Skip to content
2000
image of HYQTD Drug-containing Serum Alleviates H2O2-induced Endothelial Oxidative Damage by Increasing Mitochondrial ATP Synthesis and Inhibiting ROS

Abstract

Background

Atherosclerosis (AS) is caused by the endothelium injury associated with oxidative stress. Previous studies have shown that the Phlegm-Eliminating and Stasis-Transforming Decoction (Huayu Qutan Decoction, HYQTD) has mitochondrial protective function. The objective of this research was to explore how HYQTD drug-containing serum (HYQTD-DS) could potentially protect mitochondrial energy production in endothelial cells (ECs) from injury caused by hydrogen peroxide (HO)-induced oxidative damage in AS through SIRT1/PGC-1α/ Nrf2 pathway.

Methods

After preparation of containing serum, the cells were divided into various categories, such as control group, HO group (an oxidative damage model), HYQTD group, Selisistat (EX527, a SIRT1 inhibitor) combined with HO group, and EX527 combined with HYQTD group. The evaluation of oxidative stress involved measuring reactive oxygen species (ROS) and malondialdehyde (MDA) generation, as well as Superoxide Dismutase (SOD) activity. Mitochondrial function and ultrastructure were measured by Transmission electron microscopy (TEM), mitochondrial membrane potential (MMP), rate of oxygen consumption (OCR), respiratory chain complex activities, and ATP production. The key proteins and gene levels in the SIRT1/PGC-1α/Nrf2 pathway was quantified by quantitative real-time PCR (RT-PCR) and Western blotting analysis.

Results

We found oxidative stress, mitochondrial damage, and mitochondrial energy disorder in HO-induced ECs. However it indicated a marked reversal after pretreated with HYQTD-DS. Mechanistically, EX527 induced increased oxidative stress, worse mitochondrial dysfunction, and less ATP synthesis.

Conclusion

We demonstrated that HYQTD-DS attenuated oxidative stress, improved mitochondrial function, and up-regulated mitochondrial ATP synthesis by activating SIRT1/PGC-1α/Nrf2 pathway-induced mitochondrial biogenesis and its downstream NADH dehydrogenase (ubiquinone) flavoprotein 2 (NDV2).

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010333981250122003904
2025-01-27
2025-03-26
Loading full text...

Full text loading...

