Skip to content
2000
image of In-vitro, In-vivo and Molecular Docking Studies on Dietary Supplement Containing Polar and Non-Polar fractions of Persea Americana for 
Management of Diet-related Chronic Diseases

Abstract

Background

Diet-related chronic diseases, such as cardiovascular diseases, obesity, diabetes, autoimmune diseases and cancer, are largely preventable with a healthy diet and lifestyle. Therefore, searching for dietary supplements rich in antioxidant and anti-inflammatory phytochemicals for the prevention and/or management of diet-related chronic diseases is an important strategy for controlling these diseases to reduce healthcare costs and sustain development.

Objective

The aim of the current research was to prepare dietary supplements from avocado fruit pulp [AFPDS] and evaluate their potential against various diet-related chronic diseases through , , and molecular docking studies.

Methods

Volatile compounds of avocado pulp were evaluated, and the total phenolic compounds, fatty acids, and phytosterols profiles of the AFPDS were determined.

Results

D-limonene, methyl propanoate, isobutyl propanoate and pentanol were the principal volatile compounds in the avocado pulp. Total phenolic and flavonoids were present in the AFPDS by 9.65 mg GAE/g and 6.87 mg CE/g, respectively. Chlorogenic acid and cinnamic acid were the major and minor identified phenolic compounds in AFPDS, respectively. Oleic acid [75.06%] and β-Sitosterol [2.19%] were the highest fatty acid and phytosterol present in AFPDS, respectively. AFPDS recorded anti-inflammatory activity against nitric oxide [NO] production in RAW264.7 macrophages by 98.2µg/ml [IC50] and 164.8µg/ml [IC90]. AFPDS showed significant anti-inflammatory activity against carrageenan-induced rat paw edema. AFPDS showed antioxidant activity against DPPH and ABTS by 8.67 mg TE/g and 6.14 mg TE/g. AFPDS possessed anti-cancer activity against MCF7 and HPG2 at10.8µg/ml and 40.5µg/ml, respectively. AFPDS exhibited anti-diabetic activity as an inhibitor of α-amylase and -glucosidase by26.35±0.77μg/ml and 0.55±0.163mg/ml, respectively. Molecular docking studies revealed high binding affinity of different active compounds present in AFPDS with cyclooxygenase-2, glutathione peroxidase, -glucosidase and B-cell lymphoma-extra-large proteins.

Conclusion

AFPDS can be considered a new agent for the prevention and treatment of diet-related chronic diseases, such as diabetes and cancer, due to its anti-inflammatory, antioxidant, anticancer, and anti-diabetic activities, as demonstrated through , , and molecular docking studies.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010357755250227060845
2025-03-05
2025-03-26
Loading full text...

Full text loading...

