Skip to content
2000
image of A Therapeutic Approach of Chitosan-loaded p-Coumaric Acid Nanoparticles to Alleviate Diabetic Nephropathy in Wister Rats

Abstract

Objective

This study evaluated the renoprotective effects of p-Coumaric acid nanoparticles (PCNPs) in nephropathic rats.

Methods

Six groups of male Albino Wistar rats were randomly assigned. Group 1 was the control, while Group 2 received 45 mg/kg of streptozotocin (STZ) to induce diabetic nephropathy. Groups 3, 4, and 5 received STZ (45 mg/kg) along with PCNPs at doses of 20, 40, and 80 mg/kg, respectively. Group 6 received 80 mg/kg of PCNPs without STZ. Body weight, blood glucose, insulin, hemoglobin (Hb), and glycosylated hemoglobin (HbA1c) levels were measured. Blood urea, serum creatinine, kidney antioxidant enzymes, and lipid peroxidation levels were also analyzed. Histological and immunohistochemical studies of kidney tissues were performed.

Results

PCNPs (80 mg/kg) significantly reduced serum glucose, creatinine, and urea levels while increasing insulin levels and antioxidant activity in the kidneys. Histological analysis revealed that nephropathic rats exhibited cellular damage, including shrinkage of Bowman’s capsule and lesions in the kidneys, along with degeneration in the Islets of Langerhans in the pancreas. PCNPs treatment restored these morphological alterations in the pancreas, liver, and kidneys to near-normal. Furthermore, nephropathic rats had elevated IL-6 and TNF-α expression in the renal tubules and glomeruli, which was reduced following PCNPs treatment.

Conclusion

The findings suggest that PCNPs exhibit antihyperglycemic, antioxidant, anti-glycation, and renoprotective effects in STZ-induced diabetic nephropathy.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010341665250114045145
2025-01-23
2025-03-26
Loading full text...

Full text loading...