References

  1. Chen X. Li X. Xu X. Li L. Liang N. Zhang L. Lv J. Wu Y.C. Yin H. Ferroptosis and cardiovascular disease: role of free radical-induced lipid peroxidation. Free Radic. Res. 2021 55 4 405 415 10.1080/10715762.2021.1876856 33455488
    [Google Scholar]
  2. Wang Z. Ma L. Liu M. Fan J. Hu S. Summary of the 2022 report on cardiovascular health and diseases in china. Chin. Med. J. (Engl.) 2023 136 24 2899 2908 10.1097/CM9.0000000000002927 38018129
    [Google Scholar]
  3. The WCOT. Report on cardiovascular health and diseases in china 2022: an updated summary. Biomed. Environ. Sci. 2023 36 8 669 701 37711081
    [Google Scholar]
  4. Lavie C.J. Cardiovascular statistics 2023. Prog. Cardiovasc. Dis. 2023 79 112 113 10.1016/j.pcad.2023.07.005 37474084
    [Google Scholar]
  5. Krychtiuk K.A. Gersh B.J. Washam J.B. Granger C.B. When cardiovascular medicines should be discontinued. Eur. Heart J. 2024 45 23 2039 2051 10.1093/eurheartj/ehae302 38838241
    [Google Scholar]
  6. Swamynathan R. Varadarajan V. Nguyen H. Wu C.O. Liu K. Bluemke D.A. Kachenoura N. Redheuil A. Lima J.A.C. Ambale-Venkatesh B. Association between biomarkers of inflammation and 10-year changes in aortic stiffness: the multi-ethnic study of atherosclerosis. J. Clin. Med. 2023 12 15 5062 10.3390/jcm12155062 37568463
    [Google Scholar]
  7. Cheng L. Yue H. Zhang H. Liu Q. Du L. Liu X. Xie J. Shen Y. The influence of microenvironment stiffness on endothelial cell fate: Implication for occurrence and progression of atherosclerosis. Life Sci. 2023 334 122233 10.1016/j.lfs.2023.122233 37918628
    [Google Scholar]
  8. Balaban R.S. Nemoto S. Finkel T. Mitochondria, oxidants, and aging. Cell 2005 120 4 483 495 10.1016/j.cell.2005.02.001 15734681
    [Google Scholar]
  9. Shaito A. Aramouni K. Assaf R. Parenti A. Orekhov A. Yazbi A.E. Pintus G. Eid A.H. Oxidative stress-induced endothelial dysfunction in cardiovascular diseases. Front. Biosci. (Landmark Ed.) 2022 27 3 105 10.31083/j.fbl2703105 35345337
    [Google Scholar]
  10. Atici A.E. Crother T.R. Noval Rivas M. Mitochondrial quality control in health and cardiovascular diseases. Front. Cell Dev. Biol. 2023 11 1290046 10.3389/fcell.2023.1290046 38020895
    [Google Scholar]
  11. Daoxin W. Zhang T. Chaoyu M. Mitochondrial oxidative stress in vascular endothelial cells and atherosclerosis. Pharmace. Pract. Serv. 2023 41 329 334
    [Google Scholar]
  12. Jin W. Nan S. Ning C. Huimin C. Dongchao Y. Lianqun J. Guanlin Y. Bin L. Exploring the Effect of Jianpi Huayu Qutan Prescription on the mRNA Expression of Genes Related to Mitochondrial Energy Metabolism in the Aorta of Rabbits with Atherosclerosis Based on PCR Array Technology. Zhonghua Zhongyiyao Xuekan 2020 38 43 47
    [Google Scholar]
  13. Xuemei W. Yiting W. Ying C. Jieying W. Jing L. Ke M. Research Progress on the Regulation of Mitochondrial Function in Atherosclerosis. Adv. Cardiova. Dis. 2022 43 1016 1020
    [Google Scholar]
  14. Suárez-Rivero J.M. Pastor-Maldonado C.J. Povea-Cabello S. Álvarez-Córdoba M. Villalón-García I. Talaverón-Rey M. Suárez-Carrillo A. Munuera-Cabeza M. Sánchez-Alcázar J.A. From mitochondria to atherosclerosis: the inflammation path. Biomedicines 2021 9 3 258 10.3390/biomedicines9030258 33807807
    [Google Scholar]
  15. Salnikova D. Orekhova V. Grechko A. Starodubova A. Bezsonov E. Popkova T. Orekhov A. Mitochondrial dysfunction in vascular wall cells and its role in atherosclerosis. Int. J. Mol. Sci. 2021 22 16 8990 10.3390/ijms22168990 34445694
    [Google Scholar]