References

  1. Cepas V. Collino M. Mayo J.C. Sainz R.M. Redox signaling and advanced glycation endproducts (AGEs) in diet-related diseases. Antioxidants 2020 9 2 142 10.3390/antiox9020142 32041293
    [Google Scholar]
  2. Hess J.M. Stephensen C.B. Kratz M. Bolling B.W. Exploring the links between diet and inflammation: Dairy foods as case studies. Adv. Nutr. 2021 12 Suppl. 1 1S 13S 10.1093/advances/nmab108 34632478
    [Google Scholar]
  3. Iacobini C. Vitale M. Haxhi J. Pesce C. Pugliese G. Menini S. Food-related carbonyl stress in cardiometabolic and cancer risk linked to unhealthy modern diet. Nutrients 2022 14 5 1061 10.3390/nu14051061 35268036
    [Google Scholar]
  4. Aranda-Rivera A.K. Cruz-Gregorio A. Arancibia-Hernández Y.L. Hernández-Cruz E.Y. Pedraza-Chaverri J. RONS and oxidative stress: An overview of basic concepts. Oxygen 2022 2 4 437 478 10.3390/oxygen2040030
    [Google Scholar]
  5. Izu G.O. Mfotie Njoya E. Tabakam G.T. Nambooze J. Otukile K.P. Tsoeu S.E. Fasiku V.O. Adegoke A.M. Erukainure O.L. Mashele S.S. Makhafola T.J. Sekhoacha M.P. Chukwuma C.I. Unravelling the influence of chlorogenic acid on the antioxidant phytochemistry of avocado (Persea americana Mill.) fruit peel. Antioxidants 2024 13 4 456 10.3390/antiox13040456 38671904
    [Google Scholar]
  6. Thompson A.S. Tresserra-Rimbau A. Karavasiloglou N. Jennings A. Cantwell M. Hill C. Perez-Cornago A. Bondonno N.P. Murphy N. Rohrmann S. Cassidy A. Kühn T. Association of healthful plant-based diet adherence with risk of mortality and major chronic diseases among adults in the UK. JAMA Netw. Open 2023 6 3 e234714 10.1001/jamanetworkopen.2023.4714 36976560
    [Google Scholar]
  7. Scoditti E. Tumolo M.R. Garbarino S. Mediterranean diet on sleep: A health alliance. Nutrients 2022 14 14 2998 10.3390/nu14142998 35889954
    [Google Scholar]
  8. Haß U. Herpich C. Norman K. Anti-inflammatory diets and fatigue. Nutrients 2019 11 10 2315 10.3390/nu11102315 31574939
    [Google Scholar]
  9. Bhuyan D.J. Alsherbiny M.A. Perera S. Low M. Basu A. Devi O.A. Barooah M.S. Li C.G. Papoutsis K. The odyssey of bioactive compounds in avocado (Persea americana) and their health benefits. Antioxidants 2019 8 10 426 10.3390/antiox8100426 31554332
    [Google Scholar]
  10. Waly D.A. Zeid A.H.A. Attia H.N. Ahmed K.A. El-Kashoury E.S.A. El Halawany A.M. Mohammed R.S. Comprehensive phytochemical characterization of Persea americana Mill. fruit via UPLC/HR-ESI–MS/MS and anti-arthritic evaluation using adjuvant-induced arthritis model. Inflammopharmacology 2023 31 6 3243 3262 10.1007/s10787‑023‑01365‑z 37936023
    [Google Scholar]
  11. Buthelezi N.M.D. Mafeo T.P. Effect of perforated low-density polyethylene films on postharvest quality of avocado fruit. Heliyon 2024 10 5 e27656 10.1016/j.heliyon.2024.e27656 38495180
    [Google Scholar]
  12. Alkhalaf M Alansari W Ibrahim E Anti-oxidant, anti-inflammatory and anti-cancer activities of avocado (persea americana) fruit and seed extract. J. King Saud Univ. - Sci. 2019 31 4 10.1016/j.jksus.2018.10.010
    [Google Scholar]
  13. Flores M. Saravia C. Vergara C. Avila F. Valdés H. Ortiz-Viedma J. Avocado oil: Characteristics, properties, and applications. Molecules 2019 24 11 2172 10.3390/molecules24112172 31185591
    [Google Scholar]
  14. Anjum S. Ali H. Naseer F. Abduh M.S. Qadir H. Kakar S. Waheed Y. Ahmad T. Antioxidant activity of Carica papaya & Persea americana fruits against cadmium induced neurotoxicity, nephrotoxicity, and hepatotoxicity in rats with a computational approach. J. Trace Elem. Med. Biol. 2024 81 127324 10.1016/j.jtemb.2023.127324 37944220
