Skip to content
2000
image of Harmony in Motion: The Role of Exercise in Orchestrating 
Neuroprotection for Individuals with Alzheimer's Disease and Diabetes Examined from a Psychological Perspective

Abstract

According to epidemiological studies, diabetes is more common in patients with AD, which suggests that diabetes is a significant risk factor for AD. Accelerating brain cell degeneration, worsening cognitive decline, and increasing susceptibility to AD can be attributed to pathogenic mechanisms linked to diabetes, such as impaired insulin signaling in the brain, neuroinflammation, oxidative stress, mitochondrial dysfunction, and vascular impairment. These factors can also lead to the accumulation of β-amyloid and tau protein phosphorylation. New research suggests that certain drugs used to manage diabetes have different levels of effectiveness in treating or preventing Alzheimer's disease. Exercise has numerous advantages, including the reduction of neuroinflammation, alleviation of oxidative stress and mitochondrial dysfunction, improvement of endothelial and cerebrovascular function, stimulation of neurogenesis, and prevention of pathological changes associated with diabetes-related Alzheimer's disease through various internal mechanisms. This study examined the development of Alzheimer's disease (AD) in relation to diabetes, evaluated the ability of specific antidiabetic drugs to prevent and treat AD, and investigated the impacts and underlying processes of exercise interventions in improving AD treatment for individuals with diabetes.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010340895250119183021
2025-01-24
2025-03-26
Loading full text...

Full text loading...

References

  1. Bergman M. Manco M. Satman I. Chan J. Schmidt M.I. Sesti G. Vanessa Fiorentino T. Abdul-Ghani M. Jagannathan R. Kumar Thyparambil Aravindakshan P. Gabriel R. Mohan V. Buysschaert M. Bennakhi A. Pascal Kengne A. Dorcely B. Nilsson P.M. Tuomi T. Battelino T. Hussain A. Ceriello A. Tuomilehto J. International diabetes federation position statement on the 1-hour post-load plasma glucose for the diagnosis of intermediate hyperglycaemia and type 2 diabetes. Diabetes Res. Clin. Pract. 2024 209 111589 10.1016/j.diabres.2024.111589 38458916
    [Google Scholar]
  2. Hossain M.J. Al-Mamun M. Islam M.R. Diabetes mellitus, the fastest growing global public health concern: Early detection should be focused. Health Sci. Rep. 2024 7 3 e2004 10.1002/hsr2.2004 38524769
    [Google Scholar]
  3. Kumar A. Gangwar R. Zargar A.A. Kumar R. Sharma A. Prevalence of diabetes in India: A review of IDF diabetes atlas Curr Diabetes Rev. 2024 20 e130423215752 10.2174/1573399819666230413094200.
    [Google Scholar]
  4. Malandrino N. Bhat S.Z. Alfaraidhy M. Grewal R.S. Kalyani R.R. Obesity and Aging. Endocrinol. Metab. Clin. North Am. 2023 52 2 317 339 10.1016/j.ecl.2022.10.001 36948782
    [Google Scholar]
  5. Biondi G. Marrano N. Borrelli A. Rella M. Palma G. Calderoni I. Siciliano E. Lops P. Giorgino F. Natalicchio A. Adipose tissue secretion pattern influences β-cell wellness in the transition from obesity to type 2 diabetes. Int. J. Mol. Sci. 2022 23 10 5522 10.3390/ijms23105522 35628332
    [Google Scholar]
  6. Lytrivi M. Castell A.L. Poitout V. Cnop M. Recent insights into mechanisms of β-cell lipo-and glucolipotoxicity in type 2 diabetes. J. Mol. Biol. 2020 432 5 1514 1534 10.1016/j.jmb.2019.09.016 31628942
    [Google Scholar]
  7. Yazıcı D. Sezer H. Insulin resistance, obesity and lipotoxicity. Adv Exp Med Biol. 2017 1460 391 430
    [Google Scholar]
  8. Sletten A.C. Peterson L.R. Schaffer J.E. Manifestations and mechanisms of myocardial lipotoxicity in obesity. J. Intern. Med. 2018 284 5 478 491 10.1111/joim.12728 29331057
    [Google Scholar]
  9. Nishi H. Higashihara T. Inagi R. Lipotoxicity in kidney, heart, and skeletal muscle dysfunction. Nutrients 2019 11 7 1664 10.3390/nu11071664 31330812
    [Google Scholar]
  10. Opazo-Ríos L. Mas S. Marín-Royo G. Mezzano S. Gómez-Guerrero C. Moreno J.A. Egido J. Lipotoxicity and diabetic nephropathy: Novel mechanistic insights and therapeutic opportunities. Int. J. Mol. Sci. 2020 21 7 2632 10.3390/ijms21072632 32290082
    [Google Scholar]
  11. Patel V.N. Chorawala M.R. Shah M.B. Shah K.C. Dave B.P. Shah M.P. Patel T.M. Emerging pathophysiological mechanisms linking diabetes mellitus and Alzheimer’s disease: An old wine in a new bottle. J. Alzheimers Dis. Rep. 2022 6 1 349 357 10.3233/ADR‑220021 35891636
