Skip to content
2000
image of Virus-like Particles-Based Vaccine to Combat Neurodegenerative Diseases

Abstract

Neurodegenerative diseases are regarded as gradual, incurable conditions with an insidious onset. Alzheimer’s disease (AD) and Parkinson’s disease (PD) are two of the most prevalent neurodegenerative diseases reported globally. Developing effective treatment strategies for neurodegenerative diseases has remained a primary objective and a huge challenge for researchers. The therapeutic medications that are now approved for the treatment of neurodegenerative diseases merely treat the symptoms; the underlying pathology is not addressed. Therefore, the emergence of novel disease-modifying therapeutic modalities such as immunotherapy has opened a new path in developing effective treatments for neurogenerative diseases. Compared to other types of subunit active vaccines, virus-like particles (VLPs) are considerably more immunogenic as they present dense and repetitive viral antigen epitopes on their surface, which can trigger both humoral and cell-mediated immune responses. They are also a much safer option than the traditional inactivated and live-attenuated vaccines since they are devoid of viral genomes and are, therefore, non-pathogenic and non-infectious. Researchers have turned their attention to VLPs as an active immunotherapy candidate for AD due to the lessons learned from the AN1792 trial. Studies have shown that they effectively induce anti-Aα-Synuclein The technical limitations and potential difficulties associated with the future application of VLP-based vaccines in patients with neurodegenerative diseases have also been covered.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010331763241002122854
2024-10-29
2025-01-19
Loading full text...

Full text loading...

References

  1. Kovacs G.G. Current concepts of neurodegenerative diseases. EMJ Neurol. 2014 11 10 11 10.33590/emjneurol/10314777
    [Google Scholar]
  2. Kovacs G. Molecular Pathological Classification of Neurodegenerative Diseases: Turning towards Precision Medicine. Int. J. Mol. Sci. 2016 17 2 189 10.3390/ijms17020189 26848654
    [Google Scholar]
  3. Dugger B.N. Dickson D.W. Pathology of Neurodegenerative Diseases. Cold Spring Harb. Perspect. Biol. 2017 9 7 a028035 10.1101/cshperspect.a028035 28062563
    [Google Scholar]
  4. Silva M.V.F. Loures C.D.M.G. Alves L.C.V. De Souza L.C. Borges K.B.G. Carvalho M.D.G. Alzheimer’s disease: risk factors and potentially protective measures. J. Biomed. Sci. 2019 26 1 1 11 10.1186/s12929‑019‑0524‑y
    [Google Scholar]
  5. Chu L.W. Alzheimer’s disease: early diagnosis and treatment. Hong Kong Med. J. 2012 18 3 228 237 22665688
    [Google Scholar]
  6. A Armstrong R. Richard P. Armstrong A. Risk factors for Alzheimer’s disease. Folia Neuropathol. 2019 57 2 87 105 10.5114/fn.2019.85929 31556570
    [Google Scholar]
  7. 2023 Alzheimer’s disease facts and figures. Alzheimers Dement. 2023 19 4 1598 1695 10.1002/alz.13016 36918389
    [Google Scholar]
  8. Simon D.K. Tanner C.M. Brundin P. Parkinson Disease Epidemiology, Pathology, Genetics, and Pathophysiology. Clin. Geriatr. Med. 2020 36 1 1 12 10.1016/j.cger.2019.08.002 31733690
    [Google Scholar]
  9. World Health Organization (WHO). Parkinson’s Disease Available from:https://www.who.int/news-room/fact-sheets/detail/parkinson-disease(accessed on 21-9-2024)
  10. Vaz M. Silvestre S. Alzheimer’s disease: Recent treatment strategies. Eur. J. Pharmacol. 2020 887 173554 10.1016/j.ejphar.2020.173554 32941929
    [Google Scholar]