    [Google Scholar]
  15. Cervantes-Paz B. Yahia E.M. Ornelas-Paz J.J. Victoria-Campos C.I. Pérez-Martínez J.D. Reyes-Hernández J. Bioaccessibility of fat-soluble bioactive compounds (FSBC) from avocado fruit as affected by ripening and FSBC composition in the food matrix. Food Res. Int. 2021 139 109960 10.1016/j.foodres.2020.109960 33509510
    [Google Scholar]
  16. Abdulazeez S.S. Ponnusamy P. Report: Antioxidant and hypoglycemic activity of strawberry fruit extracts against alloxan induced diabetes in rats. Pak. J. Pharm. Sci. 2016 29 1 255 260 26826817
    [Google Scholar]
  17. Hussein A. Ibrahim G. Kamil M. El-Shamarka M. Mostafa S. Mohamed D.A. Spirulina-enriched pasta as functional food rich in protein and antioxidant. Biointerface Res. Appl. Chem. 2021 11 6 14736 14750 10.33263/BRIAC116.1473614750
    [Google Scholar]
  18. Adams R. Identification of essential oil components by gas chromatography/mass spectrometry. 4th ed Carol Stream, Illinois, USA Al-lured Publishing Corporation 2007
    [Google Scholar]
  19. Mohamed D. Mohammed S. Hamed I. Chia seeds oil enriched with phytosterols and mucilage as a cardioprotective dietary supplement towards inflammation, oxidative stress, and dyslipidemia. Journal of Herbmed Pharmacology 2021 11 1 83 90 10.34172/jhp.2022.09
    [Google Scholar]
  20. Velioglu Y.S. Mazza G. Gao L. Oomah B.D. Antioxidant activity and total phenolics in selected fruits, vegetables and grain products. J. Agric. Food Chem. 1998 46 10 4113 4117 10.1021/jf9801973
    [Google Scholar]
  21. Zhishen J. Mengcheng T. Jianming W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999 64 4 555 559 10.1016/S0308‑8146(98)00102‑2
    [Google Scholar]
  22. AOAC Official Methods of Analysis of AOAC INTERNATIONAL (OMA) is a publication of AOAC INTERNATIONAL comprised of more 3,000 validated methods. 22nd Ed. Washington D.C., USA Official Methods of Analysis 2023
    [Google Scholar]
  23. Mohamed D. Hamed I. Mohammed S. Utilization of grape and apricot fruits by-products as cheap source for biologically active compounds for health promotion. Egypt. J. Chem. 2021 64 4 2037 2045 10.21608/ejchem.2021.54427.3132
    [Google Scholar]
  24. Ghanem D.M. Ammar N.M. El-Hawary S.S. Hamed A.R. Hussein R.A. El-Desoky A.H. Mohamed D.A. Mokhtar F.A. Okba M.M. Effect of Carissa macrocarpa (Eckl.) A. DC. aerial parts on some non-communicable diseases: In vitro study and HPLC-QTOF/MS-MS analysis. Discover Applied Sciences 2024 6 5 238 10.1007/s42452‑024‑05899‑x
    [Google Scholar]
  25. Yoo M.S. Shin J.S. Choi H.E. Cho Y.W. Bang M.H. Baek N.I. Lee K.T. Fucosterol isolated from Undaria pinnatifida inhibits lipopolysaccharide-induced production of nitric oxide and pro-inflammatory cytokines via the inactivation of nuclear factor-κB and p38 mitogen-activated protein kinase in RAW264.7 macrophages. Food Chem. 2012 135 3 967 975 10.1016/j.foodchem.2012.05.039 22953812
    [Google Scholar]
  26. Lanhers M.C. Fleurentin J. Mortier F. Vinche A. Younos C. Anti-inflammatory and analgesic effects of an aqueous extract of Harpagophytum procumbens. Planta Med. 1992 58 2 117 123 10.1055/s‑2006‑961411 1529021
    [Google Scholar]
  27. Mohamed D.A. Hanfy E.A. Fouda K. Evaluation of antioxidant, anti-inflammatory and anti-arthritic activities of yarrow (Achillea millefolium). J. Biol. Sci. 2018 18 317 328 10.3923/jbs.2018.317.328
    [Google Scholar]
  28. Brand-Williams W. Cuvelier M.E. Berset C. Use of a free radical method to evaluate antioxidant activity. Lebensm. Wiss. Technol. 1995 28 1 25 30 10.1016/S0023‑6438(95)80008‑5
