantes-Piné R.M. Emanuelli T. Segura-Carretero A. Lozano-Sánchez J. Grape and grape-based product polyphenols: A systematic review of health properties, bioavailability, and gut microbiota interactions. Horticulturae 2022 8 7 583 10.3390/horticulturae8070583
    [Google Scholar]
  91. Thomas P.A. Stone D. La Porta N. Biological Flora of the British Isles: Ulmus glabra. J. Ecol. 2018 106 4 1724 1766 10.1111/1365‑2745.12994
    [Google Scholar]
  92. Edwards S.E. Rocha I da C. Williamson E.M. Heinrich M. Slippery Elm. Phytopharmacy 2015 360 362 10.1002/9781118543436.ch102
    [Google Scholar]
  93. Haruna S. Aliyu B.S. Bala A. Plant gum exudates (Karau) and mucilages, their biological sources, properties, uses and potential applications: A review. Bayero J. Pure Appl. Sci. 2017 9 2 159 10.4314/bajopas.v9i2.30
    [Google Scholar]
  94. Hamidpour R. Rashan L. A natural gastroprotective remedy that lowers hyperacidity. Transl. Biomed. 2017 8 4 10.21767/2172‑0479.100129
    [Google Scholar]
  95. Cui X. Shen Y. Jiang S. Qian D. Shang E. Zhu Z. Duan J. Comparative analysis of the main active components and hypoglycemic effects after the compatibility of Scutellariae Radix and Coptidis Rhizoma. J. Sep. Sci. 2019 42 8 1520 1527 10.1002/jssc.201801204 30734512
    [Google Scholar]
  96. Wang Z. Wang J. Chan P. Treating type 2 diabetes mellitus with traditional chinese and Indian medicinal herbs. Evid. Based Complement. Alternat. Med. 2013 2013 1 17 10.1155/2013/343594 23737828
    [Google Scholar]
  97. Ji L. Song T. Ge C. Wu Q. Ma L. Chen X. Chen T. Chen Q. Chen Z. Chen W. Identification of bioactive compounds and potential mechanisms of scutellariae radix-coptidis rhizoma in the treatment of atherosclerosis by integrating network pharmacology and experimental validation. Biomed. Pharmacother. 2023 165 115210 10.1016/j.biopha.2023.115210 37499457
    [Google Scholar]
  98. Zhang C. hua Sheng J. qing Sarsaiya S. Shu F. xing Liu T. tong Tu X. ying The anti-diabetic activities, gut microbiota composition, the anti-inflammatory effects of Scutellaria–coptis herb couple against insulin resistance-model of diabetes involving the toll-like receptor 4 signaling pathway. J. Ethnopharmacol. 2019 237 202 214 10.1016/j.jep.2019.02.040
    [Google Scholar]
  99. Hameed I. Masoodi S.R. Mir S.A. Nabi M. Ghazanfar K. Ganai B.A. Type 2 diabetes mellitus: From a metabolic disorder to an inflammatory condition. World J. Diabetes 2015 6 4 598 612 10.4239/wjd.v6.i4.598 25987957
    [Google Scholar]
  100. Oguntibeju O.O. Type 2 diabetes mellitus, oxidative stress and inflammation: Examining the links. Int. J. Physiol. Pathophysiol. Pharmacol. 2019 11 3 45 63 31333808
    [Google Scholar]
  101. Nishizawa K. Low-grade endotoxemia, diet, and gut microbiota – An emphasis on the early events leading to dysfunction of the intestinal epithelial barrier. Biomed. Res. Clin. Pract. 2016 1 2 46 57 10.15761/BRCP.1000110
    [Google Scholar]
  102. Massier L. Blüher M. Kovacs P. Chakaroun R.M. Impaired intestinal barrier and tissue bacteria: Pathomechanisms for metabolic diseases. Front. Endocrinol. 2021 12 616506 10.3389/fendo.2021.616506 33767669
    [Google Scholar]
  103. Tilg H. Zmora N. Adolph T.E. Elinav E. The intestinal microbiota fuelling metabolic inflammation. Nat. Rev. Immunol. 2020 20 1 40 54 10.1038/s41577‑019‑0198‑4 31388093
    [Google Scholar]
  104. Ortega M.A. Fraile-Martínez O. Naya I. García-Honduvilla N. Álvarez-Mon M. Buján J. Asúnsolo Á. de la Torre B. Type 2 diabetes mellitus associated with obesity (Diabesity). The central role of gut microbiota and its translational applications. Nutrients 2020 12 9 2749 10.3390/nu12092749 32917030
    [Google Scholar]
  105. Albillos A. de Gottardi A. Rescigno M. The gut-liver axis in liver disease: Pathophysiological basis for therapy. J. Hepatol. 2020 72 3 558 577 10.1016/j.jhep.2019.10.003 31622696
    [Google Scholar]
  106. Umirah F. Neoh C.F. Ramasamy K. Lim S.M. Differential gut microbiota composition between type 2 diabetes mellitus patients and healthy controls: A systematic review. Diabetes Res. Clin. Pract. 2021 173 108689 10.1016/j.diabres.2021.108689 33549678
    [Google Scholar]
  107. Cunningham A.L. Stephens J.W. Harris D.A. Gut microbiota influence in type 2 diabetes mellitus (T2DM). Gut Pathog. 2021 13 1 50 10.1186/s13099‑021‑00446‑0 34362432
    [Google Scholar]
  108. Manolis A.A. Manolis T.A. Melita H. Manolis A.S. Gut microbiota and cardiovascular disease: Symbiosis versus dysbiosis. Curr. Med. Chem. 2022 29 23 4050 4077 10.2174/0929867328666211213112949 34961453
    [Google Scholar]
  109. Topping D.L. Short-chain fatty acids produced by intestinal bacteria. Asia Pac. J. Clin. Nutr. 1996 5 1 15 19 24394459
    [Google Scholar]
  110. Meijerink J. The intestinal fatty acid-enteroendocrine interplay, emerging roles for olfactory signaling and serotonin conjugates. Molecules 2021 26 5 1416 10.3390/molecules26051416 33807994
    [Google Scholar]
  111. Portincasa P. Bonfrate L. Vacca M. De Angelis M. Farella I. Lanza E. Khalil M. Wang D.Q.H. Sperandio M. Di Ciaula A. Gut microbiota and short chain fatty acids: Implications in glucose homeostasis. Int. J. Mol. Sci. 2022 23 3 1105 10.3390/ijms23031105 35163038
    [Google Scholar]
  112. Zheng Y. Gou X. Zhang L. Gao H. Wei Y. Yu X. Pang B. Tian J. Tong X. Li M. Interactions between gut microbiota, host, and herbal medicines: A review of new insights into the pathogenesis and treatment of type 2 diabetes. Front. Cell. Infect. Microbiol. 2020 10 360 10.3389/fcimb.2020.00360 32766169
    [Google Scholar]