  11. Maphis N.M. Peabody J. Crossey E. Qß Virus-like particle-based vaccine induces robust immunity and protects against tauopathy. npj Vaccines 2019 4 1 13
    [Google Scholar]
  12. Bouazzaoui A. Abdellatif A.A.H. Al-Allaf F.A. Bogari N.M. Al-Dehlawi S. Qari S.H. Strategies for Vaccination: Conventional Vaccine Approaches Versus New-Generation Strategies in Combination with Adjuvants. Pharmaceutics 2021 13 2 140 10.3390/pharmaceutics13020140 33499096
    [Google Scholar]
  13. U.S. Department of Health and Human Services Vaccine Types. Available from: https://www.hhs.gov/immunization/basics/types/index.html(accessed on 21-9-2024)
  14. Iwasaki A. Omer S.B. Why and How Vaccines Work. Cell 2020 183 2 290 295 10.1016/j.cell.2020.09.040 33064982
    [Google Scholar]
  15. Petrovsky N. Comparative Safety of Vaccine Adjuvants: A Summary of Current Evidence and Future Needs. Drug Saf. 2015 38 11 1059 1074 10.1007/s40264‑015‑0350‑4 26446142
    [Google Scholar]
  16. Tomljenovic L. Shaw C.A. Aluminum vaccine adjuvants: are they safe? Curr. Med. Chem. 2011 18 17 2630 2637 10.2174/092986711795933740 21568886
    [Google Scholar]
  17. Mohsen M.O. Zha L. Cabral-Miranda G. Bachmann M.F. Major findings and recent advances in virus–like particle (VLP)-based vaccines. Semin. Immunol. 2017 34 123 132 10.1016/j.smim.2017.08.014 28887001
    [Google Scholar]
  18. Donaldson B. Lateef Z. Walker G.F. Young S.L. Ward V.K. Virus-like particle vaccines: immunology and formulation for clinical translation. Expert Rev. Vaccines 2018 17 9 833 849 10.1080/14760584.2018.1516552 30173619
    [Google Scholar]
  19. Lomonossoff G.P. Ponndorf D. Biotechnology Approaches to Modern Vaccine Design. Encyclopedia of Virology Academic Press 2021 10.1016/B978‑0‑12‑814515‑9.00067‑9
    [Google Scholar]
  20. Chen C.W. Saubi N. Joseph-Munné J. Design Concepts of Virus-Like Particle-Based HIV-1 Vaccines. Front. Immunol. 2020 11 573157 10.3389/fimmu.2020.573157 33117367
    [Google Scholar]
  21. Ding X. Liu D. Booth G. Gao W. Lu Y. Virus‐Like Particle Engineering: From Rational Design to Versatile Applications. Biotechnol. J. 2018 13 5 1700324 10.1002/biot.201700324 29453861
    [Google Scholar]
  22. Deng F. Wang H. Deng F. Advances and challenges in enveloped virus-like particle (VLP)-based vaccines. Journal of Immunological Sciences 2018 2 2 36 41 10.29245/2578‑3009/2018/2.1118
    [Google Scholar]
  23. Zhang H. Wei W. Zhao M. Ma L. Jiang X. Pei H. Cao Y. Li H. Interaction between Aβ and Tau in the Pathogenesis of Alzheimer’s Disease. Int. J. Biol. Sci. 2021 17 9 2181 2192 10.7150/ijbs.57078 34239348
    [Google Scholar]
  24. Tiwari S. Atluri V. Kaushik A. Yndart A. Nair M. Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics. Int. J. Nanomedicine 2019 14 5541 5554 10.2147/IJN.S200490 31410002
    [Google Scholar]
  25. Jankovic J. Tan E.K. Parkinson’s disease: etiopathogenesis and treatment. J. Neurol. Neurosurg. Psychiatry 2020 91 8 795 808 10.1136/jnnp‑2019‑322338 32576618
    [Google Scholar]
  26. Kouli A. Torsney K.M. Kuan W.L. Parkinson’s Disease: Pathogenesis and Clinical Aspects Codon Publications 2018
    [Google Scholar]
  27. Atri A. The Alzheimer’s Disease Clinical Spectrum. Med. Clin. North Am. 2019 103 2 263 293 10.1016/j.mcna.2018.10.009 30704681
    [Google Scholar]
  28. Weller J. Budson A. Portelius E. Reddy H. Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Research . 2018 7 1161
    [Google Scholar]
  29. Lane C.A. Hardy J. Schott J.M. Alzheimer’s disease. Eur. J. Neurol. 2018 25 1 59 70 10.1111/ene.13439 28872215
    [Google Scholar]