    [Google Scholar]
  29. Re R. Pellegrini N. Proteggente A. Pannala A. Yang M. Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999 26 9-10 1231 1237 10.1016/S0891‑5849(98)00315‑3 10381194
    [Google Scholar]
  30. Cordero C.P. Morantes S.J. Páez A. Rincón J. Aristizábal F.A. Cytotoxicity of withanolides isolated from Acnistus arborescens. Fitoterapia 2009 80 6 364 368 10.1016/j.fitote.2009.05.011 19460421
    [Google Scholar]
  31. Berman H.M. Westbrook J. Feng Z. Gilliland G. Bhat T.N. Weissig H. Shindyalov I.N. Bourne P.E. The protein data bank. Nucleic Acids Res. 2000 28 1 235 242 10.1093/nar/28.1.235 10592235
    [Google Scholar]
  32. Kim S. Thiessen P.A. Bolton E.E. Chen J. Fu G. Gindulyte A. Han L. He J. He S. Shoemaker B.A. Wang J. Yu B. Zhang J. Bryant S.H. PubChem Substance and Compound databases. Nucleic Acids Res. 2016 44 D1 D1202 D1213 10.1093/nar/gkv951 26400175
    [Google Scholar]
  33. Hanwell M.D. Curtis D.E. Lonie D.C. Vandermeersch T. Zurek E. Hutchison G.R. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012 4 1 17 10.1186/1758‑2946‑4‑17 22889332
    [Google Scholar]
  34. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  35. Dassault Systèmes BIOVIA Discovery Studio. 2020 Avaialble from: https://www.3dsbiovia.com
    [Google Scholar]
  36. Guzmán-Gerónimo R.I. López M.G. Dorantes-Alvarez L. Microwave processing of avocado: Volatile flavor profiling and olfactometry. Innov. Food Sci. Emerg. Technol. 2008 9 4 501 506 10.1016/j.ifset.2008.05.003
    [Google Scholar]
  37. Pereira M.E.C. Tieman D.M. Sargent S.A. Klee H.J. Huber D.J. Volatile profiles of ripening West Indian and Guatemalan-West Indian avocado cultivars as affected by aqueous 1-methylcyclopropene. Postharvest Biol. Technol. 2013 80 37 46 10.1016/j.postharvbio.2013.01.011
    [Google Scholar]
  38. Obenland D. Collin S. Sievert J. Negm F. Arpaia M.L. Influence of maturity and ripening on aroma volatiles and flavor in ‘Hass’ avocado. Postharvest Biol. Technol. 2012 71 41 50 10.1016/j.postharvbio.2012.03.006
    [Google Scholar]
  39. Wu W. Zhan J. Tang X. Li T. Duan S. Characterization and identification of pork flavor compounds and their precursors in Chinese indigenous pig breeds by volatile profiling and multivariate analysis. Food Chem. 2022 385 132543 10.1016/j.foodchem.2022.132543 35287104
    [Google Scholar]
  40. Kebede B. Ting V. Eyres G. Oey I. Volatile changes during storage of shelf stable Apple juice: integrating GC-MS fingerprinting and chemometrics. Foods 2020 9 2 165 10.3390/foods9020165 32050668
    [Google Scholar]
  41. Komthong P. Igura N. Shimoda M. Effect of ascorbic acid on the odours of cloudy apple juice. Food Chem. 2007 100 4 1342 1349 10.1016/j.foodchem.2005.10.070
    [Google Scholar]
  42. Saavedra J. Córdova A. Navarro R. Díaz-Calderón P. Fuentealba C. Astudillo-Castro C. Toledo L. Enrione J. Galvez L. Industrial avocado waste: Functional compounds preservation by convective drying process. J. Food Eng. 2017 198 81 90 10.1016/j.jfoodeng.2016.11.018
    [Google Scholar]
  43. Santana I. Castelo-Branco V.N. Guimarães B.M. Silva L.O. Peixoto V.O.D.S. Cabral L.M.C. Freitas S.P. Torres A.G. Hass avocado (Persea americana Mill.) oil enriched in phenolic compounds and tocopherols by expeller-pressing the unpeeled microwave dried fruit. Food Chem. 2019 286 354 361 10.1016/j.foodchem.2019.02.014 30827618
    [Google Scholar]
  44. Fan S. Qi Y. Shi L. Giovani M. Zaki N.A. Guo S. Suleria H.R. Screening of phenolic compounds in rejected avocado and determination of their antioxidant potential. Processes 2022 10 9 1747 10.3390/pr10091747