    [Google Scholar]
  12. El Gaamouch F. Jing P. Xia J. Cai D. Alzheimer’s disease risk genes and lipid regulators. J. Alzheimers Dis. 2016 53 1 15 29 10.3233/JAD‑160169 27128373
    [Google Scholar]
  13. Nichols E. Szoeke C.E.I. Vollset S.E. Abbasi N. Abd-Allah F. Abdela J. Aichour M.T.E. Akinyemi R.O. Alahdab F. Asgedom S.W. Awasthi A. Barker-Collo S.L. Baune B.T. Béjot Y. Belachew A.B. Bennett D.A. Biadgo B. Bijani A. Bin Sayeed M.S. Brayne C. Carpenter D.O. Carvalho F. Catalá-López F. Cerin E. Choi J-Y.J. Dang A.K. Degefa M.G. Djalalinia S. Dubey M. Duken E.E. Edvardsson D. Endres M. Eskandarieh S. Faro A. Farzadfar F. Fereshtehnejad S-M. Fernandes E. Filip I. Fischer F. Gebre A.K. Geremew D. Ghasemi-Kasman M. Gnedovskaya E.V. Gupta R. Hachinski V. Hagos T.B. Hamidi S. Hankey G.J. Haro J.M. Hay S.I. Irvani S.S.N. Jha R.P. Jonas J.B. Kalani R. Karch A. Kasaeian A. Khader Y.S. Khalil I.A. Khan E.A. Khanna T. Khoja T.A.M. Khubchandani J. Kisa A. Kissimova-Skarbek K. Kivimäki M. Koyanagi A. Krohn K.J. Logroscino G. Lorkowski S. Majdan M. Malekzadeh R. März W. Massano J. Mengistu G. Meretoja A. Mohammadi M. Mohammadi-Khanaposhtani M. Mokdad A.H. Mondello S. Moradi G. Nagel G. Naghavi M. Naik G. Nguyen L.H. Nguyen T.H. Nirayo Y.L. Nixon M.R. Ofori-Asenso R. Ogbo F.A. Olagunju A.T. Owolabi M.O. Panda-Jonas S. Passos V.M.A. Pereira D.M. Pinilla-Monsalve G.D. Piradov M.A. Pond C.D. Poustchi H. Qorbani M. Radfar A. Reiner R.C. Jr Robinson S.R. Roshandel G. Rostami A. Russ T.C. Sachdev P.S. Safari H. Safiri S. Sahathevan R. Salimi Y. Satpathy M. Sawhney M. Saylan M. Sepanlou S.G. Shafieesabet A. Shaikh M.A. Sahraian M.A. Shigematsu M. Shiri R. Shiue I. Silva J.P. Smith M. Sobhani S. Stein D.J. Tabarés-Seisdedos R. Tovani-Palone M.R. Tran B.X. Tran T.T. Tsegay A.T. Ullah I. Venketasubramanian N. Vlassov V. Wang Y-P. Weiss J. Westerman R. Wijeratne T. Wyper G.M.A. Yano Y. Yimer E.M. Yonemoto N. Yousefifard M. Zaidi Z. Zare Z. Vos T. Feigin V.L. Murray C.J.L. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019 18 1 88 106 10.1016/S1474‑4422(18)30403‑4 30497964
    [Google Scholar]
  14. Ott A. Stolk R.P. van Harskamp F. Pols H.A.P. Hofman A. Breteler M.M.B. Diabetes mellitus and the risk of dementia. Neurology 1999 53 9 1937 1942 10.1212/WNL.53.9.1937 10599761
    [Google Scholar]
  15. Peila R. Rodriguez B.L. Launer L.J. Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies: The Honolulu-Asia aging study. Diabetes 2002 51 4 1256 1262 10.2337/diabetes.51.4.1256 11916953
    [Google Scholar]
  16. Wang K.C. Woung L.C. Tsai M.T. Liu C.C. Su Y.H. Li C.Y. Risk of Alzheimer’s disease in relation to diabetes: A population-based cohort study. Neuroepidemiology 2012 38 4 237 244 10.1159/000337428 22572745
    [Google Scholar]
  17. Arvanitakis Z. Wilson R.S. Bienias J.L. Evans D.A. Bennett D.A. Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Arch. Neurol. 2004 61 5 661 666 10.1001/archneur.61.5.661 15148141
    [Google Scholar]
  18. Leibson C.L. Rocca W.A. Hanson V.A. Cha R. Kokmen E. O’Brien P.C. Palumbo P.J. Risk of dementia among persons with diabetes mellitus: A population-based cohort study. Am. J. Epidemiol. 1997 145 4 301 308 10.1093/oxfordjournals.aje.a009106 9054233
    [Google Scholar]
  19. Athanasaki A. Melanis K. Tsantzali I. Stefanou M.I. Ntymenou S. Paraskevas S.G. Kalamatianos T. Boutati E. Lambadiari V. Voumvourakis K.I. Stranjalis G. Giannopoulos S. Tsivgoulis G. Paraskevas G.P. Type 2 diabetes mellitus as a risk factor for Alzheimer’s disease: Review and meta-analysis. Biomedicines 2022 10 4 778 10.3390/biomedicines10040778 35453527
    [Google Scholar]
  20. Zhang J. Chen C. Hua S. Liao H. Wang M. Xiong Y. Cao F. An updated meta-analysis of cohort studies: Diabetes and risk of Alzheimer’s disease. Diabetes Res. Clin. Pract. 2017 124 41 47 10.1016/j.diabres.2016.10.024 28088029
    [Google Scholar]
  21. Ruegsegger G.N. Booth F.W. Health benefits of exercise. Cold Spring Harb. Perspect. Med. 2018 8 7 a029694 10.1101/cshperspect.a029694 28507196
    [Google Scholar]
  22. Arem H. Moore S.C. Patel A. Hartge P. Berrington de Gonzalez A. Visvanathan K. Campbell P.T. Freedman M. Weiderpass E. Adami H.O. Linet M.S. Lee I.M. Matthews C.E. Leisure time physical activity and mortality: A detailed pooled analysis of the dose-response relationship. JAMA Intern. Med. 2015 175 6 959 967 10.1001/jamainternmed.2015.0533 25844730
