Skip to content
2000
image of Advances and Challenges of Microneedle Assisted Drug Delivery for Biomedicals Applications: A Review

Abstract

Microneedles have been explored as a novel way of delivering active ingredients into the skin. They have various advantages, such as quick and efficient drug delivery, mechanical stability, minimal pain, variable capacity and easy use. Microneedles are enabled for the delivery of vaccine, peptides, medicinal components and in cosmetology, which couldn’t go unnoticed. The novel approaches in the transdermal drug delivery system have increased the efficiency of drug delivery into the skin by crossing the skin barriers. This platform has a wide range of applications and can also be used to deliver non-transdermal biomedicals. The variety in the design of microneedles has demanded similar diversity in their methods of fabrication; micro molding and drawing lithography may be useful methods. There are different types of polymers and materials for the fabrication of microneedles. Several synthetic and natural materials are used in the fabrication of microneedles. Unique shapes, materials, and mechanical properties are modified for organ-specific applications in microneedle engineering. In this review, we discuss several factors and their roles to cross the biological barriers for transdermal drug delivery in various sites, such as in ocular, vascular, oral, and mucosal tissue. Additionally, this article highlights the future scope of transdermal drug delivery systems through microneedles.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010310769240924053724
2024-11-04
2024-12-26
Loading full text...

Full text loading...

References

  1. Price G. Patel D.A. Drug Bioavailability. Statpearls Treasure Island (FL) Statpearls Publishers 10.1016/B978‑008055232‑3.60035‑2
    [Google Scholar]
  2. The administration of medicines. 2007 Available from:https://www.nursingtimes.net/clinical-archive/medicine-management/the-administration-of-medicines-19-11-2007/(accessed on 30-8-2024)
  3. Alkilani A. McCrudden M.T. Donnelly R. Transdermal drug delivery: Innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics 2015 7 4 438 470 10.3390/pharmaceutics7040438 26506371
    [Google Scholar]
  4. Prausnitz M.R. Langer R. Transdermal drug delivery. Nat. Biotechnol. 2008 26 11 1261 1268 10.1038/nbt.1504 18997767
    [Google Scholar]
  5. Yousef H. Alhajj M. Sharma S. Anatomy, Skin (Integument), Epidermis. StatPearls. StatPearls Publisher 2021
    [Google Scholar]
  6. Évora A.S. Adams M.J. Johnson S.A. Zhang Z. Corneocytes: Relationship between Structural and Biomechanical Properties. Skin Pharmacol. Physiol. 2021 34 3 146 161 10.1159/000513054 33780956
    [Google Scholar]
  7. Lindberg M.R. Lamps L.W. Sustained drug delivery to reduce the extent of burn progression. PhD thesis, Nanyang Technological University, 2024. 10.1016/B978‑0‑323‑54803‑8.50015‑2
    [Google Scholar]
  8. Orphanidou C. McCargar L. Birmingham C.L. Mathieson J. Goldner E. Accuracy of subcutaneous fat measurement: Comparison of skinfold calipers, ultrasound, and computed tomography. J. Am. Diet. Assoc. 1994 94 8 855 858 10.1016/0002‑8223(94)92363‑9 8046177
    [Google Scholar]
  9. Kirkby M. Hutton A.R.J. Donnelly R.F. Microneedle Mediated Transdermal Delivery of Protein, Peptide and Antibody Based Therapeutics: Current Status and Future Considerations. Pharm. Res. 2020 37 6 117 10.1007/s11095‑020‑02844‑6 32488611
    [Google Scholar]
  10. Mdanda S. Ubanako P. Kondiah P.P.D. Kumar P. Choonara Y.E. Recent advances in microneedle platforms for transdermal drug delivery technologies. Polymers (Basel) 2021 13 15 2405 10.3390/polym13152405 34372008
    [Google Scholar]
  11. Khaled Aldawood F. Andar A. Desai S. Giammona G. Fabiola Craparo E. A comprehensive review of microneedles: Types, materials, processes, characterizations and applications. Polymers 13 16 2815 10.3390/polym13162815
    [Google Scholar]
  12. Yuan W. Xiaoyun Hong Zaozhan Wu Lizhu Chen Liu Z. Fei Wu Liangming Wei L. Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine. Drug Des. Devel. Ther. 2013 7 945 952 10.2147/DDDT.S44401 24039404
    [Google Scholar]
  13. Jung J.H. Jin S.G. Microneedle for transdermal drug delivery: current trends and fabrication. J. Pharm. Investig. 2021 51 5 503 517 10.1007/s40005‑021‑00512‑4 33686358
