Skip to content
2000
image of Tryptophan Stability and Palatability in the Food Formulation: A Review

Abstract

Tryptophan, an essential amino acid, plays a vital role in the synthesis of critical compounds like serotonin, melatonin, and niacin, which impact mood, sleep, and metabolic processes. It holds promise for improving the well-being of individuals with mood issues or sleep disorders through dietary enrichment. However, incorporating tryptophan into food products presents challenges related to stability, bitterness, and susceptibility to oxidative degradation. These issues can reduce consumer acceptability and effectiveness and may lead to the formation of harmful byproducts. This review comprehensively examines innovative strategies for enriching food products with tryptophan. Crucial approaches include using nano-emulsion systems to encapsulate tryptophan, thereby protecting it from environmental factors and enhancing its bioavailability, adding antioxidants to prevent degradation, and utilizing functional derivatives as alternatives to pure tryptophan. These strategies aim to improve the stability of tryptophan, reduce bitterness, and enhance consumer acceptability. This review provides valuable insights into practical methods for incorporating tryptophan into food formulations, with the goal of optimizing its health benefits and ensuring a positive consumer experience.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010333886241015050836
2024-10-29
2024-12-26
Loading full text...

Full text loading...

References

  1. Gwin J.A. Church D.D. Wolfe R.R. Ferrando A.A. Pasiakos S.M. Muscle protein synthesis and whole-body protein turnover responses to ingesting essential amino acids, intact protein, and protein-containing mixed meals with considerations for energy deficit. Nutrients 2020 12 8 2457 10.3390/nu12082457 32824200
    [Google Scholar]
  2. Wu G. Amino acids: Metabolism, functions, and nutrition. Amino Acids 2009 37 1 1 17 10.1007/s00726‑009‑0269‑0 19301095
    [Google Scholar]
  3. Karau A. Grayson I. Amino acids in human and animal nutrition. Biotechnology of Food and Feed Additives Berlin, Heidelberg Springer Zorn H. Czermak P. 2014 189 228 10.1007/10_2014_269
    [Google Scholar]
  4. Kałużna-Czaplińska J. Gątarek P. Chirumbolo S. Chartrand M.S. Bjørklund G. How important is tryptophan in human health? Crit. Rev. Food Sci. Nutr. 2019 59 1 72 88 10.1080/10408398.2017.1357534 28799778
    [Google Scholar]
  5. Baenas N. García-Viguera C. Domínguez-Perles R. Medina S. Winery by-products as sources of bioactive tryptophan, serotonin, and melatonin: Contributions to the antioxidant power. Foods 2023 12 8 1571 10.3390/foods12081571 37107366
    [Google Scholar]
  6. Miyamoto K. Sujino T. Kanai T. The tryptophan metabolic pathway of the microbiome and host cells in health and disease. Int. Immunol. 2024 dxae035 10.1093/intimm/dxae035 38869080
    [Google Scholar]
  7. Yousef P. Rosen J. Shapiro C. Tryptophan and its role in sleep and mood. Stud. Nat. Prod. Chem. 2024 80 1 14 10.1016/B978‑0‑443‑15589‑5.00001‑3
    [Google Scholar]
  8. Dixit V. Joseph Kamal S.W. Bajrang Chole P. Dayal D. Chaubey K.K. Pal A.K. Xavier J. Manjunath B.T. Bachheti R.K. Functional foods: exploring the health benefits of bioactive compounds from plant and animal sources. J. Food Qual. 2023 2023 1 1 22 10.1155/2023/5546753