    [Google Scholar]
  23. Wang Y. Ashokan K. Physical exercise: An overview of benefits from psychological level to genetics and beyond. Front. Physiol. 2021 12 731858 10.3389/fphys.2021.731858 34456756
    [Google Scholar]
  24. Tarantino U. Cariati I. Marini M. D’Arcangelo G. Tancredi V. Primavera M. Iundusi R. Gasbarra E. Scimeca M. Effects of simulated microgravity on muscle stem cells activity. Cell. Physiol. Biochem. 2020 54 4 736 747 10.33594/000000252 32749090
    [Google Scholar]
  25. Nassef Y. Lee K.J. Nfor O.N. Tantoh D.M. Chou M.C. Liaw Y.P. The impact of aerobic exercise and badminton on HDL cholesterol levels in Taiwanese adults. Nutrients 2020 12 5 1204 10.3390/nu12051204 32344797
    [Google Scholar]
  26. Hargreaves M. Spriet L.L. Skeletal muscle energy metabolism during exercise. Nat. Metab. 2020 2 9 817 828 10.1038/s42255‑020‑0251‑4 32747792
    [Google Scholar]
  27. Rêgo M.L.M. Cabral D.A.R. Costa E.C. Fontes E.B. Physical exercise for individuals with hypertension: it is time to emphasize its benefits on the brain and cognition. Clin. Med. Insights Cardiol. 2019 13 1179546819839411 10.1177/1179546819839411 30967748
    [Google Scholar]
  28. Di Liegro C.M. Schiera G. Proia P. Di Liegro I. Physical activity and brain health. Genes 2019 10 9 720 10.3390/genes10090720 31533339
    [Google Scholar]
  29. Santos R.D.S. Galdino G. Endogenous systems involved in exercise-induced analgesia. J Physiol Pharmacol. 2018 69 1 3 13 10.26402/jpp.2018.1.01
    [Google Scholar]
  30. Lavin K.M. Perkins R.K. Jemiolo B. Raue U. Trappe S.W. Trappe T.A. Effects of aging and lifelong aerobic exercise on basal and exercise-induced inflammation. J. Appl. Physiol. 2020 128 1 87 99 10.1152/japplphysiol.00495.2019 31751180
    [Google Scholar]
  31. Schwellnus M. Soligard T. Alonso J.M. Bahr R. Clarsen B. Dijkstra H.P. Gabbett T.J. Gleeson M. Hägglund M. Hutchinson M.R. Janse Van Rensburg C. Meeusen R. Orchard J.W. Pluim B.M. Raftery M. Budgett R. Engebretsen L. How much is too much? (Part 2) International Olympic Committee consensus statement on load in sport and risk of illness. Br. J. Sports Med. 2016 50 17 1043 1052 10.1136/bjsports‑2016‑096572 27535991
    [Google Scholar]
  32. Cariati I. Bonanni R. Onorato F. Mastrogregori A. Rossi D. Iundusi R. Gasbarra E. Tancredi V. Tarantino U. Role of physical activity in bone–muscle crosstalk: Biological aspects and clinical implications. J. Funct. Morphol. Kinesiol. 2021 6 2 55 10.3390/jfmk6020055 34205747
    [Google Scholar]
  33. Harris J.E. Baer L.A. Stanford K.I. Maternal exercise improves the metabolic health of adult offspring. Trends Endocrinol. Metab. 2018 29 3 164 177 10.1016/j.tem.2018.01.003 29402734
    [Google Scholar]
  34. Labonte-Lemoyne E. Curnier D. Ellemberg D. Exercise during pregnancy enhances cerebral maturation in the newborn: A randomized controlled trial. J. Clin. Exp. Neuropsychol. 2017 39 4 347 354 10.1080/13803395.2016.1227427 27622854
    [Google Scholar]
  35. Bertram S. Brixius K. Brinkmann C. Exercise for the diabetic brain: How physical training may help prevent dementia and Alzheimer’s disease in T2DM patients. Endocrine 2016 53 2 350 363 10.1007/s12020‑016‑0976‑8 27160819
    [Google Scholar]
  36. Rojas M. Chávez-Castillo M. Bautista J. Ortega Á. Nava M. Salazar J. Díaz-Camargo E. Medina O. Rojas-Quintero J. Bermúdez V. Alzheimer’s disease and type 2 diabetes mellitus: Pathophysiologic and pharmacotherapeutics links. World J. Diabetes 2021 12 6 745 766 10.4239/wjd.v12.i6.745 34168725
    [Google Scholar]
  37. Kim B. Elzinga S.E. Henn R.E. McGinley L.M. Feldman E.L. The effects of insulin and insulin-like growth factor I on amyloid precursor protein phosphorylation in in vitro and in vivo models of Alzheimer’s disease. Neurobiol. Dis. 2019 132 104541 10.1016/j.nbd.2019.104541 31349033
    [Google Scholar]
  38. Cardoso S. López I. Piñeiro-Hermida S. Pichel J. Moreira P. IGF1R deficiency modulates brain signaling pathways and disturbs mitochondria and redox homeostasis. Biomedicines 2021 9 2 158 10.3390/biomedicines9020158 33562061
    [Google Scholar]
  39. Devi L. Alldred M.J. Ginsberg S.D. Ohno M. Mechanisms underlying insulin deficiency-induced acceleration of β-amyloidosis in a mouse model of Alzheimer’s disease. PLoS One 2012 7 3 e32792 10.1371/journal.pone.0032792 22403710
    [Google Scholar]