    [Google Scholar]
  14. Dugam S. Tade R. Dhole R. Nangare S. Emerging era of microneedle array for pharmaceutical and biomedical applications: recent advances and toxicological perspectives. Futur. J. Pharm. Sci. 2021 7 1 1 26 10.1186/s43094‑020‑00176‑1
    [Google Scholar]
  15. Tucak A. Sirbubalo M. Hindija L. Microneedles: Characteristics, materials, production methods and commercial development. Micromachines 2020 11 11 961 10.3390/mi11110961
    [Google Scholar]
  16. Coulman S. Allender C. Birchall J. Microneedles and other physical methods for overcoming the stratum corneum barrier for cutaneous gene therapy. Crit. Rev. Ther. Drug Carrier Syst. 2006 23 3 205 258 10.1615/CritRevTherDrugCarrierSyst.v23.i3.20 17206925
    [Google Scholar]
  17. Guillot A.J. Cordeiro A.S. Donnelly R.F. Montesinos M.C. Garrigues T.M. Melero A. Microneedle-based delivery: An overview of current applications and trends. Pharmaceutics. 2020 12 6 569 10.3390/pharmaceutics12060569
    [Google Scholar]
  18. Yang J. Liu X. Fu Y. Song Y. Recent advances of microneedles for biomedical applications: drug delivery and beyond. Acta Pharm. Sin. B 2019 9 3 469 483 10.1016/j.apsb.2019.03.007 31193810
    [Google Scholar]
  19. Yang J Yang J Gong X Recent progress in microneedles-mediated diagnosis, therapy, and theranostic systems. Adv Healthc Mater. 11 10 e2102547 10.1002/adhm.202102547
    [Google Scholar]
  20. Sivagnanam G. Microneedles for painless immunization. J. Pharmacol. Pharmacotherap. 2010 1 2 1 3
    [Google Scholar]
  21. Han M. Hyun D.H. Park H.H. Lee S.S. Kim C.H. Kim C. A novel fabrication process for out-of-plane microneedle sheets of biocompatible polymer. J. Micromech. Microeng. 2007 17 6 1184 1191 10.1088/0960‑1317/17/6/012
    [Google Scholar]
  22. Larrañeta E. Lutton R.E.M. Woolfson A.D. Donnelly R.F. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Mater. Sci. Eng. Rep. 2016 104 1 32 10.1016/j.mser.2016.03.001
    [Google Scholar]
  23. Yadav S. Singh A. Microneedling: Advances and widening horizons. Indian Dermatol. Online J. 2016 7 4 244 254 10.4103/2229‑5178.185468 27559496
    [Google Scholar]
  24. Executive summary best practices pain management best practices inter-agency task force report.
    [Google Scholar]
  25. Guidances, Drugs. Available from:https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm(accessed on 30-8-2024)
  26. Liu T. Chen M. Fu J. Sun Y. Lu C. Quan G. Pan X. Wu C. Recent advances in microneedles-mediated transdermal delivery of protein and peptide drugs. Acta Pharm. Sin. B 2021 11 8 2326 2343 10.1016/j.apsb.2021.03.003 34522590
    [Google Scholar]
  27. Rai V.K. Mishra N. Yadav K.S. Yadav N.P. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. J. Control. Release 2018 270 203 225 10.1016/j.jconrel.2017.11.049 29199062
    [Google Scholar]
  28. DeStefano V. Khan S. Tabada A. Applications of PLA in modern medicine. Engineered Regeneration 2020 1 76 87 10.1016/j.engreg.2020.08.002 38620328
    [Google Scholar]
  29. Amarnani R. Shende P. Microneedles in diagnostic, treatment and theranostics: An advancement in minimally-invasive delivery system. Biomed. Microdevices 2022 24 1 4 10.1007/s10544‑021‑00604‑w 34878589
    [Google Scholar]
  30. Bilal M. Mehmood S. Raza A. Hayat U. Rasheed T. Iqbal H.M.N. Microneedles in Smart Drug Delivery. Adv. Wound Care (New Rochelle) 2021 10 4 204 219 10.1089/wound.2019.1122 32320365
    [Google Scholar]
  31. Tariq N. Ashraf M.W. Tayyaba S. A Review on Solid Microneedles for Biomedical Applications. J. Pharm. Innov. 2021 2021 1 20 10.1007/s12247‑021‑09586‑x
    [Google Scholar]
  32. Park J.H. Allen M.G. Prausnitz M.R. Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery. J. Control. Release 2005 104 1 51 66 10.1016/j.jconrel.2005.02.002 15866334
    [Google Scholar]
  33. Ortigoza-Diaz J. Scholten K. Larson C. Techniques and considerations in the microfabrication of parylene c microelectromechanical systems. Micromachines 2018 9 9 422 10.3390/mi9090422
    [Google Scholar]
  34. Satti A.T. Park J. Kim H. Cho S. Fabrication of parylene-coated microneedle array electrode for wearable ECG Device. Sensors 2020 20 5183 10.3390/s20185183
    [Google Scholar]