References

  1. Chen H.W. Yang M.Y. Hung T.W. Chang Y.C. Wang C.J. Nelumbo nucifera leaves extract attenuate the pathological progression of diabetic nephropathy in high-fat diet-fed and streptozotocin-induced diabetic rats. J. Food Drug Anal. 2019 27 3 736 748 10.1016/j.jfda.2018.12.009 31324289
    [Google Scholar]
  2. Huang S. Tan M. Guo F. Dong L. Liu Z. Yuan R. Dongzhi Z. Lee D.S. Wang Y. Li B. Nepeta angustifolia C. Y. Wu improves renal injury in HFD/STZ-induced diabetic nephropathy and inhibits oxidative stress-induced apoptosis of mesangial cells. J. Ethnopharmacol. 2020 255 112771 10.1016/j.jep.2020.112771 32201300
    [Google Scholar]
  3. Amalan V. Vijayakumar N. Indumathi D. Ramakrishnan A. Antidiabetic and antihyperlipidemic activity of p-coumaric acid in diabetic rats, role of pancreatic GLUT 2: In vivo approach. Biomed. Pharmacother. 2016 84 230 236 10.1016/j.biopha.2016.09.039 27662473
    [Google Scholar]
  4. Oltulu F. Buhur A. Gürel Ç. Kuşçu G.C. Dağdevi̇ren M. Karabay Yavaşoğlu N.Ü. Köse T. Yavaşoğlu A. Mid-dose losartan mitigates diabetes-induced hepatic damage by regulating iNOS, eNOS, VEGF, and NF-κB expressions. Turk. J. Med. Sci. 2019 49 5 1582 1589 10.3906/sag‑1901‑15 31652041
    [Google Scholar]
  5. Ahmed O.M. Ali T.M. Abdel Gaid M.A. Elberry A.A. Effects of enalapril and paricalcitol treatment on diabetic nephropathy and renal expressions of TNF-α, p53, caspase-3 and Bcl-2 in STZ-induced diabetic rats. PLoS One 2019 14 9 e0214349 10.1371/journal.pone.0214349 31527864
    [Google Scholar]
  6. Huang J.C. Lee M.Y. Chen S.C. Chiou H.C. Wu P.Y. Association of HbA1C variability and renal progression in patients with type 2 diabetes with chronic kidney disease stages 3⁻4. Int J Mol Sci 2018 19 12 4116
    [Google Scholar]
  7. Kuo I-C. Lin H.Y-H. Niu S-W. Hwang D-Y. Lee J-J. Tsai J-C. Hung C-C. Hwang S-J. Chen H-C. Glycated hemoglobin and outcomes in patients with advanced diabetic chronic kidney disease. Sci. Rep. 2016 6 1 20028 10.1038/srep20028 28442746
    [Google Scholar]
  8. Choudhari A.S. Mandave P.C. Deshpande M. Ranjekar P. Prakash O. Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Front. Pharmacol. 2020 10 1614 10.3389/fphar.2019.01614 32116665
    [Google Scholar]
  9. Konda P.Y. Poondla V. Jaiswal K.K. Dasari S. Uyyala R. Surtineni V.P. Egi J.Y. Masilamani A.J.A. Bestha L. Konanki S. Muthulingam M. Lingamgunta L.K. Aloor B.P. Tirumalaraju S. Sade A. Ratnam Kamsala V. Nagaraja S. Ramakrishnan R. Natesan V. Pathophysiology of high fat diet induced obesity: Impact of probiotic banana juice on obesity associated complications and hepatosteatosis. Sci. Rep. 2020 10 1 16894 10.1038/s41598‑020‑73670‑4 33037249
    [Google Scholar]
  10. Amalan V. Vijayakumar N. Ramakrishnan A. p-Coumaric acid regulates blood glucose and antioxidant levels in streptozotocin induced diabetic rats. J. Chem. Pharm. Res. 2015 7 831 839
    [Google Scholar]
  11. Horng C.T. Huang C.W. Yang M.Y. Chen T.H. Chang Y.C. Wang C.J. Nelumbo nucifera leaf extract treatment attenuated preneoplastic lesions and oxidative stress in the livers of diethylnitrosamine‐treated rats. Environ. Toxicol. 2017 32 11 2327 2340 10.1002/tox.22434 28804948
    [Google Scholar]
  12. Zabad O.M. Samra Y.A. Eissa L.A. P-Coumaric acid alleviates experimental diabetic nephropathy through modulation of Toll like receptor-4 in rats. Life Sci. 2019 238 116965 10.1016/j.lfs.2019.116965 31629762
    [Google Scholar]
  13. Pei K. Ou J. Huang J. Ou S. p ‐Coumaric acid and its conjugates: Dietary sources, pharmacokinetic properties and biological activities. J. Sci. Food Agric. 2016 96 9 2952 2962 10.1002/jsfa.7578 26692250
    [Google Scholar]
  14. da Silva S.B. Ferreira D. Pintado M. Sarmento B. Chitosan-based nanoparticles for rosmarinic acid ocular delivery—In vitro tests. Int. J. Biol. Macromol. 2016 84 112 120 10.1016/j.ijbiomac.2015.11.070 26645149
    [Google Scholar]
  15. Venkatesan A. Samy J.V.R.A. Balakrishnan K. Natesan V. Kim S.J. In vitro antioxidant, anti-inflammatory, antimicrobial, and antidiabetic activities of synthesized chitosan-loaded p-coumaric acid nanoparticles. Curr. Pharm. Biotechnol. 2023 24 9 1178 1194 10.2174/1389201023666220822112923 35996263
    [Google Scholar]
  16. Sulfikkarali N.K. Krishnakumar N. Evaluation of the chemopreventive response of naringenin-loaded nanoparticles in experimental oral carcinogenesis using laser-induced autofluorescence spectroscopy. Laser Phys. 2013 23 4 045601 10.1088/1054‑660X/23/4/045601
    [Google Scholar]