  40. Takeda S. Sato N. Uchio-Yamada K. Sawada K. Kunieda T. Takeuchi D. Kurinami H. Shinohara M. Rakugi H. Morishita R. Diabetes-accelerated memory dysfunction via cerebrovascular inflammation and Aβ deposition in an Alzheimer mouse model with diabetes. Proc. Natl. Acad. Sci. USA 2010 107 15 7036 7041 10.1073/pnas.1000645107 20231468
    [Google Scholar]
  41. Stanley M. Macauley S.L. Holtzman D.M. Changes in insulin and insulin signaling in Alzheimer’s disease: Cause or consequence? J. Exp. Med. 2016 213 8 1375 1385 10.1084/jem.20160493 27432942
    [Google Scholar]
  42. Kianpour Rad S. Arya A. Karimian H. Madhavan P. Rizwan F. Koshy S. Prabhu G. Mechanism involved in insulin resistance via accumulation of β-amyloid and neurofibrillary tangles: Link between type 2 diabetes and Alzheimer’s disease. Drug Des. Devel. Ther. 2018 12 3999 4021 10.2147/DDDT.S173970 30538427
    [Google Scholar]
  43. Bomfim T.R. Forny-Germano L. Sathler L.B. Brito-Moreira J. Houzel J.C. Decker H. Silverman M.A. Kazi H. Melo H.M. McClean P.L. Holscher C. Arnold S.E. Talbot K. Klein W.L. Munoz D.P. Ferreira S.T. De Felice F.G. An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease–associated Aβ oligomers. J. Clin. Invest. 2012 122 4 1339 1353 10.1172/JCI57256 22476196
    [Google Scholar]
  44. Sohrabi M. Floden A.M. Manocha G.D. Klug M.G. Combs C.K. IGF-1R inhibitor ameliorates neuroinflammation in an Alzheimer’s disease transgenic mouse model. Front. Cell. Neurosci. 2020 14 200 10.3389/fncel.2020.00200 32719587
    [Google Scholar]
  45. Grochowski C. Litak J. Kamieniak P. Maciejewski R. Oxidative stress in cerebral small vessel disease. Role of reactive species. Free Radic. Res. 2018 52 1 1 13 10.1080/10715762.2017.1402304 29166803
    [Google Scholar]
  46. Cobb C.A. Cole M.P. Oxidative and nitrative stress in neurodegeneration. Neurobiol. Dis. 2015 84 4 21 10.1016/j.nbd.2015.04.020 26024962
    [Google Scholar]
  47. Correia S.C. Santos R.X. Santos M.S. Casadesus G. Lamanna J.C. Perry G. Smith M.A. Moreira P.I. Mitochondrial abnormalities in a streptozotocin-induced rat model of sporadic Alzheimer’s disease. Curr. Alzheimer Res. 2013 10 4 406 419 10.2174/1567205011310040006 23061885
    [Google Scholar]
  48. Tönnies E. Trushina E. Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J. Alzheimers Dis. 2017 57 4 1105 1121 10.3233/JAD‑161088 28059794
    [Google Scholar]
  49. Raza H. John A. Howarth F.C. Increased oxidative stress and mitochondrial dysfunction in zucker diabetic rat liver and brain. Cell. Physiol. Biochem. 2015 35 3 1241 1251 10.1159/000373947 25766534
    [Google Scholar]
  50. Maciejczyk M. Żebrowska E. Zalewska M. Chabowski A. Redox balance, antioxidant defense, and oxidative damage in the hypothalamus and cerebral cortex of rats with high fat diet-induced insulin resistance. Oxid Med Cell Longev 2018 2018 6940515 10.1155/2018/6940515
    [Google Scholar]
  51. Wei F.Y. Tomizawa K. tRNA modifications and islet function. Diabetes Obes. Metab. 2018 20 S2 Suppl. 2 20 27 10.1111/dom.13405 30230180
    [Google Scholar]
  52. Peng Y. Liu J. Shi L. Tang Y. Gao D. Long J. Liu J. Mitochondrial dysfunction precedes depression of AMPK / AKT signaling in insulin resistance induced by high glucose in primary cortical neurons. J. Neurochem. 2016 137 5 701 713 10.1111/jnc.13563 26926143
    [Google Scholar]
  53. Rovira-Llopis S. Bañuls C. Diaz-Morales N. Hernandez-Mijares A. Rocha M. Victor V.M. Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications. Redox Biol. 2017 11 637 645 10.1016/j.redox.2017.01.013 28131082
    [Google Scholar]
  54. Li W. Kui L. Demetrios T. Gong X. Tang M. A glimmer of hope: Maintain mitochondrial homeostasis to mitigate Alzheimer’s disease. Aging Dis. 2020 11 5 1260 1275 10.14336/AD.2020.0105 33014536
    [Google Scholar]
  55. Carvalho C. Santos M.S. Oliveira C.R. Moreira P.I. Alzheimer’s disease and type 2 diabetes-related alterations in brain mitochondria, autophagy and synaptic markers. Biochim. Biophys. Acta Mol. Basis Dis. 2015 1852 8 1665 1675 10.1016/j.bbadis.2015.05.001 25960150
    [Google Scholar]
  56. Sun Y. Ma C. Sun H. Wang H. Peng W. Zhou Z. Metabolism: A novel shared link between diabetes mellitus and Alzheimer’s disease. Diabetes Res 2020 2020 4981814 10.1155/2020/4981814
    [Google Scholar]