    [Google Scholar]
  45. Lyu X. Agar O.T. Barrow C.J. Dunshea F.R. Suleria H.A.R. Phenolic compounds profiling and their antioxidant capacity in the peel, pulp, and seed of australian grown avocado. Antioxidants 2023 12 1 185 10.3390/antiox12010185 36671046
    [Google Scholar]
  46. Cervantes-Paz B. Yahia E.M. Avocado oil: Production and market demand, bioactive components, implications in health, and tendencies and potential uses. Compr. Rev. Food Sci. Food Saf. 2021 20 4 4120 4158 10.1111/1541‑4337.12784 34146454
    [Google Scholar]
  47. Salazar-López N.J. Domínguez-Avila J.A. Yahia E.M. Belmonte-Herrera B.H. Wall-Medrano A. Montalvo-González E. González-Aguilar G.A. Avocado fruit and by-products as potential sources of bioactive compounds. Food Res Int 2020 138 Pt A 109774 10.1016/j.foodres.2020.109774
    [Google Scholar]
  48. Tesfaye T. Ayele M. Gibril M. Ferede E. Limeneh D.Y. Kong F. Beneficiation of avocado processing industry by-product: A review on future prospect. Current Research in Green and Sustainable Chemistry 2022 5 100253 10.1016/j.crgsc.2021.100253
    [Google Scholar]
  49. Hassan M. Abdel-Moniem S. Mahmoud E.A. Mohamed D.A. Antioxidant, anti-cancer and anti-arthritic activities of acetogenin-rich extract of avocado pulp. Egypt. J. Chem. 2022 65 539 550 10.21608/ejchem.2021.90308.4309
    [Google Scholar]
  50. Bala A. Mondal C. Haldar P.K. Khandelwal B. Oxidative stress in inflammatory cells of patient with rheumatoid arthritis: Clinical efficacy of dietary antioxidants. Inflammopharmacology 2017 25 6 595 607 10.1007/s10787‑017‑0397‑1 28929423
    [Google Scholar]
  51. Mittas D. Mawunu M. Magliocca G. Lautenschläger T. Schwaiger S. Stuppner H. Marzocco S. Bioassay-guided isolation of anti-inflammatory constituents of the subaerial parts of cyperus articulatus (cyperaceae). Molecules 2022 27 18 5937 10.3390/molecules27185937 36144672
    [Google Scholar]
  52. Furman D. Campisi J. Verdin E. Carrera-Bastos P. Targ S. Franceschi C. Ferrucci L. Gilroy D.W. Fasano A. Miller G.W. Miller A.H. Mantovani A. Weyand C.M. Barzilai N. Goronzy J.J. Rando T.A. Effros R.B. Lucia A. Kleinstreuer N. Slavich G.M. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019 25 12 1822 1832 10.1038/s41591‑019‑0675‑0 31806905
    [Google Scholar]
  53. Jisha N. Vysakh A. Vijeesh V. Latha M.S. Anti-inflammatory efficacy of methanolic extract of Muntingia calabura L. leaves in Carrageenan induced paw edema model. Pathophysiology 2019 26 3-4 323 330 10.1016/j.pathophys.2019.08.002 31439385
    [Google Scholar]
  54. Rathi B. Bodhankar S. Mohan V. Thakurdesai P. Ameliorative effects of a polyphenolic fraction of cinnamomum zeylanicum L. bark in animal models of inflammation and arthritis. Sci. Pharm. 2013 81 2 567 589 10.3797/scipharm.1301‑16 23833722
    [Google Scholar]
  55. Yamaguchi M. Levy R.M. β-Caryophyllene promotes osteoblastic mineralization, and suppresses osteoclastogenesis and adipogenesis in mouse bone marrow cultures in vitro. Exp. Ther. Med. 2016 12 6 3602 3606 10.3892/etm.2016.3818 28105093
    [Google Scholar]
  56. Mohamed D.A. Ismael A.I. Ibrahim A.R. Studying the anti-inflammatory and biochemical effects of wheat germ oil. Dtsch. Lebensmitt. Rundsch. 2005 101 2 66 72
    [Google Scholar]
  57. Soledad C.P.T. Paola H.C. Carlos Enrique O.V. Israel R.L.I. GuadalupeVirginia N.M. Raúl Á.S. Avocado seeds (Persea americana cv. Criollo sp.): Lipophilic compounds profile and biological activities. Saudi J. Biol. Sci. 2021 28 6 3384 3390 10.1016/j.sjbs.2021.02.087 34121876