  113. Jiao J. Yu H. Yao L. Li L. Yang X. Liu L. Recent insights into the role of gut microbiota in diabetic retinopathy. J. Inflamm. Res. 2021 14 6929 6938 10.2147/JIR.S336148 34938095
    [Google Scholar]
  114. Martin R. Nauta A. Ben Amor K. Knippels L. Knol J. Garssen J. Early life: Gut microbiota and immune development in infancy. Benef. Microbes 2010 1 4 367 382 10.3920/BM2010.0027 21831776
    [Google Scholar]
  115. Lv H. Zhang L. Han Y. Wu L. Wang B. The development of early life microbiota in human health and disease. Engineering 2022 12 101 114 10.1016/j.eng.2020.12.014
    [Google Scholar]
  116. Francino M. Early development of the gut microbiota and immune health. Pathogens 2014 3 3 769 790 10.3390/pathogens3030769 25438024
    [Google Scholar]
  117. Thaiss C.A. Zmora N. Levy M. Elinav E. The microbiome and innate immunity. Nature 2016 535 7610 65 74 10.1038/nature18847 27383981
    [Google Scholar]
  118. Nochi T. Kiyono H. Innate immunity in the mucosal immune system. Curr. Pharm. Des. 2006 12 32 4203 4213 10.2174/138161206778743457 17100623
    [Google Scholar]
  119. Pickard J.M. Zeng M.Y. Caruso R. Núñez G. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol. Rev. 2017 279 1 70 89 10.1111/imr.12567 28856738
    [Google Scholar]
  120. Hoeppli R.E. Wu D. Cook L. Levings M.K. The environment of regulatory T cell biology: Cytokines, metabolites, and the microbiome. Front. Immunol. 2015 6 61 10.3389/fimmu.2015.00061 25741338
    [Google Scholar]
  121. Singh R.P. Hasan S. Sharma S. Nagra S. Yamaguchi D.T. Wong D.T.W. Hahn B.H. Hossain A. Th17 cells in inflammation and autoimmunity. Autoimmun. Rev. 2014 13 12 1174 1181 10.1016/j.autrev.2014.08.019 25151974
    [Google Scholar]
  122. Rossi M. Bot A. The Th17 cell population and the immune homeostasis of the gastrointestinal tract. Int. Rev. Immunol. 2013 32 5-6 471 474 10.3109/08830185.2013.843983 24164337
    [Google Scholar]
  123. Tibbs T.N. Lopez L.R. Arthur J.C. The influence of the microbiota on immune development, chronic inflammation, and cancer in the context of aging. Microb. Cell 2019 6 8 324 334 10.15698/mic2019.08.685 31403049
    [Google Scholar]
  124. Uzbay T. Germ-free animal experiments in the gut microbiota studies. Curr. Opin. Pharmacol. 2019 49 6 10 10.1016/j.coph.2019.03.016 31051390
    [Google Scholar]
  125. Hill D.A. Hoffmann C. Abt M.C. Du Y. Kobuley D. Kirn T.J. Bushman F.D. Artis D. Metagenomic analyses reveal antibiotic-induced temporal and spatial changes in intestinal microbiota with associated alterations in immune cell homeostasis. Mucosal Immunol. 2010 3 2 148 158 10.1038/mi.2009.132 19940845
    [Google Scholar]
  126. Afzaal M. Saeed F. Shah Y.A. Hussain M. Rabail R. Socol C.T. Hassoun A. Pateiro M. Lorenzo J.M. Rusu A.V. Aadil R.M. Human gut microbiota in health and disease: Unveiling the relationship. Front. Microbiol. 2022 13 999001 10.3389/fmicb.2022.999001 36225386
    [Google Scholar]
  127. Andréasson K. Alrawi Z. Persson A. Jönsson G. Marsal J. Intestinal dysbiosis is common in systemic sclerosis and associated with gastrointestinal and extraintestinal features of disease. Arthritis Res. Ther. 2016 18 1 278 10.1186/s13075‑016‑1182‑z 27894337
    [Google Scholar]
  128. Reynolds A.C. Paterson J.L. Ferguson S.A. Stanley D. Wright K.P. Jr Dawson D. The shift work and health research agenda: Considering changes in gut microbiota as a pathway linking shift work, sleep loss and circadian misalignment, and metabolic disease. Sleep Med. Rev. 2017 34 3 9 10.1016/j.smrv.2016.06.009 27568341
    [Google Scholar]
  129. Kohl K.D. Amaya J. Passement C.A. Dearing M.D. McCue M.D. Unique and shared responses of the gut microbiota to prolonged fasting: A comparative study across five classes of vertebrate hosts. FEMS Microbiol. Ecol. 2014 90 3 883 894 10.1111/1574‑6941.12442 25319042
    [Google Scholar]
  130. Derrien M. Alvarez A.S. de Vos W.M. The gut microbiota in the first decade of life. Trends Microbiol. 2019 27 12 997 1010 10.1016/j.tim.2019.08.001 31474424
    [Google Scholar]
  131. Subramanian S. Huq S. Yatsunenko T. Haque R. Mahfuz M. Alam M.A. Benezra A. DeStefano J. Meier M.F. Muegge B.D. Barratt M.J. VanArendonk L.G. Zhang Q. Province M.A. Petri W.A. Jr Ahmed T. Gordon J.I. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 2014 510 7505 417 421 10.1038/nature13421 24896187
    [Google Scholar]
  132. Smith MI Yatsunenko T Manary MJ Trehan I Mkakosya R Cheng J Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 2013 339 548 554 10.1126/science.1229000
    [Google Scholar]
  133. Ma T. Shen X. Shi X. Sakandar H.A. Quan K. Li Y. Jin H. Kwok L-Y. Zhang H. Sun Z. Targeting gut microbiota and metabolism as the major probiotic mechanism - An evidence-based review. Trends Food Sci. Technol. 2023 138 178 198 10.1016/j.tifs.2023.06.013
    [Google Scholar]
  134. Reed B. Abunnaja S. The Epidemiology of Obesity. Handb. Metab. Bariatr. Surg 2023 20 26 10.1002/9781119521686.ch3
    [Google Scholar]
  135. Pascale A. Marchesi N. Govoni S. Coppola A. Gazzaruso C. The role of gut microbiota in obesity, diabetes mellitus, and effect of metformin: New insights into old diseases. Curr. Opin. Pharmacol. 2019 49 1 5 10.1016/j.coph.2019.03.011 31015106
    [Google Scholar]
  136. Amin M.N. Hussain M.S. Sarwar M.S. Rahman Moghal M.M. Das A. Hossain M.Z. Chowdhury J.A. Millat M.S. Islam M.S. How the association between obesity and inflammation may lead to insulin resistance and cancer. Diabetes Metab. Syndr. 2019 13 2 1213 1224 10.1016/j.dsx.2019.01.041 31336467
    [Google Scholar]