  57. Byun K. Yoo Y. Son M. Lee J. Jeong G.B. Park Y.M. Salekdeh G.H. Lee B. Advanced glycation end-products produced systemically and by macrophages: A common contributor to inflammation and degenerative diseases. Pharmacol. Ther. 2017 177 44 55 10.1016/j.pharmthera.2017.02.030 28223234
    [Google Scholar]
  58. Shinohara M. Kikuchi M. Onishi-Takeya M. Tashiro Y. Suzuki K. Noda Y. Takeda S. Mukouzono M. Nagano S. Fukumori A. Morishita R. Nakaya A. Sato N. Upregulated expression of a subset of genes in APP; ob / ob mice: Evidence of an interaction between diabetes‐linked obesity and Alzheimer’s disease. FASEB Bioadv. 2021 3 5 323 333 10.1096/fba.2020‑00151 33977233
    [Google Scholar]
  59. De Sousa Rodrigues M.E. Houser M.C. Walker D.I. Jones D.P. Chang J. Barnum C.J. Tansey M.G. Targeting soluble tumor necrosis factor as a potential intervention to lower risk for late-onset Alzheimer’s disease associated with obesity, metabolic syndrome, and type 2 diabetes. Alzheimers Res. Ther. 2020 12 1 1 16 10.1186/s13195‑019‑0546‑4 31892368
    [Google Scholar]
  60. Huang N.Q. Jin H. Zhou S. Shi J. Jin F. TLR4 is a link between diabetes and Alzheimer’s disease. Behav. Brain Res. 2017 316 234 244 10.1016/j.bbr.2016.08.047 27591966
    [Google Scholar]
  61. Wang C. Zong S. Cui X. Wang X. Wu S. Wang L. Liu Y. Lu Z. The effects of microglia-associated neuroinflammation on Alzheimer’s disease. Front. Immunol. 2023 14 1117172 10.3389/fimmu.2023.1117172 36911732
    [Google Scholar]
  62. Piatkowska-Chmiel I. Herbet M. Gawronska-Grzywacz M. Ostrowska-Lesko M. Dudka J. The role of molecular and inflammatory indicators in the assessment of cognitive dysfunction in a mouse model of diabetes. Int. J. Mol. Sci. 2021 22 8 3878 10.3390/ijms22083878 33918576
    [Google Scholar]
  63. Ledo J.H. Azevedo E.P. Clarke J.R. Ribeiro F.C. Figueiredo C.P. Foguel D. De Felice F.G. Ferreira S.T. Amyloid-β oligomers link depressive-like behavior and cognitive deficits in mice. Mol. Psychiatry 2013 18 10 1053 1054 10.1038/mp.2012.168 23183490
    [Google Scholar]
  64. Bischof G.N. Park D.C. Obesity and aging. Psychosom. Med. 2015 77 6 697 709 10.1097/PSY.0000000000000212 26107577
    [Google Scholar]
  65. Tucsek Z. Toth P. Tarantini S. Sosnowska D. Gautam T. Warrington J.P. Giles C.B. Wren J.D. Koller A. Ballabh P. Sonntag W.E. Ungvari Z. Csiszar A. Aging exacerbates obesity-induced cerebromicrovascular rarefaction, neurovascular uncoupling, and cognitive decline in mice. J. Gerontol. A Biol. Sci. Med. Sci. 2014 69 11 1339 1352 10.1093/gerona/glu080 24895269
    [Google Scholar]
  66. Zuloaga K.L. Johnson L.A. Roese N.E. Marzulla T. Zhang W. Nie X. Alkayed F.N. Hong C. Grafe M.R. Pike M.M. Raber J. Alkayed N.J. High fat diet-induced diabetes in mice exacerbates cognitive deficit due to chronic hypoperfusion. J. Cereb. Blood Flow Metab. 2016 36 7 1257 1270 10.1177/0271678X15616400 26661233
    [Google Scholar]
  67. Gora I.M. Ciechanowska A. Ladyzynski P. NLRP3 inflammasome at the interface of inflammation, endothelial dysfunction, and type 2 diabetes. Cells 2021 10 2 314 10.3390/cells10020314 33546399
    [Google Scholar]
  68. Murray I.V.J. Proza J.F. Sohrabji F. Lawler J.M. Vascular and metabolic dysfunction in Alzheimer’s disease: A review. Exp. Biol. Med. (Maywood) 2011 236 7 772 782 10.1258/ebm.2011.010355 21680755
    [Google Scholar]
  69. Shingo A.S. Kanabayashi T. Kito S. Murase T. Intracerebroventricular administration of an insulin analogue recovers STZ-induced cognitive decline in rats. Behav. Brain Res. 2013 241 105 111 10.1016/j.bbr.2012.12.005 23238038
    [Google Scholar]
  70. Reger M.A. Watson G.S. Green P.S. Wilkinson C.W. Baker L.D. Cholerton B. Fishel M.A. Plymate S.R. Breitner J.C.S. DeGroodt W. Mehta P. Craft S. Intranasal insulin improves cognition and modulates β-amyloid in early AD. Neurology 2008 70 6 440 448 10.1212/01.WNL.0000265401.62434.36 17942819
    [Google Scholar]
  71. Theendakara V. Peters-Libeu C.A. Bredesen D.E. Rao R.V. Transcriptional effects of ApoE4: Relevance to Alzheimer’s disease. Mol. Neurobiol. 2018 55 6 5243 5254 10.1007/s12035‑017‑0757‑2 28879423
    [Google Scholar]
  72. Gupta A. Bisht B. Dey C.S. Peripheral insulin-sensitizer drug metformin ameliorates neuronal insulin resistance and Alzheimer’s-like changes. Neuropharmacology 2011 60 6 910 920 10.1016/j.neuropharm.2011.01.033 21277873
    [Google Scholar]
  73. Li J. Deng J. Sheng W. Zuo Z. Metformin attenuates Alzheimer’s disease-like neuropathology in obese, leptin-resistant mice. Pharmacol. Biochem. Behav. 2012 101 4 564 574 10.1016/j.pbb.2012.03.002 22425595