    [Google Scholar]
  58. Dreher M.L. Davenport A.J. Hass avocado composition and potential health effects. Crit. Rev. Food Sci. Nutr. 2013 53 7 738 750 10.1080/10408398.2011.556759 23638933
    [Google Scholar]
  59. Shalaby E.A. Shanab S.M. Comparison of DPPH and ABTS assays for determining antioxidant potential of water and methanol extracts of Spirulina platensis. Indian J. Geo-Mar. Sci. 2013 42 556 564 10.4172/2324‑8661.1000105
    [Google Scholar]
  60. Babiker E.E. Ahmed I.A.M. Uslu N. Özcan M.M. Juhaimi F.A. Ghafoor K. Almusallam I.A. Influence of drying methods on bioactive properties, fatty acids and phenolic compounds of different parts of ripe and unripe avocado fruits. J. Oleo Sci. 2021 70 4 589 598 10.5650/jos.ess20343 33692245
    [Google Scholar]
  61. Ahangarpour A. Sayahi M. Sayahi M. The antidiabetic and antioxidant properties of some phenolic phytochemicals: A review study. Diabetes Metab. Syndr. 2019 13 1 854 857 10.1016/j.dsx.2018.11.051 30641821
    [Google Scholar]
  62. Oboh G. Isaac A.T. Ajani R.A. Akinyemi A.J. Inhibition of key enzymes linked to type 2 diabetes and sodium nitroprusside induced lipid peroxidation in rats’ pancreas by phenolic extracts of avocado pear leaves and fruit. Int. J. Biomed. Sci. 2014 10 3 208 216 10.59566/IJBS.2014.10208 25324703
    [Google Scholar]
  63. Koyasu M. Ishii H. Watarai M. Takemoto K. Inden Y. Takeshita K. Amano T. Yoshikawa D. Matsubara T. Murohara T. Impact of acarbose on carotid intima-media thickness in patients with newly diagnosed impaired glucose tolerance or mild type 2 diabetes mellitus: A one-year, prospective, randomized, open-label, parallel-group study in Japanese adults with established coronary artery disease. Clin. Ther. 2010 32 9 1610 1617 10.1016/j.clinthera.2010.07.015 20974318
    [Google Scholar]
  64. Ajani A. Ganiyu O. Akinyemi A.J. Ajani R.A. Olanrewaju B.O. Avocado pear fruits and leaves aqueous extracts inhibit α-amylase, α-glucosidase and snp induced lipid peroxidation–an insight into mechanisms involve in management of type 2 diabetes. Int J Appl Nat Sci 2014 3 21 34
    [Google Scholar]
  65. Park E. Edirisinghe I. Burton-Freeman B. Avocado fruit on postprandial markers of cardio-metabolic risk: A randomized controlled dose response trial in overweight and obese men and women. Nutrients 2018 10 9 1287 10.3390/nu10091287 30213052
    [Google Scholar]
  66. Tabeshpour J. Razavi B.M. Hosseinzadeh H. Effects of Avocado (Persea americana) on Metabolic Syndrome: A Comprehensive Systematic Review. Phytother. Res. 2017 31 6 819 837 10.1002/ptr.5805 28393409
    [Google Scholar]
  67. Boyadzhieva S Georgieva S Angelov G Recovery of antioxidant phenolic compounds from avocado peel by solvent extraction. Bulgarian Chemical Communications 2018 50 K 83 89
    [Google Scholar]
  68. Adjdir S. Benariba N. El Haci I.A. Ouffai K. Bekkara F.A. Djaziri R. Antioxidant activity and phenolic compounds identification of Micromeria inodora (Desf.) Benth. from Western Algeria. Nat. Prod. Res. 2021 35 17 2963 2966 10.1080/14786419.2019.1678612 31698944
    [Google Scholar]
  69. Gutierrez-Silerio G.Y. Garcia-Solis P. Yahia E.M. Núñez-Ríos J.D. Vázquez-Cuevas F. Rodriguez-Salinas P.A. Mendoza-Zuñiga R. Kuri-García A. Cytotoxic and antitumoral effects of methanolic extracts of avocado fruit mesocarp in colorectal cancer cell line HT29. J. Med. Food 2024 27 3 211 221 10.1089/jmf.2023.0112 38407926
    [Google Scholar]