    [Google Scholar]
  9. Lindseth G. Helland B. Caspers J. The effects of dietary tryptophan on affective disorders. Arch. Psychiatr. Nurs. 2015 29 2 102 107 10.1016/j.apnu.2014.11.008 25858202
    [Google Scholar]
  10. Gul S. Saleem D. Haleem M.A. Haleem D.J. Inhibition of hormonal and behavioral effects of stress by tryptophan in rats. Nutr. Neurosci. 2019 22 6 409 417 10.1080/1028415X.2017.1395551 29098950
    [Google Scholar]
  11. Xiao S. Wang Z. Wang B. Hou B. Cheng J. Bai T. Zhang Y. Wang W. Yan L. Zhang J. Expanding the application of tryptophan: Industrial biomanufacturing of tryptophan derivatives. Front. Microbiol. 2023 14 1099098 10.3389/fmicb.2023.1099098 37032885
    [Google Scholar]
  12. Koniev O. Wagner A. Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem. Soc. Rev. 2015 44 15 5495 5551 10.1039/C5CS00048C 26000775
    [Google Scholar]
  13. Schnellbaecher A. Lindig A. Le Mignon M. Hofmann T. Pardon B. Bellmaine S. Zimmer A. Degradation products of tryptophan in cell culture media: contribution to color and toxicity. Int. J. Mol. Sci. 2021 22 12 6221 10.3390/ijms22126221 34207579
    [Google Scholar]
  14. Poeggeler B. Singh S.K. Pappolla M.A. Tryptophan in nutrition and health. Int. J. Mol. Sci. 2022 5455 23 10 10.3390/ijms23105455
    [Google Scholar]
  15. Bellmaine S. Schnellbaecher A. Zimmer A. Reactivity and degradation products of tryptophan in solution and proteins. Free Radic. Biol. Med. 2020 160 696 718 10.1016/j.freeradbiomed.2020.09.002 32911085
    [Google Scholar]
  16. Di Pizio A. Nicoli A. In silico molecular study of tryptophan bitterness. Molecules 2020 25 20 4623 10.3390/molecules25204623 33050648
    [Google Scholar]
  17. Fernandez Ruocco M.J. Macarena S. Daniela I. Jimena P.M. Valle A.S.D. Silvia C.N. Lipid-polymer membranes as carriers for l-tryptophan: Molecular and metabolic properties. Open J. Med. Chem. 2013 3 1 10.4236/ojmc.2013.31005
    [Google Scholar]
  18. Salminen H. Jaakkola H. Heinonen M. Modifications of tryptophan oxidation by phenolic-rich plant materials. J. Agric. Food Chem. 2008 56 23 11178 11186 10.1021/jf8022673 19007128
    [Google Scholar]
  19. Rose W.C. II. The sequence of events leading to the establishment of the amino acid needs of man. Am. J. Public Health Nations Health 1968 58 11 2020 2027 10.2105/AJPH.58.11.2020 5748871
    [Google Scholar]
  20. Friedman M. Analysis, nutrition, and health benefits of tryptophan. Int. J. Tryptophan Res. 2018 11 10.1177/1178646918802282 30275700
    [Google Scholar]
  21. Reyes V. Martínez O. Hernández G. National center for biotechnology information. Plant Breeding. Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923
    [Google Scholar]
  22. Frazer A. Hensler J.G. Serotonin involvement in physiological function and behavior. Basic Neurochemistry: Molecular, Cellular and Medical Aspects Philadelphia Lippincott-Raven Siegel G.J. Agranoff B.W. Albers R.W. 1999 263 292 6th ed
    [Google Scholar]
  23. Zawilska J.B. Skene D.J. Arendt J. Physiology and pharmacology of melatonin in relation to biological rhythms. Pharmacol. Rep. 2009 61 3 383 410 10.1016/S1734‑1140(09)70081‑7 19605939