    [Google Scholar]
  74. Kodali M. Attaluri S. Madhu L.N. Shuai B. Upadhya R. Gonzalez J.J. Rao X. Shetty A.K. Metformin treatment in late middle age improves cognitive function with alleviation of microglial activation and enhancement of autophagy in the hippocampus. Aging Cell 2021 20 2 e13277 10.1111/acel.13277 33443781
    [Google Scholar]
  75. Tanokashira D. Kurata E. Fukuokaya W. Kawabe K. Kashiwada M. Takeuchi H. Nakazato M. Taguchi A. Metformin treatment ameliorates diabetes‐associated decline in hippocampal neurogenesis and memory via phosphorylation of insulin receptor substrate 1. FEBS Open Bio 2018 8 7 1104 1118 10.1002/2211‑5463.12436 29988567
    [Google Scholar]
  76. Zhang J.H. Zhang J.F. Song J. Bai Y. Deng L. Feng C.P. Xu X.Y. Guo H.X. Wang Y. Gao X. Gu Y. Jin C. Zheng J.F. Zhen Z. Su H. Effects of berberine on diabetes and cognitive impairment in an animal model: The mechanisms of action. Am. J. Chin. Med. 2021 49 6 1399 1415 10.1142/S0192415X21500658 34137676
    [Google Scholar]
  77. Khan M.A. Alam Q. Haque A. Ashafaq M. Khan M.J. Ashraf G.M. Ahmad M. Current progress on peroxisome proliferator-activated receptor gamma agonist as an emerging therapeutic approach for the treatment of Alzheimer’s disease: An update. Curr. Neuropharmacol. 2019 17 3 232 246 10.2174/1570159X16666180828100002 30152284
    [Google Scholar]
  78. Watson G.S. Cholerton B.A. Reger M.A. Baker L.D. Plymate S.R. Asthana S. Fishel M.A. Kulstad J.J. Green P.S. Cook D.G. Kahn S.E. Keeling M.L. Craft S. Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: A preliminary study. Am. J. Geriatr. Psychiatry 2005 13 11 950 958 10.1176/appi.ajgp.13.11.950 16286438
    [Google Scholar]
  79. Nie J.M. Li H.F. Metformin in combination with rosiglitazone contribute to the increased serum adiponectin levels in people with type 2 diabetes mellitus. Exp. Ther. Med. 2017 14 3 2521 2526 10.3892/etm.2017.4823 28962190
    [Google Scholar]
  80. Tramutola A. Arena A. Cini C. Butterfield D.A. Barone E. Modulation of GLP-1 signaling as a novel therapeutic approach in the treatment of Alzheimer’s disease pathology. Expert Rev. Neurother. 2017 17 1 59 75 10.1080/14737175.2017.1246183 27715341
    [Google Scholar]
  81. Chen S. Sun J. Zhao G. Guo A. Chen Y. Fu R. Deng Y. Liraglutide improves water maze learning and memory performance while reduces hyperphosphorylation of tau and neurofilaments in APP/PS1/Tau triple transgenic mice. Neurochem. Res. 2017 42 8 2326 2335 10.1007/s11064‑017‑2250‑8 28382596
    [Google Scholar]
  82. Kosaraju J. Holsinger R.M.D. Guo L. Tam K.Y. Linagliptin, a dipeptidyl peptidase-4 inhibitor, mitigates cognitive deficits and pathology in the 3xTg-AD mouse model of Alzheimer’s disease. Mol. Neurobiol. 2017 54 8 6074 6084 10.1007/s12035‑016‑0125‑7 27699599
    [Google Scholar]
  83. Liu H. Zhao G. Cai K. Zhao H. Shi L. Treadmill exercise prevents decline in spatial learning and memory in APP/PS1 transgenic mice through improvement of hippocampal long-term potentiation. Behav. Brain Res. 2011 218 2 308 314 10.1016/j.bbr.2010.12.030 21192984
    [Google Scholar]
  84. Ryan S.M. Kelly Á.M. Exercise as a pro-cognitive, pro-neurogenic and anti-inflammatory intervention in transgenic mouse models of Alzheimer’s disease. Ageing Res. Rev. 2016 27 77 92 10.1016/j.arr.2016.03.007 27039886
    [Google Scholar]
  85. Lin T.W. Shih Y.H. Chen S.J. Lien C.H. Chang C.Y. Huang T.Y. Chen S.H. Jen C.J. Kuo Y.M. Running exercise delays neurodegeneration in amygdala and hippocampus of Alzheimer’s disease (APP/PS1) transgenic mice. Neurobiol. Learn. Mem. 2015 118 189 197 10.1016/j.nlm.2014.12.005 25543023
    [Google Scholar]
  86. Alkadhi K.A. Dao A.T. Exercise decreases BACE and APP levels in the hippocampus of a rat model of Alzheimer’s disease. Mol. Cell. Neurosci. 2018 86 25 29 10.1016/j.mcn.2017.11.008 29128320
    [Google Scholar]
  87. Morrill S.J. Gibas K.J. Ketogenic diet rescues cognition in ApoE4+ patient with mild Alzheimer’s disease: A case study. Diabetes Metab. Syndr. 2019 13 2 1187 1191 10.1016/j.dsx.2019.01.035 31336463
    [Google Scholar]
  88. Rahmati M. Keshvari M. Mirnasouri R. Chehelcheraghi F. Exercise and Urtica dioica extract ameliorate hippocampal insulin signaling, oxidative stress, neuroinflammation, and cognitive function in STZ-induced diabetic rats. Biomed. Pharmacother. 2021 139 111577 10.1016/j.biopha.2021.111577 33839493