  16. Peng W. Cai G. Xia Y. Chen J. Wu P. Wang Z. Li G. Wei D. Mitochondrial dysfunction in atherosclerosis. DNA Cell Biol. 2019 38 7 597 606 10.1089/dna.2018.4552 31095428
    [Google Scholar]
  17. Cheng Y. Huang P. Zou Q. Tian H. Cheng Q. Ding H. Nicotinamide mononucleotide alleviates seizures via modulating SIRT1‐PGC ‐1α mediated mitochondrial fusion and fission. J. Neurochem. 2024 168 12 3962 3981 10.1111/jnc.16041 38194959
    [Google Scholar]
  18. Peng J. Yang Z. Li H. Hao B. Cui D. Shang R. Lv Y. Liu Y. Pu W. Zhang H. He J. Wang X. Wang S. Quercetin Reprograms Immunometabolism of Macrophages via the SIRT1/PGC-1α Signaling Pathway to Ameliorate Lipopolysaccharide-Induced Oxidative Damage. Int. J. Mol. Sci. 2023 24 6 5542 10.3390/ijms24065542 36982615
    [Google Scholar]
  19. Qiuyu L. Shuai W. Research Progress on SIRT1/AMPK Signaling Pathway and Atherosclerosis. Heart J. 2025 1 5
    [Google Scholar]
  20. Wu S. Wang L. Wang F. Zhang J. Resveratrol improved mitochondrial biogenesis by activating SIRT1/PGC-1α signal pathway in SAP. Sci. Rep. 2024 14 1 26216 10.1038/s41598‑024‑76825‑9 39482340
    [Google Scholar]
  21. Ye F. Wu L. Li H. Peng X. Xu Y. Li W. Wei Y. Chen F. Zhang J. Liu Q. SIRT1/PGC-1α is involved in arsenic-induced male reproductive damage through mitochondrial dysfunction, which is blocked by the antioxidative effect of zinc. Environ. Pollut. 2023 320 121084 10.1016/j.envpol.2023.121084 36681380
    [Google Scholar]
  22. Zhou Y. Li K.S. Liu L. Li S.L. MicroRNA‑132 promotes oxidative stress‑induced pyroptosis by�targeting sirtuin 1 in myocardial ischaemia‑reperfusion injury. Int. J. Mol. Med. 2020 45 6 1942 1950 10.3892/ijmm.2020.4557 32236570
    [Google Scholar]
  23. Kuo F.C. Tsai H.Y. Cheng B.L. Tsai K.J. Chen P.C. Huang Y.B. Liu C.J. Wu D.C. Wu M.C. Huang B. Lin M.W. Endothelial Mitochondria Transfer to Melanoma Induces M2-Type Macrophage Polarization and Promotes Tumor Growth by the Nrf2/HO-1-Mediated Pathway. Int. J. Mol. Sci. 2024 25 3 1857 10.3390/ijms25031857 38339136
    [Google Scholar]
  24. Guo Z. Wang M. Ying X. Yuan J. Wang C. Zhang W. Tian S. Yan X. Caloric restriction increases the resistance of aged heart to myocardial ischemia/reperfusion injury via modulating AMPK–SIRT1–PGC1a energy metabolism pathway. Sci. Rep. 2023 13 1 2045 10.1038/s41598‑023‑27611‑6 36739302
    [Google Scholar]
  25. Karnewar S. Pulipaka S. Katta S. Panuganti D. Neeli P.K. Thennati R. Jerald M.K. Kotamraju S. Mitochondria-targeted esculetin mitigates atherosclerosis in the setting of aging via the modulation of SIRT1-mediated vascular cell senescence and mitochondrial function in Apoe mice. Atherosclerosis 2022 356 28 40 10.1016/j.atherosclerosis.2022.07.012 35961209
    [Google Scholar]
  26. Quanquan Z. Hong Q. Research Progress on the Mechanism of PGC-1α in Regulating Obesity-Related Metabolic Diseases. Zhongguo Yaolixue Tongbao 2021 37 741 745
    [Google Scholar]
  27. Gao J. Qian T. Wang W. CTRP3 Activates the AMPK/SIRT1-PGC-1α Pathway to Protect Mitochondrial Biogenesis and Functions in Cerebral Ischemic Stroke. Neurochem. Res. 2020 45 12 3045 3058 10.1007/s11064‑020‑03152‑6 33098065
    [Google Scholar]
  28. Chuanbin L. Jing B. Yang L. Research Progress on the Role and Possible Mechanisms of PGC-1α in Cardiovascular Diseases. Medical Journal of Chinese People’s Liberation Army 2020 45 1077 1080
    [Google Scholar]
  29. Lianqun J. Guanlin Y. Lu R. Junyi F. Wenna C. Yang C. Study on the Protective Effect of Huayu Qutan Prescription on H2O2-induced Oxidative Stress in Human Umbilical Vein Endothelial Cells. Zhongguo Zhongyiyao Xinxi Zazhi 2011 18 44 45