    [Google Scholar]
  24. Fukuwatari T. Shibata K. Nutritional aspect of tryptophan metabolism. Int. J. Tryptophan Res. 2013 6S1 10.4137/IJTR.S11588
    [Google Scholar]
  25. Richard D.M. L-tryptophan: Basic metabolic functions, behavioral research and therapeutic indications. Int. J. Tryptophan Res. 2009 2 45 60 10.4137/IJTR.S2129 20651948
    [Google Scholar]
  26. Ritota M. Manzi P. Rapid determination of total tryptophan in yoghurt by ultra high performance liquid chromatography with fluorescence detection. Molecules 2020 25 21 5025 10.3390/molecules25215025 33138259
    [Google Scholar]
  27. Reilly J.G. McTavish S.F.B. Young A.H. Rapid depletion of plasma tryptophan: A review of studies and experimental methodology. J. Psychopharmacol. 1997 11 4 381 392 10.1177/026988119701100416 9443529
    [Google Scholar]
  28. Gottschlich M. Early and perioperative nutrition support. Contemporary Nutrition Support Practice: A Clinical Guide W.B. Saunders Company Philadelphia 1998 279 292
    [Google Scholar]
  29. Sainio E.L. Pulkki K. Young S.N. L-Tryptophan: Biochemical, nutritional and pharmacological aspects. Amino Acids 1996 10 1 21 47 10.1007/BF00806091 24178430
    [Google Scholar]
  30. The contribution of cocoa additive to cigarette smoking addiction. Available from: https://rivm.openrepository.com/bitstream/handle/10029/9279/650270002.pdf?sequence=1
  31. Chojnacki C. Popławski T. Chojnacki J. Fila M. Konrad P. Blasiak J. Tryptophan intake and metabolism in older adults with mood disorders. Nutrients 2020 12 10 3183 10.3390/nu12103183 33081001
    [Google Scholar]
  32. Cynober L. Bier D.M. Kadowaki M. Morris S.M. Elango R. Smriga M. Proposals for upper limits of safe intake for arginine and tryptophan in young adults and an upper limit of safe intake for leucine in the elderly. J. Nutr. 2016 146 12 2652S 2654S 10.3945/jn.115.228478 27934658
    [Google Scholar]
  33. Hiratsuka C. Fukuwatari T. Sano M. Saito K. Sasaki S. Shibata K. Supplementing healthy women with up to 5.0 g/d of L-tryptophan has no adverse effects. J. Nutr. 2013 143 6 859 866 10.3945/jn.112.173823 23616514
    [Google Scholar]
  34. Ronsein G.E. Bof de Oliveira M.C. Gennari de Medeiros M.H. Di Mascio P. Mechanism of dioxindolylalanine formation by singlet molecular oxygen-mediated oxidation of tryptophan residues. Photochem. Photobiol. Sci. 2011 10 11 1727 1730 10.1039/c1pp05181d 21912792
    [Google Scholar]
  35. Fuentes-Lemus E. Dorta E. Escobar E. Aspée A. Pino E. Abasq M.L. Speisky H. Silva E. Lissi E. Davies M.J. López-Alarcón C. Oxidation of free, peptide and protein tryptophan residues mediated by AAPH-derived free radicals: Role of alkoxyl and peroxyl radicals. RSC Advances 2016 6 63 57948 57955 10.1039/C6RA12859A
    [Google Scholar]
  36. Bent D.V. Hayon E. Excited state chemistry of aromatic amino acids and related peptides. III. Tryptophan. J. Am. Chem. Soc. 1975 97 10 2612 2619 10.1021/ja00843a004 237041
    [Google Scholar]
  37. Simat T.J. Steinhart H. Oxidation of free tryptophan and tryptophan residues in peptides and proteins. J. Agric. Food Chem. 1998 46 2 490 498 10.1021/jf970818c 10554268
    [Google Scholar]