    [Google Scholar]
  89. Erion J.R. Wosiski-Kuhn M. Dey A. Hao S. Davis C.L. Pollock N.K. Stranahan A.M. Obesity elicits interleukin 1-mediated deficits in hippocampal synaptic plasticity. J. Neurosci. 2014 34 7 2618 2631 10.1523/JNEUROSCI.4200‑13.2014 24523551
    [Google Scholar]
  90. Belotto M.F. Magdalon J. Rodrigues H.G. Vinolo M A R. Curi R. Pithon-Curi T.C. Hatanaka E. Moderate exercise improves leucocyte function and decreases inflammation in diabetes. Clin. Exp. Immunol. 2010 162 2 237 243 10.1111/j.1365‑2249.2010.04240.x 20846161
    [Google Scholar]
  91. Jorge M.L.M.P. de Oliveira V.N. Resende N.M. Paraiso L.F. Calixto A. Diniz A.L.D. Resende E.S. Ropelle E.R. Carvalheira J.B. Espindola F.S. Jorge P.T. Geloneze B. The effects of aerobic, resistance, and combined exercise on metabolic control, inflammatory markers, adipocytokines, and muscle insulin signaling in patients with type 2 diabetes mellitus. Metabolism 2011 60 9 1244 1252 10.1016/j.metabol.2011.01.006 21377179
    [Google Scholar]
  92. Hao S. Dey A. Yu X. Stranahan A.M. Dietary obesity reversibly induces synaptic stripping by microglia and impairs hippocampal plasticity. Brain Behav. Immun. 2016 51 230 239 10.1016/j.bbi.2015.08.023 26336035
    [Google Scholar]
  93. Mehta B.K. Singh K.K. Banerjee S. Effect of exercise on type 2 diabetes-associated cognitive impairment in rats. Int. J. Neurosci. 2019 129 3 252 263 10.1080/00207454.2018.1526795 30231786
    [Google Scholar]
  94. Oliveira W.H. Nunes A.K. França M.E.R. Santos L.A. Lós D.B. Rocha S.W. Barbosa K.P. Rodrigues G.B. Peixoto C.A. Effects of metformin on inflammation and short-term memory in streptozotocin-induced diabetic mice. Brain Res. 2016 1644 149 160 10.1016/j.brainres.2016.05.013 27174003
    [Google Scholar]
  95. Li J. Liu Y. Liu B. Hu B. Wang Q. Mechanisms of aerobic exercise upregulating the expression of hippocampal synaptic plasticity-associated proteins in diabetic rats. Neural Plast. 2019 2019 7920540 10.1155/2019/7920540
    [Google Scholar]
  96. Lin J.Y. Kuo W.W. Baskaran R. Kuo C.H. Chen Y.A. Chen W.S.T. Ho T.J. Day C.H. Mahalakshmi B. Huang C.Y. Swimming exercise stimulates IGF1/ PI3K/Akt and AMPK/SIRT1/PGC1α survival signaling to suppress apoptosis and inflammation in aging hippocampus. Aging (Albany NY) 2020 12 8 6852 6864 10.18632/aging.103046 32320382
    [Google Scholar]
  97. Yang A.L. Su C.T. Lin K.L. Chao J.I. You H.P. Lee S.D. Exercise training improves insulin-induced and insulin-like growth factor-1-induced vasorelaxation in rat aortas. Life Sci. 2006 79 21 2017 2021 10.1016/j.lfs.2006.06.037 16889802
    [Google Scholar]
  98. Heidarianpour A. Hajizadeh S. Khoshbaten A. Niaki A.G. Bigdili M.R. Pourkhalili K. Effects of chronic exercise on endothelial dysfunction and insulin signaling of cutaneous microvascular in streptozotocin-induced diabetic rats. Eur. J. Cardiovasc. Prev. Rehabil. 2007 14 6 746 752 10.1097/HJR.0b013e32817ed02f 18043294
    [Google Scholar]
  99. Wang J. Polaki V. Chen S. Bihl J.C. Exercise improves endothelial function associated with alleviated inflammation and oxidative stress of perivascular adipose tissue in type 2 diabetic mice. Oxid Med Cell Longev. 2020 2020 8830537 10.1155/2020/8830537
    [Google Scholar]
  100. Zhang L. Zheng H. Luo J. Li L. Pan X. Jiang T. Xiao C. Pei Z. Hu X. Inhibition of endothelial nitric oxide synthase reverses the effect of exercise on improving cognitive function in hypertensive rats. Hypertens. Res. 2018 41 6 414 425 10.1038/s41440‑018‑0033‑5 29568075
    [Google Scholar]
  101. Cohen N.D. Dunstan D.W. Robinson C. Vulikh E. Zimmet P.Z. Shaw J.E. Improved endothelial function following a 14-month resistance exercise training program in adults with type 2 diabetes. Diabetes Res. Clin. Pract. 2008 79 3 405 411 10.1016/j.diabres.2007.09.020 18006170
    [Google Scholar]
  102. Carmichael O.T. Neiberg R.H. Dutton G.R. Hayden K.M. Horton E. Pi-Sunyer F.X. Johnson K.C. Rapp S.R. Spira A.P. Espeland M.A. Long-term change in physiological markers and cognitive performance in type 2 diabetes: the look AHEAD study. J. Clin. Endocrinol. Metab. 2020 105 12 e4778 e4791 10.1210/clinem/dgaa591 32845968
    [Google Scholar]
  103. Man A.W. Li H. Xia N. Impact of lifestyles (diet and exercise) on vascular health: Oxidative stress and Endothelial Function. Oxid Med Cell Longev. 2020 2020 1496462 10.1155/2020/1496462.