  137. Davis C.D. The gut microbiome and its role in obesity. Nutr. Today 2016 51 4 167 174 10.1097/NT.0000000000000167 27795585
    [Google Scholar]
  138. Socol C.T. Chira A. Martinez-Sanchez M.A. Nuñez-Sanchez M.A. Maerescu C.M. Mierlita D. Rusu A.V. Ruiz-Alcaraz A.J. Trif M. Ramos-Molina B. Leptin signaling in obesity and colorectal cancer. Int. J. Mol. Sci. 2022 23 9 4713 10.3390/ijms23094713 35563103
    [Google Scholar]
  139. Cao S.Y. Zhao C.N. Xu X.Y. Tang G.Y. Corke H. Gan R.Y. Li H-B. Dietary plants, gut microbiota, and obesity: Effects and mechanisms. Trends Food Sci. Technol. 2019 92 194 204 10.1016/j.tifs.2019.08.004
    [Google Scholar]
  140. Dayib M. Larson J. Slavin J. Dietary fibers reduce obesity-related disorders: mechanisms of action. Curr. Opin. Clin. Nutr. Metab. Care 2020 23 6 445 450 10.1097/MCO.0000000000000696 32925180
    [Google Scholar]
  141. Khan M.J. Gerasimidis K. Edwards C.A. Shaikh M.G. Role of Gut Microbiota in the Aetiology of Obesity: Proposed Mechanisms and Review of the Literature. J. Obes. 2016 2016 1 27 10.1155/2016/7353642 27703805
    [Google Scholar]
  142. Xu J. White A.J. Niehoff N.M. O’Brien K.M. Sandler D.P. Airborne metals exposure and risk of hypertension in the Sister Study. Environ. Res. 2020 191 110144 10.1016/j.envres.2020.110144 32898563
    [Google Scholar]
  143. Hunter R.W. Dhaun N. Bailey M.A. The impact of excessive salt intake on human health. Nat. Rev. Nephrol. 2022 18 5 321 335 10.1038/s41581‑021‑00533‑0 35058650
    [Google Scholar]
  144. Booth F.W. Roberts C.K. Laye M.J. Lack of exercise is a major cause of chronic diseases. Compr. Physiol. 2012 2 2 1143 1211 10.1002/cphy.c110025 23798298
    [Google Scholar]
  145. Yang C. Fei Y. Qin Y. Luo D. Yang S. Kou X. Zi Y. Deng T. Jin M. Bacterial flora changes in conjunctiva of rats with streptozotocin-induced type i diabetes. PLoS One 2015 10 7 e0133021 10.1371/journal.pone.0133021 26176548
    [Google Scholar]
  146. Karbach S.H. Schönfelder T. Brandão I. Wilms E. Hörmann N. Jäckel S. Schüler R. Finger S. Knorr M. Lagrange J. Brandt M. Waisman A. Kossmann S. Schäfer K. Münzel T. Reinhardt C. Wenzel P. Gut microbiota promote angiotensin II–induced arterial hypertension and vascular dysfunction. J. Am. Heart Assoc. 2016 5 9 e003698 10.1161/JAHA.116.003698 27577581
    [Google Scholar]
  147. Xiong R.G. Zhou D.D. Wu S.X. Huang S.Y. Saimaiti A. Yang Z.J. Shang A. Zhao C.N. Gan R.Y. Li H.B. Health benefits and side effects of short-chain fatty acids. Foods 2022 11 18 2863 10.3390/foods11182863 36140990
    [Google Scholar]
  148. Mishima E. Abe T. Role of the microbiota in hypertension and antihypertensive drug metabolism. Hypertens. Res. 2022 45 2 246 253 10.1038/s41440‑021‑00804‑0 34887530
    [Google Scholar]
  149. Gómez-Guzmán M. Toral M. Romero M. Jiménez R. Galindo P. Sánchez M. Zarzuelo M.J. Olivares M. Gálvez J. Duarte J. Antihypertensive effects of probiotics Lactobacillus strains in spontaneously hypertensive rats. Mol. Nutr. Food Res. 2015 59 11 2326 2336 10.1002/mnfr.201500290 26255877
    [Google Scholar]
  150. Kennedy P.J. Cryan J.F. Dinan T.G. Clarke G. Irritable bowel syndrome: A microbiome-gut-brain axis disorder? World J. Gastroenterol. 2014 20 39 14105 14125 10.3748/wjg.v20.i39.14105 25339800
    [Google Scholar]
  151. Saha L. Irritable bowel syndrome: Pathogenesis, diagnosis, treatment, and evidence-based medicine. World J. Gastroenterol. 2014 20 22 6759 6773 10.3748/wjg.v20.i22.6759 24944467
    [Google Scholar]
  152. Black C.J. Ford A.C. Global burden of irritable bowel syndrome: trends, predictions and risk factors. Nat. Rev. Gastroenterol. Hepatol. 2020 17 8 473 486 10.1038/s41575‑020‑0286‑8 32296140
    [Google Scholar]
  153. Salem A.E. Singh R. Ayoub Y.K. Khairy A.M. Mullin G.E. The gut microbiome and irritable bowel syndrome: State of art review. Arab J. Gastroenterol. 2018 19 3 136 141 10.1016/j.ajg.2018.02.008 29935865
    [Google Scholar]
  154. Mousa W.K. Chehadeh F. Husband S. Microbial dysbiosis in the gut drives systemic autoimmune diseases. Front. Immunol. 2022 13 906258 10.3389/fimmu.2022.906258 36341463
    [Google Scholar]
  155. Meyer J. Davies J. Inflammatory Bowel Disease. Textb. Emerg. Gen. Surg. Trauma. Non-traumatic Surg. Emergencies 2023 1187 1206 10.1007/978‑3‑031‑22599‑4_82
    [Google Scholar]
  156. Qiu P. Ishimoto T. Fu L. Zhang J. Zhang Z. Liu Y. The gut microbiota in inflammatory bowel disease. Front. Cell. Infect. Microbiol. 2022 12 733992 10.3389/fcimb.2022.733992 35273921
    [Google Scholar]
  157. Hills R. Jr Pontefract B. Mishcon H. Black C. Sutton S. Theberge C. Gut microbiome: Profound implications for diet and disease. Nutrients 2019 11 7 1613 10.3390/nu11071613 31315227
    [Google Scholar]
  158. Konstantinidis T. Tsigalou C. Karvelas A. Stavropoulou E. Voidarou C. Bezirtzoglou E. Effects of antibiotics upon the gut microbiome: A review of the literature. Biomedicines 2020 8 11 502 10.3390/biomedicines8110502 33207631
    [Google Scholar]
  159. Singh S. Boland B.S. Jess T. Moore A.A. Management of inflammatory bowel diseases in older adults. Lancet Gastroenterol. Hepatol. 2023 8 4 368 382 10.1016/S2468‑1253(22)00358‑2 36669515
    [Google Scholar]
  160. Ni J. Wu G.D. Albenberg L. Tomov V.T. Gut microbiota and IBD: Causation or correlation? Nat. Rev. Gastroenterol. Hepatol. 2017 14 10 573 584 10.1038/nrgastro.2017.88 28743984
    [Google Scholar]
  161. Schulberg J. De Cruz P. Characterisation and therapeutic manipulation of the gut microbiome in inflammatory bowel disease. Intern. Med. J. 2016 46 3 266 273 10.1111/imj.13003 26968595
    [Google Scholar]