  38. Kell G. Steinhart H. Oxidation of tryptophan by H2O2 in model systems. J. Food Sci. 1990 55 4 1120 1123 10.1111/j.1365‑2621.1990.tb01613.x
    [Google Scholar]
  39. Gérard V. Galopin C. Ay E. Launay V. Morlet-Savary F. Graff B. Lalevée J. Photostability of l-tryptophan in aqueous solution: Effect of atmosphere and antioxidants addition. Food Chem. 2021 359 129949 10.1016/j.foodchem.2021.129949 33957330
    [Google Scholar]
  40. Chameides W.L. Fehsenfeld F. Rodgers M.O. Cardelino C. Martinez J. Parrish D. Lonneman W. Lawson D.R. Rasmussen R.A. Zimmerman P. Greenberg J. Mlddleton P. Wang T. Ozone precursor relationships in the ambient atmosphere. J. Geophys. Res. 1992 97 D5 6037 6055 10.1029/91JD03014
    [Google Scholar]
  41. Wennberg P.O. Dabdub D. Atmospheric chemistry. Rethinking ozone production. Science 2008 319 5870 1624 1625 10.1126/science.1155747 18356510
    [Google Scholar]
  42. Organization W.H. Air quality guidelines: Global update 2005: Particulate matter, ozone, nitrogen dioxide, and sulfur dioxide. World Health Organization Germany 2006
    [Google Scholar]
  43. Kerkaert B. Mestdagh F. Cucu T. Aedo P.R. Ling S.Y. De Meulenaer B. Hypochlorous and peracetic acid induced oxidation of dairy proteins. J. Agric. Food Chem. 2011 59 3 907 914 10.1021/jf1037807 21214246
    [Google Scholar]
  44. Zelentsova E.A. Sherin P.S. Snytnikova O.A. Kaptein R. Vauthey E. Tsentalovich Y.P. Photochemistry of aqueous solutions of kynurenic acid and kynurenine yellow. Photochem. Photobiol. Sci. 2013 12 3 546 558 10.1039/c2pp25357g 23258594
    [Google Scholar]
  45. Borkman R.F. Hibbard L.B. Dillon J. The photolysis of tryptophan with 337.1 nm laser radiation. Photochem. Photobiol. 1986 43 1 13 19 10.1111/j.1751‑1097.1986.tb05585.x 3952159
    [Google Scholar]
  46. Silva E. Barrias P. Fuentes-Lemus E. Tirapegui C. Aspee A. Carroll L. Davies M.J. López-Alarcón C. Riboflavin-induced type 1 photo-oxidation of tryptophan using a high intensity 365 nm light emitting diode. Free Radic. Biol. Med. 2019 131 133 143 10.1016/j.freeradbiomed.2018.11.026 30502456
    [Google Scholar]
  47. Huvaere K. Skibsted L.H. Light-induced oxidation of tryptophan and histidine. Reactivity of aromatic N-heterocycles toward triplet-excited flavins. J. Am. Chem. Soc. 2009 131 23 8049 8060 10.1021/ja809039u 19459626
    [Google Scholar]
  48. Kanner J.D. Fennema O. Photooxidation of tryptophan in the presence of riboflavin. J. Agric. Food Chem. 1987 35 1 71 76 10.1021/jf00073a017
    [Google Scholar]
  49. Silva E. Rückert V. Lissi E. Abuin E. Effects of pH and ionic micelles on the riboflavin-sensitized photoprocesses of tryptophan in aqueous solution. J. Photochem. Photobiol. B 1991 11 1 57 68 10.1016/1011‑1344(91)80268‑M 1791494
    [Google Scholar]
  50. Cvetkova S. Edinger S. Zimmermann D. Woll B. Stahl M. Scharfenberger-Schmeer M. Richling E. Durner D. 2-Aminoacetophenone formation through UV-C induced degradation of tryptophan in the presence of riboflavin in model wine: Role of oxygen and transition metals. Food Chem. 2024 459 140259 10.1016/j.foodchem.2024.140259 39089197
    [Google Scholar]
  51. Friedman M. Cuq J.L. Chemistry, analysis, nutritional value, and toxicology of tryptophan in food. A review. J. Agric. Food Chem. 1988 36 5 1079 1093 10.1021/jf00083a042
    [Google Scholar]