    [Google Scholar]
  104. Marosi K. Mattson M.P. BDNF mediates adaptive brain and body responses to energetic challenges. Trends Endocrinol. Metab. 2014 25 2 89 98 10.1016/j.tem.2013.10.006 24361004
    [Google Scholar]
  105. Rouhani F. Khodarahmi P. Naseh V. NGF, BDNF and Arc mRNA expression in the hippocampus of rats after administration of morphine. Neurochem. Res. 2019 44 9 2139 2146 10.1007/s11064‑019‑02851‑z 31376054
    [Google Scholar]
  106. Hu J. Cai M. Shang Q. Li Z. Feng Y. Liu B. Xue X. Lou S. Elevated lactate by high-intensity interval training regulates the hippocampal BDNF expression and the mitochondrial quality control system. Front. Physiol. 2021 12 629914 10.3389/fphys.2021.629914 33716776
    [Google Scholar]
  107. Tonoli C. Heyman E. Buyse L. Roelands B. Piacentini M.F. Bailey S. Pattyn N. Berthoin S. Meeusen R. Neurotrophins and cognitive functions in T1D compared with healthy controls: Effects of a high-intensity exercise. Appl. Physiol. Nutr. Metab. 2015 40 1 20 27 10.1139/apnm‑2014‑0098 25525862
    [Google Scholar]
  108. Etemad A. Sheikhzadeh F. Asl N.A. Evaluation of brain-derived neurotrophic factor in diabetic rats. Neurol. Res. 2015 37 3 217 222 10.1179/1743132814Y.0000000428 25082546
    [Google Scholar]
  109. Firth J. Stubbs B. Vancampfort D. Schuch F. Lagopoulos J. Rosenbaum S. Ward P.B. Effect of aerobic exercise on hippocampal volume in humans: A systematic review and meta-analysis. Neuroimage 2018 166 230 238 10.1016/j.neuroimage.2017.11.007 29113943
    [Google Scholar]
  110. Salehi A. Rabiei Z. Setorki M. Effects of gallic acid and physical exercise on passive avoidance memory in male rat. Braz. J. Pharm. Sci. 2019 55 e18261 10.1590/s2175‑97902019000218261
    [Google Scholar]
  111. Radbakhsh S. Butler A.E. Moallem S.A. Sahebkar A. The effects of curcumin on brain-derived neurotrophic factor expression in neurodegenerative disorders. Curr. Med. Chem. 2024 31 36 5937 5952 10.2174/0929867330666230602145817 37278037
    [Google Scholar]
  112. Heisz J.J. Clark I.B. Bonin K. Paolucci E.M. Michalski B. Becker S. Fahnestock M. The effects of physical exercise and cognitive training on memory and neurotrophic factors. J. Cogn. Neurosci. 2017 29 11 1895 1907 10.1162/jocn_a_01164 28699808
    [Google Scholar]
  113. Borges M.E. Ribeiro A.M. Pauli J.R. Arantes L.M. Luciano E. de Moura L.P. de Almeida Leme J.A.C. Medeiros A. Bertolini N.O. Sibuya C.Y. Gomes R.J. Cerebellar Insulin/IGF-1 signaling in diabetic rats: Effects of exercise training. Neurosci. Lett. 2017 639 157 161 10.1016/j.neulet.2016.12.059 28034783
    [Google Scholar]
  114. Diegues J.C. Pauli J.R. Luciano E. de Almeida Leme J.A.C. de Moura L.P. Dalia R.A. de Araújo M.B. Sibuya C.Y. de Mello M.A.R. Gomes R.J. Spatial memory in sedentary and trained diabetic rats: Molecular mechanisms. Hippocampus 2014 24 6 703 711 10.1002/hipo.22261 24916112
    [Google Scholar]
  115. Żebrowska A. Hall B. Maszczyk A. Banaś R. Urban J. Brain-derived neurotrophic factor, insulin like growth factor-1 and inflammatory cytokine responses to continuous and intermittent exercise in patients with type 1 diabetes. Diabetes Res. Clin. Pract. 2018 144 126 136 10.1016/j.diabres.2018.08.018 30179684
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010340895250119183021
Loading
/content/journals/cpb/10.2174/0113892010340895250119183021
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: insulin resistance ; Alzheimer's disease ; Diabetes mellitus ; exercise intervention
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test