  30. Cahill C. Huang X. Treatment options for motor and non-motor symptoms of parkinson’s disease. Biomolecules 2021 11 612
    [Google Scholar]
  31. Bronzuoli M.R. Iacomino A. Steardo L. Scuderi C. Targeting neuroinflammation in Alzheimer’s disease. J. Inflamm. Res. 2016 9 199 208 10.2147/JIR.S86958 27843334
    [Google Scholar]
  32. Dunn B. Stein P. Cavazzoni P. Approval of Aducanumab for Alzheimer Disease—The FDA’s Perspective. JAMA Intern. Med. 2021 181 10 1276 1278 10.1001/jamainternmed.2021.4607 34254984
    [Google Scholar]
  33. Lamptey R.N.L. Chaulagain B. Trivedi R. Gothwal A. Layek B. Singh J. A Review of the Common Neurodegenerative Disorders: Current Therapeutic Approaches and the Potential Role of Nanotherapeutics. Int. J. Mol. Sci. 2022 23 3 1851 10.3390/ijms23031851 35163773
    [Google Scholar]
  34. Cummings J. Apostolova L. Rabinovici G.D. Atri A. Aisen P. Greenberg S. Hendrix S. Selkoe D. Weiner M. Petersen R.C. Salloway S. Lecanemab: Appropriate Use Recommendations. J. Prev. Alzheimers Dis. 2023 10 3 362 377 37357276
    [Google Scholar]
  35. CH van D Lecanemab in Early Alzheimer’s Disease. N. Engl. J. Med. 2023 388 142 143
    [Google Scholar]
  36. Mortada I. Farah R. Nabha S. Ojcius D.M. Fares Y. Almawi W.Y. Sadier N.S. Immunotherapies for Neurodegenerative Diseases. Front. Neurol. 2021 12 654739 10.3389/fneur.2021.654739 34163421
    [Google Scholar]
  37. Kwon S. Iba M. Kim C. Masliah E. Immunotherapies for Aging-Related Neurodegenerative Diseases—Emerging Perspectives and New Targets. Neurotherapeutics 2020 17 3 935 954 10.1007/s13311‑020‑00853‑2 32347461
    [Google Scholar]
  38. Wang Z. Gao G. Duan C. Yang H. Progress of immunotherapy of anti-α-synuclein in Parkinson’s disease. Biomed. Pharmacother. 2019 115 108843 10.1016/j.biopha.2019.108843 31055236
    [Google Scholar]
  39. Bayer A.J. Bullock R. Jones R.W. Wilkinson D. Paterson K.R. Jenkins L. Millais S.B. Donoghue S. Evaluation of the safety and immunogenicity of synthetic Aβ42 (AN1792) in patients with AD. Neurology 2005 64 1 94 101 10.1212/01.WNL.0000148604.77591.67 15642910
    [Google Scholar]
  40. Plascencia-Villa G. Perry G. Lessons from antiamyloid-β immunotherapies in Alzheimer’s disease. Handb. Clin. Neurol. 2023 193 267 291 10.1016/B978‑0‑323‑85555‑6.00019‑9 36803816
    [Google Scholar]
  41. Chackerian B. Virus-like particle based vaccines for Alzheimer disease. Hum. Vaccin. 2010 6 11 926 930 10.4161/hv.6.11.12655 20864801
    [Google Scholar]
  42. Orgogozo J.M. Gilman S. Dartigues J.F. Laurent B. Puel M. Kirby L.C. Jouanny P. Dubois B. Eisner L. Flitman S. Michel B.F. Boada M. Frank A. Hock C. Subacute meningoencephalitis in a subset of patients with AD after Aβ42 immunization. Neurology 2003 61 1 46 54 10.1212/01.WNL.0000073623.84147.A8 12847155
    [Google Scholar]
  43. Nicoll J.A.R. Wilkinson D. Holmes C. Steart P. Markham H. Weller R.O. Neuropathology of human Alzheimer disease after immunization with amyloid-β peptide: a case report. Nat. Med. 2003 9 4 448 452 10.1038/nm840 12640446
    [Google Scholar]
  44. Zamora E. Handisurya A. Shafti-Keramat S. Borchelt D. Rudow G. Conant K. Cox C. Troncoso J.C. Kirnbauer R. Papillomavirus-like particles are an effective platform for amyloid-β immunization in rabbits and transgenic mice. J. Immunol. 2006 177 4 2662 2670 10.4049/jimmunol.177.4.2662 16888028
    [Google Scholar]
  45. Bach P. Tschäpe J.A. Kopietz F. Braun G. Baade J.K. Wiederhold K.H. Staufenbiel M. Prinz M. Deller T. Kalinke U. Buchholz C.J. Müller U.C. Vaccination with Abeta-displaying virus-like particles reduces soluble and insoluble cerebral Abeta and lowers plaque burden in APP transgenic mice. J. Immunol. 2009 182 12 7613 7624 10.4049/jimmunol.0803366 19494285