  52. Simat T.J. Kleeberg K.K. Müller B. Sierts A. Contamination of commercially available L-tryptophan by related substances. Eur. Food Res. Technol. 2003 216 3 241 252 10.1007/s00217‑002‑0646‑3
    [Google Scholar]
  53. Zhuravleva Y.S. Sherin P.S. Influence of pH on radical reactions between kynurenic acid and amino acids tryptophan and tyrosine. Part I. Amino acids in free state. Free Radic. Biol. Med. 2021 172 331 339 10.1016/j.freeradbiomed.2021.06.015 34146664
    [Google Scholar]
  54. Stadtman E.R. Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu. Rev. Biochem. 1993 62 1 797 821 10.1146/annurev.bi.62.070193.004053 8352601
    [Google Scholar]
  55. Yang S.F. Destruction of tryptophan during the aerobic oxidation of sulfite ions. Environ. Res. 1973 6 4 395 402 10.1016/0013‑9351(73)90055‑8 4772330
    [Google Scholar]
  56. Kowalska-Baron A. Theoretical study of the complexes of tyrosine and tryptophan with biologically important metal cations in aqueous solutions. Comput. Theor. Chem. 2015 1057 7 14 10.1016/j.comptc.2015.01.010
    [Google Scholar]
  57. Stöckigt J. Antonchick A.P. Wu F. Waldmann H. The Pictet-Spengler reaction in nature and in organic chemistry. Angew. Chem. Int. Ed. 2011 50 37 8538 8564 10.1002/anie.201008071 21830283
    [Google Scholar]
  58. Pictet A. Spengler T. On the formation of isoquinoline derivatives through the action of methylal on phenyl-ethylamine, phenyl-alanine and tyrosine. Ber. Dtsch. Chem. Ges. 1911 44 3 2030 2036 10.1002/cber.19110440309
    [Google Scholar]
  59. Nemet I. Varga-Defterdarović L. Methylglyoxal-derived β-carbolines formed from tryptophan and its derivates in the Maillard reaction. Amino Acids 2007 32 2 291 293 10.1007/s00726‑006‑0337‑7 16729192
    [Google Scholar]
  60. Herraiz T. 1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid and 1,2, 3,4-tetrahydro-β-carboline-3-carboxylic acid in fruits. J. Agric. Food Chem. 1999 47 12 4883 4887 10.1021/jf990233d 10606547
    [Google Scholar]
  61. Herraiz T. Papavergou E. Identification and occurrence of tryptamine- and tryptophan-derived tetrahydro-β-carbolines in commercial sausages. J. Agric. Food Chem. 2004 52 9 2652 2658 10.1021/jf0354601 15113173
    [Google Scholar]
  62. Herraiz T. Tetrahydro-beta-carboline-3-carboxylic acid compounds in fish and meat: Possible precursors of co-mutagenic beta-carbolines norharman and harman in cooked foods. Food Addit. Contam. 2000 17 10 859 866 10.1080/026520300420439 11103270
    [Google Scholar]
  63. Upadhyaya J. Singh N. Bhullar R.P. Chelikani P. The structure–function role of C-terminus in human bitter taste receptor T2R4 signaling. Biochim. Biophys. Acta Biomembr. 2015 1848 7 1502 1508 10.1016/j.bbamem.2015.03.035 25858111
    [Google Scholar]
  64. Latham C.J. Blundell J.E. Evidence for the effect of tryptophan on the pattern of food consumption in free feeding and food deprived rats. Life Sci. 1979 24 21 1971 1978 10.1016/0024‑3205(79)90307‑2 459694
    [Google Scholar]
  65. Douroumis D. Practical approaches of taste masking technologies in oral solid forms. Expert Opin. Drug Deliv. 2007 4 4 417 426 10.1517/17425247.4.4.417 17683254
    [Google Scholar]