    [Google Scholar]
  30. Jia L. Yang G. Chen W. Li X. Du Ying; Cao Y and Zhao Q. Huayu Qutan Prescription Anti-atherosclerosis by Regulating the Expression of Genes Related to Cholesterol Metabolism in ApoE-/- Mice. Chinese Journal of Arteriosclerosis 2014 22 1 6
    [Google Scholar]
  31. Yanyan C. Study on the Effects and Mechanisms of Jianpi Qutan Huayu Method on Myocardial Mitochondria in Bama Miniature Pigs with Atherosclerosis Due to Spleen Deficiency and Phlegm-Turbidity. Liaoning University of Traditional Chinese Medicine 2016
    [Google Scholar]
  32. Xue L. Yao W. Ying W. Meijun L. Nan S. Lianqun J. Changes in the PPAR-γ/LXR-α/ABCG1 Pathway Related to Liver Lipid Metabolism and Inflammatory Factors in Atherosclerotic Mice, and the Role of Huayu Qutan Prescription. Chinese Journal of Pathophysiology 2020 36 637 643
    [Google Scholar]
  33. Yue X. Clinical Observation on the Efficacy of Huayu Qutan Prescription in Treating Angina Pectoris of Coronary Heart Disease with Syndrome of Phlegm and Blood Stasis Intermingling. Liaoning University of Traditional Chinese Medicine 2018
    [Google Scholar]
  34. Lee J.J. Ng S.C. Hsu J.Y. Liu H. Chen C.J. Huang C.Y. Kuo W.W. Galangin Reverses H2O2-Induced Dermal Fibroblast Senescence via SIRT1-PGC-1α/Nrf2 Signaling. Int. J. Mol. Sci. 2022 23 3 1387 10.3390/ijms23031387 35163314
    [Google Scholar]
  35. Nan J. Junyan W. Nan S. Dezhao K. Zhe Z. Guanlin Y. Lianqun J. Study on the Intervention Effect of Jianpi Qutan Huayu Prescription on Mitochondrial Energy Metabolism-Related Genes in the Ileum of Bama Miniature Pigs with Spleen Deficiency and Phlegm-Turbidity Syndrome. Zhonghua Zhongyiyao Xuekan 2017 35 2349 2351
    [Google Scholar]
  36. Ying W. Lianqun J. Nan S. Yixin M. Guanlin Y. Effect of Jianpi Qutan Huayu Prescription on the Expression of Mitochondrial Energy Metabolism Genes in the Liver of Bama Pigs with Atherosclerosis Due to Spleen Deficiency and Phlegm-Turbidity Syndrome. Liaoning Journal of Traditional Chinese Medicine 2017 44 2427 2429
    [Google Scholar]
  37. Wu Y. Song N. Jia L. Wang J. Chen S. Wang Y. Cao H. Effect of Huayu Qutan Prescription on Liver Lipid Peroxidation and Expression of p53, GPX4, and xCT in Apolipoprotein E Gene Knockout Mice. J. Chin. Med. 2020 61 1633 1638
    [Google Scholar]
  38. Ningning Q. Nan S. Lianqun J. Zhe Z. Guanlin Y. Effect of Huayu Qutan Prescription on Pyroptosis of Myocardial Tissue Cells in Rabbits with Atherosclerosis. Zhonghua Zhongyiyao Zazhi 2021 36 6055 6058
    [Google Scholar]
  39. Niu Y.J. Zhou W. Nie Z.W. Shin K.T. Cui X.S. Melatonin enhances mitochondrial biogenesis and protects against rotenone‐induced mitochondrial deficiency in early porcine embryos. J. Pineal Res. 2020 68 2 e12627 10.1111/jpi.12627 31773776
    [Google Scholar]
  40. Murray K.O. Ludwig K.R. Darvish S. Coppock M.E. Seals D.R. Rossman M.J. Chronic mitochondria antioxidant treatment in older adults alters the circulating milieu to improve endothelial cell function and mitochondrial oxidative stress. Am. J. Physiol. Heart Circ. Physiol. 2023 325 1 H187 H194 10.1152/ajpheart.00270.2023 37326998
    [Google Scholar]
  41. Murray K.O. Berryman-Maciel M. Darvish S. Coppock M.E. You Z. Chonchol M. Seals D.R. Rossman M.J. Mitochondrial-targeted antioxidant supplementation for improving age-related vascular dysfunction in humans: A study protocol. Front. Physiol. 2022 13 980783 10.3389/fphys.2022.980783 36187760
    [Google Scholar]