  35. Aldawood F.K. Andar A. Desai S. A comprehensive review of microneedles: Types, materials, processes, characterizations and applications. Polymers (Basel) 2021 13 16 2815 10.3390/polym13162815 34451353
    [Google Scholar]
  36. Damiri F. Kommineni N. Ebhodaghe S.O. Bulusu R. Jyothi V.G.S.S. Sayed A.A. Awaji A.A. Germoush M.O. Al-malky H.S. Nasrullah M.Z. Rahman M.H. Abdel-Daim M.M. Berrada M. Microneedle-Based Natural Polysaccharide for Drug Delivery Systems (DDS): Progress and Challenges. Pharmaceuticals (Basel) 2022 15 2 190 10.3390/ph15020190 35215302
    [Google Scholar]
  37. Zhuang J. Rao F. Wu D. Huang Y. Xu H. Gao W. Zhang J. Sun J. Study on the fabrication and characterization of tip-loaded dissolving microneedles for transdermal drug delivery. Eur. J. Pharm. Biopharm. 2020 157 66 73 10.1016/j.ejpb.2020.10.002 33059004
    [Google Scholar]
  38. Kamel S. Ali N. Jahangir K. Shah S.M. El-Gendy A.A. Pharmaceutical significance of cellulose: A review. Express Polym. Lett. 2008 2 11 758 778 10.3144/expresspolymlett.2008.90
    [Google Scholar]
  39. Donnelly R.F. Singh T.R.R. Woolfson A.D. Microneedle-based drug delivery systems: Microfabrication, drug delivery, and safety. Drug Deliv. 2010 17 4 187 207 10.3109/10717541003667798 20297904
    [Google Scholar]
  40. Makadia H.K. Siegel S.J. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers (Basel) 2011 3 3 1377 1397 10.3390/polym3031377 22577513
    [Google Scholar]
  41. Shravanth S.H. Osmani R.A.M. L J.S. Anupama V.P. Rahamathulla M. Gangadharappa H.V. Microneedles-based drug delivery for the treatment of psoriasis. J. Drug Deliv. Sci. Technol. 2021 64 102668 10.1016/j.jddst.2021.102668
    [Google Scholar]
  42. Waghule T. Singhvi G. Dubey S.K. Pandey M.M. Gupta G. Singh M. Dua K. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed. Pharmacother. 2019 109 1249 1258 10.1016/j.biopha.2018.10.078 30551375
    [Google Scholar]
  43. McAlister E. Kirkby M. Donnelly R.F. Microneedles for drug delivery and monitoring. Microfluidic Devices for Biomedical Applications Woodhead Publishing Series in Biomaterials 2021 10.1016/B978‑0‑12‑819971‑8.00015‑9
    [Google Scholar]
  44. Dardano P. De Martino S. Battisti M. Miranda B. Rea I. De Stefano L. One-Shot Fabrication of Polymeric Hollow Microneedles by Standard Photolithography. Polymers (Basel) 2021 13 4 520 10.3390/polym13040520 33572383
    [Google Scholar]
  45. Li Y. Zhang H. Yang R. Fabrication of sharp silicon hollow microneedles by deep-reactive ion etching towards minimally invasive diagnostics. Microsystems Nanoeng. 2019 5 1 1 11 10.1038/s41378‑019‑0077‑y
    [Google Scholar]
  46. Hsu C.C. Chen Y.T. Tsai C.H. Kang S.W. Fabrication of Microneedles. 2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems 16-19 Jan, 2007, Bangkok, Thailand, 2007, pp. 639-642. 10.1109/NEMS.2007.352099
    [Google Scholar]
  47. Menon I. Bagwe P. Gomes K.B. Bajaj L. Gala R. Uddin M.N. D’Souza M.J. Zughaier S.M. Microneedles: A new generation vaccine delivery system. Micromachines (Basel) 2021 12 4 435 10.3390/mi12040435 33919925
    [Google Scholar]
  48. Tucak A. Sirbubalo M. Hindija L. Rahić O. Hadžiabdić J. Muhamedagić K. Čekić A. Vranić E. Microneedles: Characteristics, materials, production methods and commercial development. Micromachines (Basel) 2020 11 11 961 10.3390/mi11110961 33121041
    [Google Scholar]
  49. Meng F. Hasan A. Mahdi Nejadi Babadaei M. Hashemi Kani P. Jouya Talaei A. Sharifi M. Cai T. Falahati M. Cai Y. Polymeric-based microneedle arrays as potential platforms in the development of drugs delivery systems. J. Adv. Res. 2020 26 137 147 10.1016/j.jare.2020.07.017 33133689
    [Google Scholar]
  50. Makvandi P. Jamaledin R. Chen G. Baghbantaraghdari Z. Zare E.N. Di Natale C. Onesto V. Vecchione R. Lee J. Tay F.R. Netti P. Mattoli V. Jaklenec A. Gu Z. Langer R. Stimuli-responsive transdermal microneedle patches. Mater. Today 2021 47 206 222 10.1016/j.mattod.2021.03.012 36338772
    [Google Scholar]
  51. Qindeel M. Ahmed N. Sabir F. Khan S. Ur-Rehman A. Development of novel pH-sensitive nanoparticles loaded hydrogel for transdermal drug delivery. Drug Dev. Ind. Pharm. 2019 45 4 629 641 10.1080/03639045.2019.1569031
    [Google Scholar]
  52. Microneedle-array patches with glucose-responsive matrix for closed-loop insulin delivery. Patent WO2020041787A1, 2019.