  66. Gharsallaoui A. Roudaut G. Chambin O. Voilley A. Saurel R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res. Int. 2007 40 9 1107 1121 10.1016/j.foodres.2007.07.004
    [Google Scholar]
  67. Jackison D. A breakthrough in natural masking technology: Pharmaceutical focus| R & D. South African Pharm. Cosmetic Rev. 2015 42 8 28 29
    [Google Scholar]
  68. Crockett R. Ie P. Vodovotz Y. How do xanthan and hydroxypropyl methylcellulose individually affect the physicochemical properties in a model gluten-free dough? J. Food Sci. 2011 76 3 E274 E282 10.1111/j.1750‑3841.2011.02088.x 21535827
    [Google Scholar]
  69. Ke X. Ma H. Yang J. Qiu M. Wang J. Han L. Zhang D. New strategies for identifying and masking the bitter taste in traditional herbal medicines: The example of Huanglian Jiedu Decoction. Front. Pharmacol. 2022 13 843821 10.3389/fphar.2022.843821 36060004
    [Google Scholar]
  70. Ley J.P. Krammer G. Reinders G. Gatfield I.L. Bertram H.J. Evaluation of bitter masking flavanones from Herba Santa (Eriodictyon californicum (H. and A.) Torr., Hydrophyllaceae). J. Agric. Food Chem. 2005 53 15 6061 6066 10.1021/jf0505170 16028996
    [Google Scholar]
  71. Loftsson T. Brewster M.E. Pharmaceutical applications of cyclodextrins: Basic science and product development. J. Pharm. Pharmacol. 2010 62 11 1607 1621 10.1111/j.2042‑7158.2010.01030.x 21039545
    [Google Scholar]
  72. Buya A.B. Witika B.A. Bapolisi A.M. Mwila C. Mukubwa G.K. Memvanga P.B. Makoni P.A. Nkanga C.I. Application of lipid-based nanocarriers for antitubercular drug delivery: A review. Pharmaceutics 2021 13 12 2041 10.3390/pharmaceutics13122041 34959323
    [Google Scholar]
  73. Balasubramaniam V.M.B. Martínez-Monteagudo S.I. Gupta R. Principles and application of high pressure-based technologies in the food industry. Annu. Rev. Food Sci. Technol. 2015 6 1 435 462 10.1146/annurev‑food‑022814‑015539 25747234
    [Google Scholar]
  74. Jakubczyk A. Karaś M. Złotek U. Szymanowska U. Identification of potential inhibitory peptides of enzymes involved in the metabolic syndrome obtained by simulated gastrointestinal digestion of fermented bean (Phaseolus vulgaris L.) seeds. Food Res. Int. 2017 100 Pt 1 489 496 10.1016/j.foodres.2017.07.046 28873712
    [Google Scholar]
  75. Kumar S. Singh P. Various techniques for solubility enhancement: An overview. Pharma Innov. 2016 5 1, Part A 23
    [Google Scholar]
  76. Robertson G.L. Food packaging and shelf life: A practical guide. CRC Press Boca Raton 2009 143 156 10.1201/9781420078459
    [Google Scholar]
  77. Huvaere K. Skibsted L.H. Flavonoids protecting food and beverages against light. J. Sci. Food Agric. 2015 95 1 20 35 10.1002/jsfa.6796 24961228
    [Google Scholar]
  78. You W. Ahn J.C. Boopathi V. Arunkumar L. Rupa E.J. Akter R. Kong B.M. Lee G.S. Yang D.C. Kang S.C. Liu J. Enhanced antiobesity efficacy of tryptophan using the nanoformulation of Dendropanax morbifera extract mediated with ZnO nanoparticle. Materials (Basel) 2021 14 4 824 10.3390/ma14040824 33572189
    [Google Scholar]
  79. Ghanbari N. Salehi Z. Khodadadi A.A. Shokrgozar M.A. Saboury A.A. Farzaneh F. Tryptophan-functionalized graphene quantum dots with enhanced curcumin loading capacity and pH-sensitive release. J. Drug Deliv. Sci. Technol. 2021 61 102137 10.1016/j.jddst.2020.102137