  162. Ananthakrishnan A.N. Bernstein C.N. Iliopoulos D. Macpherson A. Neurath M.F. Ali R.A.R. Vavricka S.R. Fiocchi C. Environmental triggers in IBD: A review of progress and evidence. Nat. Rev. Gastroenterol. Hepatol. 2018 15 1 39 49 10.1038/nrgastro.2017.136 29018271
    [Google Scholar]
  163. Karmaus W. Ziyab A.H. Mukherjee N. Epigenetics of allergic diseases allergies, eczema, asthma, and rhinitis. Epigenetics in Human Disease, Epigenetics in Human Disease 2018 573 606 10.1016/B978‑0‑12‑812215‑0.00019‑4
    [Google Scholar]
  164. Gür Çeti̇nkaya P. Murat Şahi̇ner Ü. Childhood atopic dermatitis: Current developments, treatment approaches, and future expectations. Turk. J. Med. Sci. 2019 49 4 963 984 10.3906/sag‑1810‑105 31408293
    [Google Scholar]
  165. Thomsen S.F. Atopic dermatitis: Natural history, diagnosis, and treatment. ISRN Allergy 2014 2014 1 7 10.1155/2014/354250 25006501
    [Google Scholar]
  166. Narla S. Silverberg J.I. The role of environmental exposures in atopic dermatitis. Curr. Allergy Asthma Rep. 2020 20 12 74 10.1007/s11882‑020‑00971‑z 33047271
    [Google Scholar]
  167. Abrahamsson T.R. Jakobsson H.E. Andersson A.F. Björkstén B. Engstrand L. Jenmalm M.C. Low diversity of the gut microbiota in infants with atopic eczema. J. Allergy Clin. Immunol. 2012 129 2 434 440.e2, 440.e1-440.e2 10.1016/j.jaci.2011.10.025 22153774
    [Google Scholar]
  168. Bisgaard H. Halkjær L.B. Hinge R. Giwercman C. Palmer C. Silveira L. Strand M. Risk analysis of early childhood eczema. J. Allergy Clin. Immunol. 2009 123 6 1355 1360.e5 10.1016/j.jaci.2009.03.046 19501236
    [Google Scholar]
  169. Yao H. Fan C. Fan X. Lu Y. Wang Y. Wang R. Tang T. Qi K. Effects of gut microbiota on leptin expression and body weight are lessened by high-fat diet in mice. Br. J. Nutr. 2020 124 4 396 406 10.1017/S0007114520001117 32213218
    [Google Scholar]
  170. Stojanov S. Berlec A. Štrukelj B. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms 2020 8 11 1715 10.3390/microorganisms8111715 33139627
    [Google Scholar]
  171. Stančáková A. Laakso M. Genetics of type 2 diabetes. Endocr. Dev. 2016 31 203 220 10.1159/000439418 26824439
    [Google Scholar]
  172. Yang G. Wei J. Liu P. Zhang Q. Tian Y. Hou G. Meng L. Xin Y. Jiang X. Role of the gut microbiota in type 2 diabetes and related diseases. Metabolism 2021 117 154712 10.1016/j.metabol.2021.154712 33497712
    [Google Scholar]
  173. Blaak E.E. Canfora E.E. Theis S. Frost G. Groen A.K. Mithieux G. Nauta A. Scott K. Stahl B. van Harsselaar J. van Tol R. Vaughan E.E. Verbeke K. Short chain fatty acids in human gut and metabolic health. Benef. Microbes 2020 11 5 411 455 10.3920/BM2020.0057 32865024
    [Google Scholar]
  174. Fernandes J. Su W. Rahat-Rozenbloom S. Wolever T.M.S. Comelli E.M. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr. Diabetes 2014 4 6 e121 10.1038/nutd.2014.23 24979150
    [Google Scholar]
  175. Yoo J. Groer M. Dutra S. Sarkar A. McSkimming D. Gut microbiota and immune system interactions. Microorganisms 2020 8 10 1587 10.3390/microorganisms8101587 33076307
    [Google Scholar]
  176. Martí A. Marcos A. Martínez J.A. Obesity and immune function relationships. Obes. Rev. 2001 2 2 131 140 10.1046/j.1467‑789x.2001.00025.x 12119664
    [Google Scholar]
  177. Carding S. Verbeke K. Vipond D.T. Corfe B.M. Owen L.J. Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis. 2015 26 0 26191 10.3402/mehd.v26.26191 25651997
    [Google Scholar]
  178. Pferschy-Wenzig E.M. Pausan M.R. Ardjomand-Woelkart K. Röck S. Ammar R.M. Kelber O. Moissl-Eichinger C. Bauer R. Medicinal plants and their impact on the gut microbiome in mental health: A systematic review. Nutrients 2022 14 10 2111 10.3390/nu14102111 35631252
    [Google Scholar]
  179. Abdul P. Iftikhar M. Faiz A. Aman F. Ijaz A. Iqbal S. A comprehensive review on antidiabetic properties of turmeric. Life Sci. J. 2020 17 26 39
    [Google Scholar]
  180. Pluta R. Januszewski S. Ułamek-Kozioł M. Mutual two-way interactions of curcumin and gut microbiota. Int. J. Mol. Sci. 2020 21 3 1055 10.3390/ijms21031055 32033441
    [Google Scholar]
  181. Makarewicz M. Drożdż I. Tarko T. Duda-Chodak A. The interactions between polyphenols and microorganisms, especially gut microbiota. Antioxidants 2021 10 2 188 10.3390/antiox10020188 33525629
    [Google Scholar]
  182. Yang F. Gao R. Luo X. Liu R. Xiong D. Berberine influences multiple diseases by modifying gut microbiota. Front. Nutr. 2023 10 1187718 10.3389/fnut.2023.1187718 37599699
    [Google Scholar]
  183. Vuksan V. Sung M.K. Sievenpiper J.L. Stavro P.M. Jenkins A.L. Di Buono M. Lee K.S. Leiter L.A. Nam K.Y. Arnason J.T. Choi M. Naeem A. Korean red ginseng (Panax ginseng) improves glucose and insulin regulation in well-controlled, type 2 diabetes: Results of a randomized, double-blind, placebo-controlled study of efficacy and safety. Nutr. Metab. Cardiovasc. Dis. 2008 18 1 46 56 10.1016/j.numecd.2006.04.003 16860976
    [Google Scholar]
  184. Shao J.W. Jiang J.L. Zou J.J. Yang M.Y. Chen F.M. Zhang Y.J. Jia L. Therapeutic potential of ginsenosides on diabetes: From hypoglycemic mechanism to clinical trials. J. Funct. Foods 2020 64 103630 10.1016/j.jff.2019.103630
    [Google Scholar]
  185. Zhou S.S. Xu J. Zhu H. Wu J. Xu J.D. Yan R. Li X.Y. Liu H.H. Duan S.M. Wang Z. Chen H.B. Shen H. Li S.L. Gut microbiota-involved mechanisms in enhancing systemic exposure of ginsenosides by coexisting polysaccharides in ginseng decoction. Sci. Rep. 2016 6 1 22474 10.1038/srep22474 26932472
    [Google Scholar]