  42. Zhu N. Li Y. Xu M. Beneficial Effects of Small-Molecule Oligopeptides Isolated from Panax Ginseng C. A. Meyer on Cellular Fates in Oxidative Stress-Induced Damaged Human Umbilical Vein Endothelial Cells and PC-12. Int. J. Mol. Sci. 2024 25 5 2906 10.3390/ijms25052906 38474153
    [Google Scholar]
  43. Pintye D. Sziva R.E. Mastyugin M. Török M. Jacas S. Lo A. Salahuddin S. Zsengellér Z.K. Nitroxide—HMP—Protects Human Trophoblast HTR-8/SVneo Cells from H2O2-Induced Oxidative Stress by Reducing the HIF1A Signaling Pathway. Antioxidants 2023 12 8 1578 10.3390/antiox12081578 37627573
    [Google Scholar]
  44. Norton C.E. Shaw R.L. Mittler R. Segal S.S. Endothelial cells promote smooth muscle cell resilience to H 2 O 2 ‐induced cell death in mouse cerebral arteries. Acta Physiol. (Oxf.) 2022 235 2 e13819 10.1111/apha.13819 35380737
    [Google Scholar]
  45. Queiroz M.I.C. Lazaro C.M. dos Santos L.M.B. Rentz T. Virgilio-da-Silva J.V. Moraes-Vieira P.M.M. Cunha F.A.S. Santos J.C.C. Vercesi A.E. Leite A.C.R. Oliveira H.C.F. In vivo chronic exposure to inorganic mercury worsens hypercholesterolemia, oxidative stress and atherosclerosis in the LDL receptor knockout mice. Ecotoxicol. Environ. Saf. 2024 275 116254 10.1016/j.ecoenv.2024.116254 38547729
    [Google Scholar]
  46. Wanning Q. Hongyin C. Yang Z. Oxidative Stress and Atherosclerosis. Chinese Journal of Arteriosclerosis 2023 31 312 321
    [Google Scholar]
  47. Jin W. Lijuan C. Dongchao Y. Yu W. Du Ying; Shuang W; Zhe Z; Lianqun J; Bin L and Guanlin Y. The Relationship between Mitochondria and Disruption of Protein Quality Control and Atherosclerosis. Chinese Journal of Arteriosclerosis 2022 30 470 475
    [Google Scholar]
  48. Suya; Hongxia and Chaoyong U. Advances in Research on Vascular Endothelial Cell Dysfunction and Atherosclerosis. Advances in Research on Vascular Endothelial Cell Dysfunction and Atherosclerosis 2021 45 775 783
    [Google Scholar]
  49. Zhu W. Yang G. Chen N. Zhang W. Gao Q. Li T. Yuan N. Jin H. CTRP13 alleviates palmitic acid-induced inflammation, oxidative stress, apoptosis and endothelial cell dysfunction in HUVECs. Tissue Cell 2024 86 102232 10.1016/j.tice.2023.102232 37976900
    [Google Scholar]
  50. Lou D. Xing X. Liang Y. Dendrobine modulates autophagy to alleviate ox‐LDL‐induced oxidative stress and senescence in HUVECs. Drug Dev. Res. 2022 83 5 1125 1137 10.1002/ddr.21937 35417048
    [Google Scholar]
  51. Jiang H. Lv J. MicroRNA‑301a‑3p increases oxidative stress, inflammation and apoptosis in ox‑LDL‑induced HUVECs by targeting KLF7. Exp. Ther. Med. 2021 21 6 569 10.3892/etm.2021.10001 33850541
    [Google Scholar]
  52. Moldogazieva N.T. Mokhosoev I.M. Mel’nikova T.I. Porozov Y.B. Terentiev A.A. Oxidative Stress and Advanced Lipoxidation and Glycation End Products (ALEs and AGEs) in Aging and Age-Related Diseases. Oxid. Med. Cell. Longev. 2019 2019 1 14 10.1155/2019/3085756 31485289
    [Google Scholar]
  53. Hu R. Wang M. Ni S. Wang M. Liu L. You H. Wu X. Wang Y. Lu L. Wei L. Salidroside ameliorates endothelial inflammation and oxidative stress by regulating the AMPK/NF-κB/NLRP3 signaling pathway in AGEs-induced HUVECs. Eur. J. Pharmacol. 2020 867 172797 10.1016/j.ejphar.2019.172797 31747547
    [Google Scholar]
  54. Jiang H. Zhao Y. Feng P. Liu Y. Sulfiredoxin-1 Inhibits PDGF-BB-Induced Vascular Smooth Muscle Cell Proliferation and Migration by Enhancing the Activation of Nrf2/ARE Signaling. Int. Heart J. 2022 63 1 113 121 10.1536/ihj.21‑213 35034915
    [Google Scholar]