    [Google Scholar]
  80. Dong H. Yang L. Dadmohammadi Y. Li P. Lin T. He Y. Zhou Y. Li J. Meletharayil G. Kapoor R. Abbaspourrad A. Investigating the synergistic effects of high-pressure homogenization and pH shifting on the formation of tryptophan-rich nanoparticles. Food Chem. 2024 434 137371 10.1016/j.foodchem.2023.137371 37708572
    [Google Scholar]
  81. Adem Y.T. Molina P. Liu H. Patapoff T.W. Sreedhara A. Esue O. Hexyl glucoside and hexyl maltoside inhibit light-induced oxidation of tryptophan. J. Pharm. Sci. 2014 103 2 409 416 10.1002/jps.23809 24338937
    [Google Scholar]
  82. Kramarenko G.G. Hummel S.G. Martin S.M. Buettner G.R. Ascorbate reacts with singlet oxygen to produce hydrogen peroxide. Photochem. Photobiol. 2006 82 6 1634 1637 10.1111/j.1751‑1097.2006.tb09823.x 16898858
    [Google Scholar]
  83. Casadey R. Challier C. Senz A. Criado S. Antioxidant ability of tyrosol and derivative-compounds in the presence of O2(1Δg)-species. Studies of synergistic antioxidant effect with commercial antioxidants. Food Chem. 2019 285 275 281 10.1016/j.foodchem.2019.01.161 30797345
    [Google Scholar]
  84. Dad S. Bisby R.H. Clark I.P. Parker A.W. Identification and reactivity of the triplet excited state of 5-hydroxytryptophan. J. Photochem. Photobiol. B 2005 78 3 245 251 10.1016/j.jphotobiol.2004.11.013 15708522
    [Google Scholar]
  85. Steinhart H. Vollmar M. Sailer C. Pro- and antioxidative effect of ascorbic acid on L-tryptophan in the system iron(3+)/ascorbic acid/oxygen. J. Agric. Food Chem. 1993 41 12 2275 2277 10.1021/jf00036a010
    [Google Scholar]
  86. Laughton M.J. Halliwell B. Evans P.J. Robin J. Hoult S. Antioxidant and pro-oxidant actions of the plant phenolics quercetin, gossypol and myricetin. Biochem. Pharmacol. 1989 38 17 2859 2865 10.1016/0006‑2952(89)90442‑5 2476132
    [Google Scholar]
  87. Estevão M.S. Carvalho L.C. Ribeiro D. Couto D. Freitas M. Gomes A. Ferreira L.M. Fernandes E. Marques M.M.B. Antioxidant activity of unexplored indole derivatives: Synthesis and screening. Eur. J. Med. Chem. 2010 45 11 4869 4878 10.1016/j.ejmech.2010.07.059 20727623
    [Google Scholar]
  88. Reiter R.J. Tan D. Manchester L.C. Qi W. Biochemical reactivity of melatonin with reactive oxygen and nitrogen species: A review of the evidence. Cell Biochem. Biophys. 2001 34 2 237 256 10.1385/CBB:34:2:237 11898866
    [Google Scholar]
  89. Poeggeler B. Thuermann S. Dose A. Schoenke M. Burkhardt S. Hardeland R. Melatonin’s unique radical scavenging properties – Roles of its functional substituents as revealed by a comparison with its structural analogs. J. Pineal Res. 2002 33 1 20 30 10.1034/j.1600‑079X.2002.01873.x 12121482
    [Google Scholar]
  90. Ateş-Alagöz Z. Coban T. Suzen S. A comparative study: Evaluation of antioxidant activity of melatonin and some indole derivatives. Med. Chem. Res. 2005 14 3 169 179 10.1007/s00044‑005‑0132‑0
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010333886241015050836
Loading
/content/journals/cpb/10.2174/0113892010333886241015050836
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: nano-emulsion ; functional food ; enrichment ; Tryptophan ; bitter test ; oxidation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test