  186. Pan W. Xue B. Yang C. Miao L. Zhou L. Chen Q. Cai Q. Liu Y. Liu D. He H. Zhang Y. Yin T. Tang X. Biopharmaceutical characters and bioavailability improving strategies of ginsenosides. Fitoterapia 2018 129 272 282 10.1016/j.fitote.2018.06.001 29883635
    [Google Scholar]
  187. Yang L. Zou H. Gao Y. Luo J. Xie X. Meng W. Zhou H. Tan Z. Insights into gastrointestinal microbiota-generated ginsenoside metabolites and their bioactivities. Drug Metab. Rev. 2020 52 1 125 138 10.1080/03602532.2020.1714645 31984805
    [Google Scholar]
  188. Chopra P. Chhillar H. Kim Y.J. Jo I.H. Kim S.T. Gupta R. Phytochemistry of ginsenosides: Recent advancements and emerging roles. Crit. Rev. Food Sci. Nutr. 2023 63 5 613 640 10.1080/10408398.2021.1952159 34278879
    [Google Scholar]
  189. Dragan S. Andrica F. Serban M.C. Timar R. Polyphenols-rich natural products for treatment of diabetes. Curr. Med. Chem. 2014 22 1 14 22 10.2174/0929867321666140826115422 25174925
    [Google Scholar]
  190. Heim K.E. Tagliaferro A.R. Bobilya D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002 13 10 572 584 10.1016/S0955‑2863(02)00208‑5 12550068
    [Google Scholar]
  191. Di Pede G. Bresciani L. Calani L. Petrangolini G. Riva A. Allegrini P. Del Rio D. Mena P. The human microbial metabolism of quercetin in different formulations: An in vitro evaluation. Foods 2020 9 8 1121 10.3390/foods9081121 32823976
    [Google Scholar]
  192. Kim D.H. Kim S.Y. Park S.Y. Han M.J. Metabolism of quercitrin by human intestinal bacteria and its relation to some biological activities. Biol. Pharm. Bull. 1999 22 7 749 751 10.1248/bpb.22.749 10443478
    [Google Scholar]
  193. Su H. Mo J. Ni J. Ke H. Bao T. Xie J. Xu Y. Xie L. Chen W. Andrographolide Exerts Antihyperglycemic Effect through Strengthening Intestinal Barrier Function and Increasing Microbial Composition of Akkermansia muciniphila. Oxid. Med. Cell. Longev. 2020 2020 1 20 10.1155/2020/6538930 32774682
    [Google Scholar]
  194. Wu H. Wu X. Huang L. Ruan C. Liu J. Chen X. Liu J. Luo H. Effects of Andrographolide on Mouse Intestinal Microflora Based on High-Throughput Sequence Analysis. Front. Vet. Sci. 2021 8 702885 10.3389/fvets.2021.702885 34485430
    [Google Scholar]
  195. Riva A. Kolimár D. Spittler A. Wisgrill L. Herbold C.W. Abrankó L. Berry D. Conversion of rutin, a prevalent dietary flavonol, by the human gut microbiota. Front. Microbiol. 2020 11 585428 10.3389/fmicb.2020.585428 33408702
    [Google Scholar]
  196. Liu Y. Huang W. Ji S. Wang J. Luo J. Lu B. Sophora japonica flowers and their main phytochemical, rutin, regulate chemically induced murine colitis in association with targeting the NF-κB signaling pathway and gut microbiota. Food Chem. 2022 393 133395 10.1016/j.foodchem.2022.133395 35691061
    [Google Scholar]
  197. Guo X. Tang R. Yang S. Lu Y. Luo J. Liu Z. Rutin and its combination with inulin attenuate gut dysbiosis, the inflammatory status and endoplasmic reticulum stress in Paneth cells of obese mice induced by high-fat diet. Front. Microbiol. 2018 9 2651 10.3389/fmicb.2018.02651 30455677
    [Google Scholar]
  198. Hu Y. Chen D. Zheng P. Yu J. He J. Mao X. Yu B. The bidirectional interactions between resveratrol and gut microbiota: An insight into oxidative stress and inflammatory bowel disease therapy. BioMed Res. Int. 2019 2019 1 9 10.1155/2019/5403761 31179328
    [Google Scholar]
  199. Cai T.T. Ye X.L. Li R.R. Chen H. Wang Y.Y. Yong H.J. Pan M.L. Lu W. Tang Y. Miao H. Snijders A.M. Mao J.H. Liu X.Y. Lu Y.B. Ding D.F. Resveratrol modulates the gut microbiota and inflammation to protect against diabetic nephropathy in mice. Front. Pharmacol. 2020 11 1249 10.3389/fphar.2020.01249 32973502
    [Google Scholar]
  200. Wang P. Li D. Ke W. Liang D. Hu X. Chen F. Resveratrol-induced gut microbiota reduces obesity in high-fat diet-fed mice. Int. J. Obes. 2020 44 1 213 225 10.1038/s41366‑019‑0332‑1 30718820
    [Google Scholar]
  201. Li F. Han Y. Cai X. Gu M. Sun J. Qi C. Goulette T. Song M. Li Z. Xiao H. Dietary resveratrol attenuated colitis and modulated gut microbiota in dextran sulfate sodium-treated mice. Food Funct. 2020 11 1 1063 1073 10.1039/C9FO01519A 31825043
    [Google Scholar]
  202. He J. Le Q. Wei Y. Yang L. Cai B. Liu Y. Effect of piperine on the mitigation of obesity associated with gut microbiota alteration. Curr Res Food Sci 2022 10.1016/j.crfs.2022.08.018
    [Google Scholar]
  203. Hu X. Yu L. Li Y. Li X. Zhao Y. Xiong L. Piperine improves levodopa availability in the 6-OHDA-lesioned rat model of Parkinson’s disease by suppressing gut bacterial tyrosine decarboxylase. CNS Neurosci. Ther. 2023 ••• 10.1111/cns.14383 37528534
    [Google Scholar]
  204. Bian S. Wan H. Liao X. Wang W. Inhibitory effects of apigenin on tumor carcinogenesis by altering the gut microbiota. Mediators Inflamm. 2020 2020 1 9 10.1155/2020/7141970 33082711
    [Google Scholar]
  205. Wang M. Firrman J. Zhang L. Arango-Argoty G. Tomasula P. Liu L. Xiao W. Yam K. Apigenin impacts the growth of the gut microbiota and alters the gene expression of enterococcus. Molecules 2017 22 8 1292 10.3390/molecules22081292 28771188
    [Google Scholar]
  206. Fu R. Wang L. Meng Y. Xue W. Liang J. Peng Z. Meng J. Zhang M. Apigenin remodels the gut microbiota to ameliorate ulcerative colitis. Front. Nutr. 2022 9 1062961 10.3389/fnut.2022.1062961 36590200
    [Google Scholar]
  207. Sun W.L. Li X.Y. Dou H.Y. Wang X.D. Li J.D. Shen L. Ji H.F. Myricetin supplementation decreases hepatic lipid synthesis and inflammation by modulating gut microbiota. Cell Rep. 2021 36 9 109641 10.1016/j.celrep.2021.109641 34469716
    [Google Scholar]