  17. Gohulkumar M. Gurushankar K. Rajendra Prasad N. Krishnakumar N. Enhanced cytotoxicity and apoptosis-induced anticancer effect of silibinin-loaded nanoparticles in oral carcinoma (KB) cells. Mater. Sci. Eng. C 2014 41 274 282 10.1016/j.msec.2014.04.056 24907761
    [Google Scholar]
  18. Devi S. Nongkhlaw B. Limesh M. Pasanna R.M. Thomas T. Kuriyan R. Kurpad A.V. Mukhopadhyay A. Acyl ethanolamides in diabetes and diabetic nephropathy: Novel targets from untargeted plasma metabolomic profiles of South Asian Indian men. Sci. Rep. 2019 9 1 18117 10.1038/s41598‑019‑54584‑2 31792390
    [Google Scholar]
  19. Tahara A. Takasu T. Prevention of progression of diabetic nephropathy by the SGLT2 inhibitor ipragliflozin in uninephrectomized type 2 diabetic mice. Eur. J. Pharmacol. 2018 830 68 75 10.1016/j.ejphar.2018.04.024 29702076
    [Google Scholar]
  20. Trinder P. Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann. Clin. Biochem. 1969 6 1 24 27 10.1177/000456326900600108
    [Google Scholar]
  21. Amalan V. Vijayakumar N. Antihyperglycemic effect of p-coumaric acid on streptozotocin induced diabetic rats. Indian J. Appl. Res. 2015 5 1 10 13
    [Google Scholar]
  22. Kajanachumpol S. Komindr S. Mahaisiriyodom A. Plasma lipid peroxide and antioxidant levels in diabetic patients. J. Med. Assoc. Thai. 1997 80 6 372 377 9240011
    [Google Scholar]
  23. Peng J. Zheng T. Liang Y. Duan L. Zhang Y. Wang L.J. He G. Xiao H. p ‐Coumaric acid protects human lens epithelial cells against oxidative stress‐induced apoptosis by MAPK signaling. Oxid. Med. Cell. Longev. 2018 2018 1 8549052 10.1155/2018/8549052 29849919
    [Google Scholar]
  24. Nakai K. Fujii H. Kono K. Goto S. Kitazawa R. Kitazawa S. Hirata M. Shinohara M. Fukagawa M. Nishi S. Vitamin D activates the Nrf2-Keap1 antioxidant pathway and ameliorates nephropathy in diabetic rats. Am. J. Hypertens. 2014 27 4 586 595 10.1093/ajh/hpt160 24025724
    [Google Scholar]
  25. Kumar R.R. Rao P.H. Subramanian V.V. Sivasubramanian V. Enzymatic and non-enzymatic antioxidant potentials of Chlorella vulgaris grown in effluent of a confectionery industry. J. Food Sci. Technol. 2014 51 2 322 328 10.1007/s13197‑011‑0501‑2 24493890
    [Google Scholar]
  26. Aberare O. Okuonghae P. Mukoro N. Dirisu J. Osazuwa F. Odigie E. Omoregie R. Triglycerides, total cholesterol, high density lipoprotein cholesterol and low density lipoprotein cholesterol in rats exposed to premium motor spirit fumes. N. Am. J. Med. Sci. 2011 3 6 277 280 10.4297/najms.2011.3277 22540098
    [Google Scholar]
  27. Miller W.G. Myers G.L. Sakurabayashi I. Bachmann L.M. Caudill S.P. Dziekonski A. Edwards S. Kimberly M.M. Korzun W.J. Leary E.T. Nakajima K. Nakamura M. Nilsson G. Shamburek R.D. Vetrovec G.W. Warnick G.R. Remaley A.T. Seven direct methods for measuring HDL and LDL cholesterol compared with ultracentrifugation reference measurement procedures. Clin. Chem. 2010 56 6 977 986 10.1373/clinchem.2009.142810 20378768
    [Google Scholar]
  28. Natesan V. Kim S.J. Diabetic Nephropathy - A review of risk factors.; progression.; mechanism.; and dietary management. Biomol. Ther. (Seoul) 2021 29 4 365 372 10.4062/biomolther.2020.204 33888647
    [Google Scholar]
  29. Kanwar Y.S. Wada J. Sun L. Xie P. Wallner E.I. Chen S. Chugh S. Danesh F.R. Diabetic nephropathy: Mechanisms of renal disease progression. Exp. Biol. Med. (Maywood) 2008 233 1 4 11 10.3181/0705‑MR‑134 18156300
    [Google Scholar]
  30. Zamin L.L. Filippi-Chiela E.C. Dillenburg-Pilla P. Horn F. Salbego C. Lenz G. Resveratrol and quercetin cooperate to induce senescence‐like growth arrest in C6 rat glioma cells. Cancer Sci. 2009 100 9 1655 1662 10.1111/j.1349‑7006.2009.01215.x 19496785
    [Google Scholar]
  31. Mestry S.N. Dhodi J.B. Kumbhar S.B. Juvekar A.R. Attenuation of diabetic nephropathy in streptozotocin-induced diabetic rats by Punica granatum Linn. leaves extract. J. Tradit. Complement. Med. 2017 7 3 273 280 10.1016/j.jtcme.2016.06.008 28725620
    [Google Scholar]
  32. Venkatesan A. Roy A. Kulandaivel S. Natesan V. Kim S.J. p-Coumaric acid nanoparticles ameliorate diabetic nephropathy via regulating mRNA expression of KIM-1 and GLUT-2 in streptozotocin-induced diabetic rats. Metabolites 2022 12 12 1166 10.3390/metabo12121166 36557204
    [Google Scholar]
  33. Begines B. Ortiz T. Pérez-Aranda M. Martínez G. Merinero M. Argüelles-Arias F. Alcudia A. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials 2020 10 7 1403 10.3390/nano10071403
    [Google Scholar]