    [Google Scholar]
  46. Wiessner C. Wiederhold K.H. Tissot A.C. Frey P. Danner S. Jacobson L.H. Jennings G.T. Lüönd R. Ortmann R. Reichwald J. Zurini M. Mir A. Bachmann M.F. Staufenbiel M. The second-generation active Aβ immunotherapy CAD106 reduces amyloid accumulation in APP transgenic mice while minimizing potential side effects. J. Neurosci. 2011 31 25 9323 9331 10.1523/JNEUROSCI.0293‑11.2011 21697382
    [Google Scholar]
  47. Winblad B. Andreasen N. Minthon L. Floesser A. Imbert G. Dumortier T. Maguire R.P. Blennow K. Lundmark J. Staufenbiel M. Orgogozo J.M. Graf A. Safety, tolerability, and antibody response of active Aβ immunotherapy with CAD106 in patients with Alzheimer’s disease: randomised, double-blind, placebo-controlled, first-in-human study. Lancet Neurol. 2012 11 7 597 604 10.1016/S1474‑4422(12)70140‑0 22677258
    [Google Scholar]
  48. Vandenberghe R. Riviere M.E. Caputo A. Sovago J. Maguire R.P. Farlow M. Marotta G. Sanchez-Valle R. Scheltens P. Ryan J.M. Graf A. Active Aβ immunotherapy CAD106 in Alzheimer’s disease: A phase 2b study. Alzheimers Dement. (N. Y.) 2017 3 1 10 22 10.1016/j.trci.2016.12.003 29067316
    [Google Scholar]
  49. Farlow M.R. Andreasen N. Riviere M.E. Vostiar I. Vitaliti A. Sovago J. Caputo A. Winblad B. Graf A. Long-term treatment with active Aβ immunotherapy with CAD106 in mild Alzheimer’s disease. Alzheimers Res. Ther. 2015 7 1 23 10.1186/s13195‑015‑0108‑3 25918556
    [Google Scholar]
  50. Lopez Lopez C. Tariot P.N. Caputo A. Langbaum J.B. Liu F. Riviere M.E. Langlois C. Rouzade-Dominguez M.L. Zalesak M. Hendrix S. Thomas R.G. Viglietta V. Lenz R. Ryan J.M. Graf A. Reiman E.M. The Alzheimer’s Prevention Initiative Generation Program: Study design of two randomized controlled trials for individuals at risk for clinical onset of Alzheimer’s disease. Alzheimers Dement. (N. Y.) 2019 5 1 216 227 10.1016/j.trci.2019.02.005 31211217
    [Google Scholar]
  51. Gonzalez-Castro R. Acero Galindo G. García Salcedo Y. Uribe Campero L. Vazquez Perez V. Carrillo-Tripp M. Gevorkian G. Gomez Lim M.A. Plant-based chimeric HPV-virus-like particles bearing amyloid-β epitopes elicit antibodies able to recognize amyloid plaques in APP-tg mouse and Alzheimer’s disease brains. Inflammopharmacology 2018 26 3 817 827 10.1007/s10787‑017‑0408‑2 29094307
    [Google Scholar]
  52. Zeltins A. West J. Zabel F. El Turabi A. Balke I. Haas S. Maudrich M. Storni F. Engeroff P. Jennings G.T. Kotecha A. Stuart D.I. Foerster J. Bachmann M.F. Incorporation of tetanus-epitope into virus-like particles achieves vaccine responses even in older recipients in models of psoriasis, Alzheimer’s and cat allergy. NPJ Vaccines 2017 2 1 30 10.1038/s41541‑017‑0030‑8 29263885
    [Google Scholar]
  53. Ji M. Xie X. Liu D. Yu X. Zhang Y. Zhang L.X. Wang S. Huang Y. Liu R. Hepatitis B core VLP-based mis-disordered tau vaccine elicits strong immune response and alleviates cognitive deficits and neuropathology progression in Tau.P301S mouse model of Alzheimer’s disease and frontotemporal dementia. Alzheimers Res. Ther. 2018 10 1 55 10.1186/s13195‑018‑0378‑7 29914543
    [Google Scholar]
  54. Doucet M. El-Turabi A. Zabel F. Hunn B.H.M. Bengoa-Vergniory N. Cioroch M. Ramm M. Smith A.M. Gomes A.C. Cabral de Miranda G. Wade-Martins R. Bachmann M.F. Preclinical development of a vaccine against oligomeric alpha-synuclein based on virus-like particles. PLoS One 2017 12 8 e0181844 10.1371/journal.pone.0181844 28797124
    [Google Scholar]