  55. Chaohui C. Wei H. Hongfeng W. Yueliang Z. Xiaoqin P. Pingli Z. Zhibing A. iRhom2 promotes atherosclerosis through macrophage inflammation and induction of oxidative stress. Biochem. Biophys. Res. Commun. 2018 503 3 1897 1904 10.1016/j.bbrc.2018.07.133 30097271
    [Google Scholar]
  56. Sun X. Xiao Y. Fu B. Yang T. Liu J. Wang W. Study on the Intervention Effect and Mechanism of Longshengzhi Capsule on Atherosclerosis in ApoE-/- Mice. Chinese Journal of Experimental Traditional Medical Formulas 2022 28 86 91
    [Google Scholar]
  57. Yu J. Li W. Xiao X. Huang Q. Yu J. Yang Y. Han T. Zhang D. Niu X. (−)-Epicatechin gallate blocks the development of atherosclerosis by regulating oxidative stress in vivo and in vitro. Food Funct. 2021 12 18 8715 8727 10.1039/D1FO00846C 34365492
    [Google Scholar]
  58. Upadhyay R. Batuman V. Aristolochic acid I induces proximal tubule injury through ROS / HMGB1 /mt DNA mediated activation of TLRs. J. Cell. Mol. Med. 2022 26 15 4277 4291 10.1111/jcmm.17451 35765703
    [Google Scholar]
  59. Ashok D. Papanicolaou K. Sidor A. Wang M. Solhjoo S. Liu T. O’Rourke B. Mitochondrial membrane potential instability on reperfusion after ischemia does not depend on mitochondrial Ca2+ uptake. J. Biol. Chem. 2023 299 6 104708 10.1016/j.jbc.2023.104708 37061004
    [Google Scholar]
  60. Craige S.M. Mammel R.K. Amiri N. Willoughby O.S. Drake J.C. Interplay of ROS, mitochondrial quality, and exercise in aging: Potential role of spatially discrete signaling. Redox Biol. 2024 77 103371 10.1016/j.redox.2024.103371 39357424
    [Google Scholar]
  61. Yanli L. Asprosin disrupts mitochondrial dynamics homeostasis, leading to vascular endothelial dysfunction. Obesity 2023 31 2 1 9 10.1002/oby.23656
    [Google Scholar]
  62. Vendrov A.E. Lozhkin A. Hayami T. Levin J. Silveira Fernandes Chamon J. Abdel-Latif A. Runge M.S. Madamanchi N.R. Mitochondrial dysfunction and metabolic reprogramming induce macrophage pro-inflammatory phenotype switch and atherosclerosis progression in aging. Front. Immunol. 2024 15 1410832 10.3389/fimmu.2024.1410832 38975335
    [Google Scholar]
  63. Chen Z. Sun X. Li X. Liu N. Oleoylethanolamide alleviates hyperlipidaemia-mediated vascular calcification via attenuating mitochondrial DNA stress triggered autophagy-dependent ferroptosis by activating PPARα. Biochem. Pharmacol. 2023 208 115379 10.1016/j.bcp.2022.115379 36525991
    [Google Scholar]
  64. Wenhua Q. Chuchu Y. Yuhui S. Bo Y. Dangheng W. Succinate/GPR91 Promotes Mitochondrial Damage in Vascular Endothelial Cells via DHODH/CoQ10. Chinese Journal of Arteriosclerosis 2024 32 466 472
    [Google Scholar]
  65. Oliveira H.C.F. Vercesi A.E. Mitochondrial bioenergetics and redox dysfunctions in hypercholesterolemia and atherosclerosis. Mol. Aspects Med. 2020 71 100840 10.1016/j.mam.2019.100840 31882067
    [Google Scholar]
  66. Zhu C. Zhang Z. Zhu Y. Du Y. Han C. Zhao Q. Li Q. Hou J. Zhang J. He W. Qin Y. Study on the role of Dihuang Yinzi in regulating the AMPK/SIRT1/PGC-1α pathway to promote mitochondrial biogenesis and improve Alzheimer’s disease. J. Ethnopharmacol. 2025 337 Pt 2 118859 10.1016/j.jep.2024.118859 39341266
    [Google Scholar]
  67. Xiong B. Yang C. Yang X. Luo S. Li S. Chen C. He K. Nie L. Li P. Li S. Huang H. Liu J. Zhang Z. Xie Y. Zou L. Yang X. Arctigenin derivative A‐1 ameliorates motor dysfunction and pathological manifestations in SOD1 G93Atransgenic mice via the AMPK / SIRT1 / PGC ‐1α and AMPK / SIRT1 / IL ‐1β/ NF‐κB pathways. CNS Neurosci. Ther. 2024 30 6 e14692 10.1111/cns.14692 38872258
    [Google Scholar]