  208. Zhao Z. Chen Y. Li X. Zhu L. Wang X. Li L. Sun H. Han X. Li J. Myricetin relieves the symptoms of type 2 diabetes mice and regulates intestinal microflora. Biomed. Pharmacother. 2022 153 113530 10.1016/j.biopha.2022.113530 36076610
    [Google Scholar]
  209. Zhao J. Yuan W. Wang S. Zhang H. Chen D. Niu X. Liu X. Liu L. Gao J. Comparative pharmacokinetics and tissue distribution of M10 and its metabolite myricetin in normal and dextran-sodium-sulfate-induced colitis mice. Molecules 2022 27 23 8140 10.3390/molecules27238140 36500233
    [Google Scholar]
  210. Wu Z. Shen J. Xu Q. Xiang Q. Chen Y. Lv L. Zheng B. Wang Q. Wang S. Li L. Epigallocatechin-3-gallate improves intestinal gut microbiota homeostasis and ameliorates Clostridioides difficile infection. Nutrients 2022 14 18 3756 10.3390/nu14183756 36145133
    [Google Scholar]
  211. Naito Y. Ushiroda C. Mizushima K. Inoue R. Yasukawa Z. Abe A. Takagi T. Epigallocatechin-3-gallate (EGCG) attenuates non-alcoholic fatty liver disease via modulating the interaction between gut microbiota and bile acids. J. Clin. Biochem. Nutr. 2020 67 1 2 9 10.3164/jcbn.20‑39 32801462
    [Google Scholar]
  212. Park J.M. Shin Y. Kim S.H. Jin M. Choi J.J. Dietary epigallocatechin-3-gallate alters the gut microbiota of obese diabetic db/db mice: Lactobacillus is a putative target. J. Med. Food 2020 23 10 1033 1042 10.1089/jmf.2020.4700 33054538
    [Google Scholar]
  213. Unno T. Ichitani M. Epigallocatechin-3-gallate decreases plasma and urinary levels of p -cresol by modulating gut microbiota in mice. ACS Omega 2022 7 44 40034 40041 10.1021/acsomega.2c04731 36385823
    [Google Scholar]
  214. Chen L. Wang X. Chen J. Yang J. Ling Lin Cai X.B. Chen Y. Caffeine ameliorates the metabolic syndrome in diet-induced obese mice through regulating the gut microbiota and serum metabolism. Diabetol. Metab. Syndr. 2023 15 1 37 10.1186/s13098‑023‑00993‑3 36890514
    [Google Scholar]
  215. Hegde S. Shi D.W. Johnson J.C. Geesala R. Zhang K. Lin Y.M. Shi X.Z. Mechanistic study of coffee effects on gut microbiota and motility in rats. Nutrients 2022 14 22 4877 10.3390/nu14224877 36432563
    [Google Scholar]
  216. Janssens P.L.H.R. Penders J. Hursel R. Budding A.E. Savelkoul P.H.M. Westerterp-Plantenga M.S. Long-Term green tea supplementation does not change the human gut microbiota. PLoS One 2016 11 4 e0153134 10.1371/journal.pone.0153134 27054321
    [Google Scholar]
  217. Gu X. Zhang S. Ma W. Wang Q. Li Y. Xia C. Xu Y. Zhang T. Yang L. Zhou M. The impact of instant coffee and decaffeinated coffee on the gut microbiota and depression-like behaviors of sleep-deprived rats. Front. Microbiol. 2022 13 778512 10.3389/fmicb.2022.778512 35283829
    [Google Scholar]
  218. Liu Z.Y. Wang X.L. Ou S.Q. Hou D.X. He J.H. Sanguinarine modulate gut microbiome and intestinal morphology to enhance growth performance in broilers. PLoS One 2020 15 6 e0234920 10.1371/journal.pone.0234920 32559224
    [Google Scholar]
  219. Li X. Wu X. Wang Q. Xu W. Zhao Q. Xu N. Hu X. Ye Z. Yu S. Liu J. He X. Shi F. Zhang Q. Li W. Sanguinarine ameliorates DSS induced ulcerative colitis by inhibiting NLRP3 inflammasome activation and modulating intestinal microbiota in C57BL/6 mice. Phytomedicine 2022 104 154321 10.1016/j.phymed.2022.154321 35843190
    [Google Scholar]
  220. Shi Y. Liu Y. Xie K. Zhang J. Wang Y. Hu Y. Zhong L. Sanguinarine improves intestinal health in grass carp fed high-fat diets: Involvement of antioxidant, physical and immune barrier, and intestinal microbiota. Antioxidants 2023 12 7 1366 10.3390/antiox12071366 37507906
    [Google Scholar]
  221. Zhang R. Wang X.W. Zhu J.Y. Liu L.L. Liu Y.C. Zhu H. Dietary sanguinarine affected immune response, digestive enzyme activity and intestinal microbiota of Koi carp (cryprinus carpiod). Aquaculture 2019 502 72 79 10.1016/j.aquaculture.2018.12.010
    [Google Scholar]
  222. Yang K. Zhang L. Liao P. Xiao Z. Zhang F. Sindaye D. Xin Z. Tan C. Deng J. Yin Y. Deng B. Impact of gallic acid on gut health: Focus on the gut microbiome, immune response, and mechanisms of action. Front. Immunol. 2020 11 580208 10.3389/fimmu.2020.580208 33042163
    [Google Scholar]
  223. Yang K. Deng X. Jian S. Zhang M. Wen C. Xin Z. Zhang L. Tong A. Ye S. Liao P. Xiao Z. He S. Zhang F. Deng J. Zhang L. Deng B. Gallic acid alleviates gut dysfunction and boosts immune and antioxidant activities in puppies under environmental stress based on microbiome–metabolomics analysis. Front. Immunol. 2022 12 813890 10.3389/fimmu.2021.813890 35095912
    [Google Scholar]
  224. Clark M. Centner A.M. Ukhanov V. Nagpal R. Salazar G. Gallic acid ameliorates atherosclerosis and vascular senescence and remodels the microbiome in a sex-dependent manner in ApoE−/− mice. J. Nutr. Biochem. 2022 110 109132 10.1016/j.jnutbio.2022.109132 36028099
    [Google Scholar]
  225. Sun L. Guo L. Xu G. Li Z. Appiah M.O. Yang L. Lu W. Quercetin reduces inflammation and protects gut microbiota in broilers. Molecules 2022 27 10 3269 10.3390/molecules27103269 35630745
    [Google Scholar]
  226. Nie J. Zhang L. Zhao G. Du X. Quercetin reduces atherosclerotic lesions by altering the gut microbiota and reducing atherogenic lipid metabolites. J. Appl. Microbiol. 2019 127 6 1824 1834 10.1111/jam.14441 31509634
    [Google Scholar]
  227. Xu B. Qin W. Xu Y. Yang W. Chen Y. Huang J. Zhao J. Ma L. [Retracted] dietary quercetin supplementation attenuates diarrhea and intestinal damage by regulating gut microbiota in weanling piglets. Oxid. Med. Cell. Longev. 2021 2021 1 6221012 10.1155/2021/6221012 34950418
    [Google Scholar]