  34. Rahman H.S. Othman H.H. Hammadi N.I. Yeap S.K. Amin K.M. Abdul Samad N. Alitheen N.B. Novel drug delivery systems for loading of natural plant extracts and their biomedical applications. Int. J. Nanomedicine 2020 15 15 2439 2483 10.2147/IJN.S227805 32346289
    [Google Scholar]
  35. Daryabor G. Atashzar M.R. Kabelitz D. Meri S. Kalantar K. The effects of type 2 diabetes mellitus on organ metabolism and the immune system. Front. Immunol. 2020 11 1582 10.3389/fimmu.2020.01582 32793223
    [Google Scholar]
  36. Singh V.P. Bali A. Singh N. Jaggi A.S. Advanced glycation end products and diabetic complications. Korean J. Physiol. Pharmacol. 2014 18 1 1 14 10.4196/kjpp.2014.18.1.1 24634591
    [Google Scholar]
  37. King A.J.F. The use of animal models in diabetes research. Br. J. Pharmacol. 2012 166 3 877 894 10.1111/j.1476‑5381.2012.01911.x 22352879
    [Google Scholar]
  38. Sherwani SI. Khan HA. Ekhzaimy A. Masood A. Sakharkar MK. Significance of HbA1c test in diagnosis and prognosis of diabetic patients. Biomark. Insights 2016 11 95 104 10.4137/BMI.S38440
    [Google Scholar]
  39. Levitt D. Levitt M. Human serum albumin homeostasis: A new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements. Int. J. Gen. Med. 2016 9 229 255 10.2147/IJGM.S102819 27486341
    [Google Scholar]
  40. Arumugam R. Natesan V. Mani R. Effect of naringin on ammonium chloride-induced hyperammonemic rats: A dose-dependent study. J. Acute Med. 2016 6 3 55 60 10.1016/j.jacme.2016.08.001
    [Google Scholar]
  41. Kurutas E.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr. J. 2015 15 1 71 10.1186/s12937‑016‑0186‑5 27456681
    [Google Scholar]
  42. Subramanian P. Vijayakumar N. Neuroprotective effect of Semecarpus anacardium against hyperammonemia in rats. J. Pharm. Res. 2010 3 1564 1568
    [Google Scholar]
  43. Nita M. Grzybowski A. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid. Med. Cell. Longev. 2016 2016 1 3164734 10.1155/2016/3164734 26881021
    [Google Scholar]
  44. Hasanuzzaman M. Nahar K. Anee T.I. Fujita M. Glutathione in plants: Biosynthesis and physiological role in environmental stress tolerance. Physiol. Mol. Biol. Plants 2017 23 2 249 268 10.1007/s12298‑017‑0422‑2 28461715
    [Google Scholar]
  45. Sarfraz M. Ba-Shammakh M. Synergistic effect of adding graphene oxide and ZIF-301 to polysulfone to develop high performance mixed matrix membranes for selective carbon dioxide separation from post combustion flue gas. J. Membr. Sci. 2016 514 35 43 10.1016/j.memsci.2016.04.029
    [Google Scholar]
  46. Ormazabal V. Nair S. Elfeky O. Aguayo C. Salomon C. Zuñiga F.A. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc. Diabetol. 2018 17 1 122 10.1186/s12933‑018‑0762‑4 30170598
    [Google Scholar]
  47. Natesan V. Kim S.J. Lipid metabolism, disorders and therapeutic drugs - Review. Biomol. Ther. (Seoul) 2021 29 6 596 604 10.4062/biomolther.2021.122 34697272
    [Google Scholar]
  48. Al-Malki A.L. El Rabey H.A. The antidiabetic effect of low doses of Moringa oleifera Lam. seeds on streptozotocin induced diabetes and diabetic nephropathy in male rats. BioMed Res. Int. 2015 2015 1 13 10.1155/2015/381040 25629046
    [Google Scholar]
  49. Natesan V. Kim S.J. Metabolic bone diseases and new drug developments. Biomol. Ther. (Seoul) 2022 30 4 309 319 10.4062/biomolther.2022.007 35342038
    [Google Scholar]
  50. Ndong M. Uehara M. Katsumata S. Suzuki K. Effects of oral administration of Moringa oleifera Lam on glucose tolerance in Goto-Kakizaki and Wistar rats. J. Clin. Biochem. Nutr. 2007 40 3 229 233 10.3164/jcbn.40.229 18398501
    [Google Scholar]
  51. Parikh M.S. Antony S. A comprehensive review of the diagnosis and management of prosthetic joint infections in the absence of positive cultures. J. Infect. Public Health 2016 9 5 545 556 10.1016/j.jiph.2015.12.001 26829893
    [Google Scholar]
  52. Hodgin J.B. Nair V. Zhang H. Randolph A. Harris R.C. Nelson R.G. Weil E.J. Cavalcoli J.D. Patel J.M. Brosius F.C. III Kretzler M. Identification of cross-species shared transcriptional networks of diabetic nephropathy in human and mouse glomeruli. Diabetes 2013 62 1 299 308 10.2337/db11‑1667 23139354
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010341665250114045145
Loading
/content/journals/cpb/10.2174/0113892010341665250114045145
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Islets of Langerhans ; Bowman’s capsule ; Diabetic nephropathy ; oxidative stress
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test