  68. Yin F. Zhang J. Liu Y. Zhai Y. Luo D. Yan X. Feng Y. Lai J. Zheng H. Wei S. Wang Y. Basolateral Amygdala SIRT1/PGC-1α Mitochondrial Biogenesis Pathway Mediates Morphine Withdrawal-Associated Anxiety in Mice. Int. J. Neuropsychopharmacol. 2022 25 9 774 785 10.1093/ijnp/pyac040 35797010
    [Google Scholar]
  69. Huang Z. Wu Z. Zhang J. Wang K. Zhao Q. Chen M. Yan S. Guo Q. Ma Y. Ji L. Andrographolide attenuated MCT-induced HSOS via regulating NRF2-initiated mitochondrial biogenesis and antioxidant response. Cell Biol. Toxicol. 2023 39 6 3269 3285 10.1007/s10565‑023‑09832‑7 37816928
    [Google Scholar]
  70. Liu Y. Yang H. Luo N. Fu Y. Qiu F. Pan Z. Li X. Jian W. Yang X. Xue Q. Luo Y. Yu B. Liu Z. An Fgr kinase inhibitor attenuates sepsis-associated encephalopathy by ameliorating mitochondrial dysfunction, oxidative stress, and neuroinflammation via the SIRT1/PGC-1α signaling pathway. J. Transl. Med. 2023 21 1 486 10.1186/s12967‑023‑04345‑7 37475042
    [Google Scholar]
  71. Tian Y. Hong X. Xie Y. Guo Z. Yu Q. 17β-Estradiol (E2) Upregulates the ERα/SIRT1/PGC-1α Signaling Pathway and Protects Mitochondrial Function to Prevent Bilateral Oophorectomy (OVX)-Induced Nonalcoholic Fatty Liver Disease (NAFLD). Antioxidants 2023 12 12 2100 10.3390/antiox12122100 38136219
    [Google Scholar]
  72. Feng X. Zheng Y. Mao N. Shen M. Chu L. Fang Y. Pang M. Wang Z. Lin Z. Menaquinone-4 alleviates hypoxic-ischemic brain damage in neonatal rats by reducing mitochondrial dysfunction via Sirt1-PGC-1α-TFAM signaling pathway. Int. Immunopharmacol. 2024 134 112257 10.1016/j.intimp.2024.112257 38759366
    [Google Scholar]
  73. Li Y. Feng Y.F. Liu X.T. Li Y.C. Zhu H.M. Sun M.R. Li P. Liu B. Yang H. Songorine promotes cardiac mitochondrial biogenesis via Nrf2 induction during sepsis. Redox Biol. 2021 38 101771 10.1016/j.redox.2020.101771 33189984
    [Google Scholar]
  74. Branco C.S. Duong A. Machado A.K. Wu A. Scola G. Andreazza A.C. Salvador M. Araucaria angustifolia (Bertol.) Kuntze has neuroprotective action through mitochondrial modulation in dopaminergic SH-SY5Y cells. Mol. Biol. Rep. 2019 46 6 6013 6025 10.1007/s11033‑019‑05037‑6 31452047
    [Google Scholar]
  75. Gaweda-Walerych K. Zekanowski C. The impact of mitochondrial DNA and nuclear genes related to mitochondrial functioning on the risk of Parkinson’s disease. Curr. Genomics 2014 14 8 543 559 10.2174/1389202914666131210211033 24532986
    [Google Scholar]
  76. Yang M. Abudureyimu M. Wang X. Zhou Y. Zhang Y. Ren J. PHB2 ameliorates Doxorubicin-induced cardiomyopathy through interaction with NDUFV2 and restoration of mitochondrial complex I function. Redox Biol. 2023 65 102812 10.1016/j.redox.2023.102812 37451140
    [Google Scholar]
  77. Bu L.L. Yuan H.H. Xie L.L. Guo M.H. Liao D.F. Zheng X.L. New Dawn for Atherosclerosis: Vascular Endothelial Cell Senescence and Death. Int. J. Mol. Sci. 2023 24 20 15160 10.3390/ijms242015160 37894840
    [Google Scholar]
  78. Xu S. Ilyas I. Little P.J. Li H. Kamato D. Zheng X. Luo S. Li Z. Liu P. Han J. Harding I.C. Ebong E.E. Cameron S.J. Stewart A.G. Weng J. Endothelial Dysfunction in Atherosclerotic Cardiovascular Diseases and Beyond: From Mechanism to Pharmacotherapies. Pharmacol. Rev. 2021 73 3 924 967 10.1124/pharmrev.120.000096 34088867
    [Google Scholar]
  79. Du M. Meimei Z. Yanrong G. Hongjuan T. Research Progress of Histone Deacetylase Inhibitors. Fine and Specialty Chemicals 2022 30 46 50
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010333981250122003904
Loading
/content/journals/cpb/10.2174/0113892010333981250122003904
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test