  228. Lan H. Hong W. Qian D. Peng F. Li H. Liang C. Du M. Gu J. Mai J. Bai B. Peng G. Quercetin modulates the gut microbiota as well as the metabolome in a rat model of osteoarthritis. Bioengineered 2021 12 1 6240 6250 10.1080/21655979.2021.1969194 34486477
    [Google Scholar]
  229. Appanna VD Human microbes-The power within: Health, healing and beyond Springer 2018 10.1007/978‑981‑10‑7684‑8
    [Google Scholar]
  230. Hoffmann A.R. Proctor L.M. Surette M.G. Suchodolski J.S. The Microbiome. Vet. Pathol. 2016 53 1 10 21 10.1177/0300985815595517 26220947
    [Google Scholar]
  231. Bauer E. Williams B.A. Smidt H. Verstegen M.W.A. Mosenthin R. Influence of the gastrointestinal microbiota on development of the immune system in young animals. Curr. Issues Intest. Microbiol. 2006 7 2 35 51 16875418
    [Google Scholar]
  232. Li X. Liu L. Cao Z. Li W. Li H. Lu C. Yang X. Liu Y. Gut microbiota as an “invisible organ” that modulates the function of drugs. Biomed. Pharmacother. 2020 121 109653 10.1016/j.biopha.2019.109653 31810138
    [Google Scholar]
  233. Yu D. Meng X. de Vos W.M. Wu H. Fang X. Maiti A.K. Implications of gut microbiota in complex human diseases. Int. J. Mol. Sci. 2021 22 23 12661 10.3390/ijms222312661 34884466
    [Google Scholar]
  234. Shreiner A.B. Kao J.Y. Young V.B. The gut microbiome in health and in disease. Curr. Opin. Gastroenterol. 2015 31 1 69 75 10.1097/MOG.0000000000000139 25394236
    [Google Scholar]
  235. Ramirez J. Guarner F. Bustos Fernandez L. Maruy A. Sdepanian V.L. Cohen H. Antibiotics as major disruptors of gut microbiota. Front. Cell. Infect. Microbiol. 2020 10 572912 10.3389/fcimb.2020.572912 33330122
    [Google Scholar]
  236. Chen Y. Zhou J. Wang L. Role and mechanism of gut microbiota in human disease. Front. Cell. Infect. Microbiol. 2021 11 625913 10.3389/fcimb.2021.625913 33816335
    [Google Scholar]
  237. Monjotin N. Amiot M.J. Fleurentin J. Morel J.M. Raynal S. Clinical evidence of the benefits of phytonutrients in human healthcare. Nutrients 2022 14 9 1712 10.3390/nu14091712 35565680
    [Google Scholar]
  238. Morowitz M.J. Carlisle E.M. Alverdy J.C. Contributions of intestinal bacteria to nutrition and metabolism in the critically ill. Surg. Clin. North Am. 2011 91 4 771 785, viii 10.1016/j.suc.2011.05.001 21787967
    [Google Scholar]
  239. Zhang X. Han Y. Huang W. Jin M. Gao Z. The influence of the gut microbiota on the bioavailability of oral drugs. Acta Pharm. Sin. B 2021 11 7 1789 1812 10.1016/j.apsb.2020.09.013 34386321
    [Google Scholar]
  240. Rowland I. Gibson G. Heinken A. Scott K. Swann J. Thiele I. Tuohy K. Gut microbiota functions: Metabolism of nutrients and other food components. Eur. J. Nutr. 2018 57 1 1 24 10.1007/s00394‑017‑1445‑8 28393285
    [Google Scholar]
  241. Santhiravel S. Bekhit A.E.D.A. Mendis E. Jacobs J.L. Dunshea F.R. Rajapakse N. Ponnampalam E.N. The impact of plant phytochemicals on the gut microbiota of humans for a balanced life. Int. J. Mol. Sci. 2022 23 15 8124 10.3390/ijms23158124 35897699
    [Google Scholar]
  242. Guinane C.M. Cotter P.D. Role of the gut microbiota in health and chronic gastrointestinal disease: Understanding a hidden metabolic organ. Therap. Adv. Gastroenterol. 2013 6 4 295 308 10.1177/1756283X13482996 23814609
    [Google Scholar]
  243. Anand U. Jacobo-Herrera N. Altemimi A. Lakhssassi N. A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential avenues of biocompatible drug discovery. Metabolites 2019 9 11 258 10.3390/metabo9110258 31683833
    [Google Scholar]
  244. Nasim N. Sandeep I.S. Mohanty S. Plant-derived natural products for drug discovery: Current approaches and prospects. Nucleus 2022 65 3 399 411 10.1007/s13237‑022‑00405‑3
    [Google Scholar]
  245. Qiu S. Cai Y. Yao H. Lin C. Xie Y. Tang S. Zhang A. Small molecule metabolites: Discovery of biomarkers and therapeutic targets. Signal Transduct. Target. Ther. 2023 8 1 132 10.1038/s41392‑023‑01399‑3 36941259
    [Google Scholar]
  246. Grgić J. Šelo G. Planinić M. Tišma M. Bucić-Kojić A. Role of the encapsulation in bioavailability of phenolic compounds. Antioxidants 2020 9 10 923 10.3390/antiox9100923 32993196
    [Google Scholar]
  247. Mirmohammadali S.N. Rosenkranz S.K. Dietary phytochemicals, gut microbiota composition, and health outcomes in human and animal models. Biosci. Microbiota Food Health 2023 42 3 152 171 10.12938/bmfh.2022‑078
    [Google Scholar]
  248. Puccetti M. Pariano M. Schoubben A. Giovagnoli S. Ricci M. Biologics, theranostics, and personalized medicine in drug delivery systems. Pharmacol. Res. 2024 201 107086 10.1016/j.phrs.2024.107086 38295917
    [Google Scholar]
  249. Ott S.J. Musfeldt M. Wenderoth D.F. Hampe J. Brant O. Fölsch U.R. Timmis K.N. Schreiber S. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 2004 53 5 685 693 10.1136/gut.2003.025403 15082587
    [Google Scholar]
  250. Britton R.A. Young V.B. Role of the intestinal microbiota in resistance to colonization by Clostridium difficile. Gastroenterology 2014 146 6 1547 1553 10.1053/j.gastro.2014.01.059 24503131
    [Google Scholar]
  251. Fujimura K.E. Demoor T. Rauch M. Faruqi A.A. Jang S. Johnson C.C. Boushey H.A. Zoratti E. Ownby D. Lukacs N.W. Lynch S.V. House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection. Proc. Natl. Acad. Sci. USA 2014 111 2 805 810 10.1073/pnas.1310750111 24344318
    [Google Scholar]
  252. Scheperjans F. Aho V. Pereira P.A.B. Koskinen K. Paulin L. Pekkonen E. Haapaniemi E. Kaakkola S. Eerola-Rautio J. Pohja M. Kinnunen E. Murros K. Auvinen P. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov. Disord. 2015 30 3 350 358 10.1002/mds.26069 25476529