  70. Guzmán-Rodríguez J.J. López-Gómez R. Salgado-Garciglia R. Ochoa-Zarzosa A. López-Meza J.E. The defensin from avocado (Persea americana var. drymifolia) PaDef induces apoptosis in the human breast cancer cell line MCF-7. Biomed. Pharmacother. 2016 82 620 627 10.1016/j.biopha.2016.05.048 27470405
    [Google Scholar]
  71. Dabas D. Elias R.J. Ziegler G.R. Lambert J.D. In vitro antioxidant and cancer inhibitory activity of a colored avocado seed extract. Int. J. Food Sci. 2019 2019 1 7 10.1155/2019/6509421 31179313
    [Google Scholar]
  72. Anantharaju P.G. Gowda P.C. Vimalambike M.G. Madhunapantula S.V. An overview on the role of dietary phenolics for the treatment of cancers. Nutr. J. 2016 15 1 99 10.1186/s12937‑016‑0217‑2 27903278
    [Google Scholar]
  73. Vezza T. Canet F. de Marañón A.M. Bañuls C. Rocha M. Víctor V.M. Phytosterols: Nutritional health players in the management of obesity and its related disorders. Antioxidants 2020 9 12 1266 10.3390/antiox9121266 33322742
    [Google Scholar]
  74. Cicero A.F.G. Allkanjari O. Busetto G.M. Cai T. Larganà G. Magri V. Perletti G. Robustelli Della Cuna F.S. Russo G.I. Stamatiou K. Trinchieri A. Vitalone A. Nutraceutical treatment and prevention of benign prostatic hyperplasia and prostate cancer. Arch. Ital. Urol. Androl. 2019 91 3 10.4081/aiua.2019.3.139 31577095
    [Google Scholar]
  75. Al-Hwaiti M.S. Alsbou E.M. Abu Sheikha G. Bakchiche B. Pham T.H. Thomas R.H. Bardaweel S.K. Evaluation of the anticancer activity and fatty acids composition of “Handal” ( Citrullus colocynthis L.) seed oil, a desert plant from south Jordan. Food Sci. Nutr. 2021 9 1 282 289 10.1002/fsn3.1994 33473292
    [Google Scholar]
  76. de Araujo Junior R.F. Eich C. Jorquera C. Schomann T. Baldazzi F. Chan A.B. Cruz L.J. Ceramide and palmitic acid inhibit macrophage-mediated epithelial–mesenchymal transition in colorectal cancer. Mol. Cell. Biochem. 2020 468 1-2 153 168 10.1007/s11010‑020‑03719‑5 32222879
    [Google Scholar]
  77. Kuang H. Sun X. Liu Y. Tang M. Wei Y. Shi Y. Li R. Xiao G. Kang J. Wang F. Peng J. Xu H. Zhou F. Palmitic acid‐induced ferroptosis via CD36 activates ER stress to break calcium‐iron balance in colon cancer cells. FEBS J. 2023 290 14 3664 3687 10.1111/febs.16772 36906928
    [Google Scholar]
  78. Coşkun G.P. Djikic T. Hayal T.B. Türkel N. Yelekçi K. Şahin F. Küçükgüzel Ş.G. Synthesis, molecular docking and anticancer activity of diflunisal derivatives as cyclooxygenase enzyme inhibitors. Molecules 2018 23 8 1969 10.3390/molecules23081969 30082676
    [Google Scholar]
  79. Guruvayoorappan C. Dhanisha S.S. Drishya S. Gangaraj K.P. Rajesh M.K. Molecular docking studies of naringenin and its protective efficacy against methotrexate induced oxidative tissue injury. Anticancer. Agents Med. Chem. 2021 22 1 169 180 10.2174/1871520621666210322102915 34225639
    [Google Scholar]
  80. Nivetha N. Martiz R.M. Patil S.M. Ramu R. Sreenivasa S. Velmathi S. Benzodioxole grafted spirooxindole pyrrolidinyl derivatives: Synthesis, characterization, molecular docking and anti-diabetic activity. RSC Advances 2022 12 37 24192 24207 10.1039/D2RA04452H 36128541
    [Google Scholar]
  81. Gunasekaran V. Dhakshinamurthy S. Computational insights into the interaction of pinostrobin with Bcl-2 family proteins: A molecular docking analysis. Asian Pac. J. Cancer Prev. 2024 25 2 507 512 10.31557/APJCP.2024.25.2.507 38415536
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010357755250227060845
Loading
/content/journals/cpb/10.2174/0113892010357755250227060845
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test