  55. Gupta R. Arora K. Roy S.S. Joseph A. Rastogi R. Arora N.M. Kundu P.K. Platforms, advances, and technical challenges in virus-like particles-based vaccines. Front. Immunol. 2023 14 1123805 10.3389/fimmu.2023.1123805 36845125
    [Google Scholar]
  56. Lan N.T. Kim H.J. Han H.J. Lee D.C. Kang B.K. Han S.Y. Moon H. Kim H.J. Stability of virus-like particles of red-spotted grouper nervous necrosis virus in the aqueous state, and the vaccine potential of lyophilized particles. Biologicals 2018 51 25 31 10.1016/j.biologicals.2017.11.002 29174141
    [Google Scholar]
  57. Marsian J. Fox H. Bahar M.W. Kotecha A. Fry E.E. Stuart D.I. Macadam A.J. Rowlands D.J. Lomonossoff G.P. Plant-made polio type 3 stabilized VLPs—a candidate synthetic polio vaccine. Nature Communic. 2017 8 1 9
    [Google Scholar]
  58. Tong T. D’Addabbo A. Xu J. Chawla H. Nguyen A. Ochoa P. Crispin M. Binley J.M. Impact of stabilizing mutations on the antigenic profile and glycosylation of membrane-expressed HIV-1 envelope glycoprotein. PLoS Pathog. 2023 19 8 e1011452 10.1371/journal.ppat.1011452 37549185
    [Google Scholar]
  59. Fiedler J.D. Higginson C. Hovlid M.L. Kislukhin A.A. Castillejos A. Manzenrieder F. Campbell M.G. Voss N.R. Potter C.S. Carragher B. Finn M.G. Engineered mutations change the structure and stability of a virus-like particle. Biomacromolecules 2012 13 8 2339 2348 10.1021/bm300590x 22830650
    [Google Scholar]
  60. Nooraei S. Bahrulolum H. Hoseini Z.S. Katalani C. Hajizade A. Easton A.J. Ahmadian G. Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J. Nanobiotechnol. 2021 19 1 27 10.1186/s12951‑021‑00806‑7
    [Google Scholar]
  61. Cacabelos R. How plausible is an Alzheimer’s disease vaccine? Expert Opin. Drug Discov. 2020 15 1 1 6 10.1080/17460441.2019.1667329 31526140
    [Google Scholar]
  62. Yu H.J. Dickson S.P. Wang P.N. Chiu M.J. Huang C.C. Chang C.C. Liu H. Hendrix S.B. Dodart J.C. Verma A. Wang C.Y. Cummings J. Safety, tolerability, immunogenicity, and efficacy of UB-311 in participants with mild Alzheimer’s disease: a randomised, double-blind, placebo-controlled, phase 2a study. EBioMedicine 2023 94 104665 10.1016/j.ebiom.2023.104665 37392597
    [Google Scholar]
  63. Mohsen M.O. Bachmann M.F. Virus-like particle vaccinology, from bench to bedside. Cellul. Molecul. Immunol. 2022 19 9 993 1011 10.1038/s41423‑022‑00897‑8
    [Google Scholar]
  64. Salloway S.P. Sevingy J. Budur K. Pederson J.T. DeMattos R.B. Von Rosenstiel P. Paez A. Evans R. Weber C.J. Hendrix J.A. Worley S. Bain L.J. Carrillo M.C. Advancing combination therapy for Alzheimer’s disease. Alzheimers Dement. (N. Y.) 2020 6 1 e12073 10.1002/trc2.12073 33043108
    [Google Scholar]
  65. Wiedermann U. Garner-Spitzer E. Wagner A. Primary vaccine failure to routine vaccines: Why and what to do? Hum. Vaccin. Immunother. 2016 12 1 239 243 10.1080/21645515.2015.1093263 26836329
    [Google Scholar]
  66. Brody D.L. Holtzman D.M. Active and passive immunotherapy for neurodegenerative disorders. Annu. Rev. Neurosci. 2008 31 1 175 193 10.1146/annurev.neuro.31.060407.125529 18352830
    [Google Scholar]
  67. Davtyan H. Hovakimyan A. Kiani Shabestari S. Antonyan T. Coburn M.A. Zagorski K. Chailyan G. Petrushina I. Svystun O. Danhash E. Petrovsky N. Cribbs D.H. Agadjanyan M.G. Blurton-Jones M. Ghochikyan A. Testing a MultiTEP-based combination vaccine to reduce Aβ and tau pathology in Tau22/5xFAD bigenic mice. Alzheimers Res. Ther. 2019 11 1 107 10.1186/s13195‑019‑0556‑2 31847886
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010331763241002122854
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test