    [Google Scholar]
  253. Minter M.R. Hinterleitner R. Meisel M. Zhang C. Leone V. Zhang X. Oyler-Castrillo P. Zhang X. Musch M.W. Shen X. Jabri B. Chang E.B. Tanzi R.E. Sisodia S.S. Antibiotic-induced perturbations in microbial diversity during post-natal development alters amyloid pathology in an aged APPSWE/PS1ΔE9 murine model of Alzheimer’s disease. Sci. Rep. 2017 7 1 10411 10.1038/s41598‑017‑11047‑w 28874832
    [Google Scholar]
  254. Ma J. Li H. The role of gut microbiota in atherosclerosis and hypertension. Front. Pharmacol. 2018 9 1082 10.3389/fphar.2018.01082 30319417
    [Google Scholar]
  255. Vallianou N. Stratigou T. Christodoulatos G.S. Dalamaga M. Understanding the role of the gut microbiome and microbial metabolites in obesity and obesity-associated metabolic disorders: Current evidence and perspectives. Curr. Obes. Rep. 2019 8 3 317 332 10.1007/s13679‑019‑00352‑2 31175629
    [Google Scholar]
  256. Lee N.Y. Shin M.J. Youn G.S. Yoon S.J. Choi Y.R. Kim H.S. Lactobacillus attenuates progression of nonalcoholic fatty liver disease by lowering cholesterol and steato-sis. Clin. Mol. Hepatol. 2020 ••• 10.3350/cmh.2020.0125 33317254
    [Google Scholar]
  257. DeGruttola A.K. Low D. Mizoguchi A. Mizoguchi E. Current understanding of dysbiosis in disease in human and animal models. Inflamm. Bowel Dis. 2016 22 5 1137 1150 10.1097/MIB.0000000000000750 27070911
    [Google Scholar]
  258. Wosińska A. Pazik D. Łopuszyńska I. Kosecka K. Rudziński P. Cieślik A. Akkermansia muciniphila – multifunctional bacteria. J Educ Heal Sport 2023 10.12775/JEHS.2023.21.01.009
    [Google Scholar]
  259. Hsieh Y.Y. Tung S.Y. Pan H.Y. Yen C.W. Xu H.W. Lin Y.J. Deng Y.F. Hsu W.T. Wu C.S. Li C. Increased abundance of clostridium and fusobacterium in gastric microbiota of patients with gastric cancer in taiwan. Sci. Rep. 2018 8 1 158 10.1038/s41598‑017‑18596‑0 29317709
    [Google Scholar]
  260. Scher J.U. Sczesnak A. Longman R.S. Segata N. Ubeda C. Bielski C. Rostron T. Cerundolo V. Pamer E.G. Abramson S.B. Huttenhower C. Littman D.R. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife 2013 2 e01202 10.7554/eLife.01202 24192039
    [Google Scholar]
  261. Kim J.S. Park J.E. Lee K.C. Choi S.H. Oh B.S. Yu S.Y. Eom M.K. Kang S.W. Han K.I. Suh M.K. Lee D.H. Yoon H. Kim B.Y. Yang S.J. Lee J.H. Lee J.S. Park S.H. Blautia faecicola sp. nov., isolated from faeces from a healthy human. Int. J. Syst. Evol. Microbiol. 2020 70 3 2059 2065 10.1099/ijsem.0.004015 32100703
    [Google Scholar]
  262. Zhao Y. Zhong X. Yan J. Sun C. Zhao X. Wang X. Potential roles of gut microbes in biotransformation of natural products: An overview. Front. Microbiol. 2022 13 956378 10.3389/fmicb.2022.956378 36246222
    [Google Scholar]
  263. Sun C. Chen L. Shen Z. Mechanisms of gastrointestinal microflora on drug metabolism in clinical practice. Saudi Pharm. J. 2019 27 8 1146 1156 10.1016/j.jsps.2019.09.011 31885474
    [Google Scholar]
  264. Bess E.N. Bisanz J.E. Yarza F. Bustion A. Rich B.E. Li X. Kitamura S. Waligurski E. Ang Q.Y. Alba D.L. Spanogiannopoulos P. Nayfach S. Koliwad S.K. Wolan D.W. Franke A.A. Turnbaugh P.J. Genetic basis for the cooperative bioactivation of plant lignans by Eggerthella lenta and other human gut bacteria. Nat. Microbiol. 2019 5 1 56 66 10.1038/s41564‑019‑0596‑1 31686027
    [Google Scholar]
  265. Kim B.G. Jung W.D. Mok H. Ahn J.H. Production of hydroxycinnamoyl-shikimates and chlorogenic acid in Escherichia coli: production of hydroxycinnamic acid conjugates. Microb. Cell Fact. 2013 12 1 15 10.1186/1475‑2859‑12‑15 23383718
    [Google Scholar]
  266. Kida H. Akao T. Meselhy M. Hattori M. Enzymes responsible for the metabolism of saikosaponins from Eubacterium sp. A-44, a human intestinal anaerobe. Biol. Pharm. Bull. 1997 20 12 1274 1278 10.1248/bpb.20.1274 9448103
    [Google Scholar]
  267. Nakamura K. Zhu S. Komatsu K. Hattori M. Iwashima M. Deglycosylation of the isoflavone C-glucoside puerarin by a combination of two recombinant bacterial enzymes and 3-oxo-glucose. Appl. Environ. Microbiol. 2020 86 14 e00607-20 10.1128/AEM.00607‑20 32385077
    [Google Scholar]
  268. Li J.S. Barber C.C. Zhang W. Natural products from anaerobes. J. Ind. Microbiol. Biotechnol. 2019 46 3-4 375 383 10.1007/s10295‑018‑2086‑5 30284140
    [Google Scholar]
  269. Wlodarska M. Luo C. Kolde R. d’Hennezel E. Annand J.W. Heim C.E. Krastel P. Schmitt E.K. Omar A.S. Creasey E.A. Garner A.L. Mohammadi S. O’Connell D.J. Abubucker S. Arthur T.D. Franzosa E.A. Huttenhower C. Murphy L.O. Haiser H.J. Vlamakis H. Porter J.A. Xavier R.J. Indoleacrylic acid produced by commensal peptostreptococcus species suppresses inflammation. Cell Host Microbe 2017 22 1 25 37.e6 10.1016/j.chom.2017.06.007 28704649
    [Google Scholar]
  270. Rodríguez-Daza M.C. Pulido-Mateos E.C. Lupien-Meilleur J. Guyonnet D. Desjardins Y. Roy D. Polyphenol-mediated gut microbiota modulation: Toward prebiotics and further. Front. Nutr. 2021 8 689456 10.3389/fnut.2021.689456 34268328
    [Google Scholar]
  271. Peng R. Han P. Fu J. Zhang Z.W. Ma S.R. Pan L.B. Xia Y.Y. Yu H. Xu H. Liu C.X. Wang Y. Esterases from bifidobacteria exhibit the conversion of albiflorin in gut microbiota. Front. Microbiol. 2022 13 880118 10.3389/fmicb.2022.880118 35464989
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010313921240923125946
Loading
/content/journals/cpb/10.2174/0113892010313921240923125946
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: medicinal plants ; Phytochemicals ; herbal medicine ; healthcare ; gut microbiota
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test