  53. Dupin D. Chen S. Miyazaki T. A porous reservoir-backed boronate gel microneedle for efficient skin penetration and sustained glucose-responsive insulin delivery. Gels. 2022 8 2 74 10.3390/gels8020074
    [Google Scholar]
  54. Donnelly R.F. Singh T.R.R. Garland M.J. Migalska K. Majithiya R. McCrudden C.M. Kole P.L. Mahmood T.M.T. McCarthy H.O. Woolfson A.D. Hydrogel‐Forming Microneedle Arrays for Enhanced Transdermal Drug Delivery. Adv. Funct. Mater. 2012 22 23 4879 4890 10.1002/adfm.201200864 23606824
    [Google Scholar]
  55. Donnelly R.F. Singh T.R.R. Alkilani A.Z. McCrudden M.T.C. O’Neill S. O’Mahony C. Armstrong K. McLoone N. Kole P. Woolfson A.D. Hydrogel-forming microneedle arrays exhibit antimicrobial properties: Potential for enhanced patient safety. Int. J. Pharm. 2013 451 1-2 76 91 10.1016/j.ijpharm.2013.04.045 23644043
    [Google Scholar]
  56. Hardy J.G. Larrañeta E. Donnelly R.F. McGoldrick N. Migalska K. McCrudden M.T.C. Irwin N.J. Donnelly L. McCoy C.P. Hydrogel-Forming Microneedle Arrays Made from Light-Responsive Materials for On-Demand Transdermal Drug Delivery. Mol. Pharm. 2016 13 3 907 914 10.1021/acs.molpharmaceut.5b00807 26795883
    [Google Scholar]
  57. Murthy N.S. Shivakumar H.N. Topical and Transdermal Drug Delivery. Handbook of Non-Invasive Drug Delivery Systems William Andrew Applied Science Publisher 2010 10.1016/B978‑0‑8155‑2025‑2.10001‑0
    [Google Scholar]
  58. Stewart S.A. Domínguez-Robles J. Donnelly R.F. Larrañeta E. Implantable Polymeric Drug Delivery Devices: Classification, Manufacture, Materials, and Clinical Applications. Polymers (Basel) 2018 10 12 1379 10.3390/polym10121379 30961303
    [Google Scholar]
  59. Traverso G. Schoellhammer C.M. Schroeder A. Maa R. Lauwers G.Y. Polat B.E. Anderson D.G. Blankschtein D. Langer R. Microneedles for drug delivery via the gastrointestinal tract. J. Pharm. Sci. 2015 104 2 362 367 10.1002/jps.24182 25250829
    [Google Scholar]
  60. Kim S. Shetty S. Price D. Bhansali S. Skin Penetration of Silicon Dioxide Microneedle Arrays. 2006 International Conference of the IEEE Engineering in Medicine and Biology Society 30 Aug - 03 Sept, 2006, New York, NY, USA, 2006, pp. 4088-4091. 10.1109/IEMBS.2006.260142
    [Google Scholar]
  61. Manufacturing of Silicon Materials for Microelectronics and PV. Available from: https://www.osti.gov/biblio/1497235(accessed on 27-8-2024)
  62. He X. Sun J. Zhuang J. Xu H. Liu Y. Wu D. Microneedle System for Transdermal Drug and Vaccine Delivery: Devices, Safety, and Prospects. Dose Response 2019 17 4 10.1177/1559325819878585 31662709
    [Google Scholar]
  63. Alumina Ceramic: What is it? How Is It Made, Products. Available from:https://www.iqsdirectory.com/articles/ceramic/alumina-ceramic.html(accessed on 30-8-2024)
  64. Ita K. Ceramic microneedles and hollow microneedles for transdermal drug delivery: Two decades of research. J. Drug Deliv. Sci. Technol. 2018 44 314 322 10.1016/j.jddst.2018.01.004
    [Google Scholar]
  65. Lee K. Lee C.Y. Jung H. Dissolving microneedles for transdermal drug administration prepared by stepwise controlled drawing of maltose. Biomaterials 2011 32 11 3134 3140 10.1016/j.biomaterials.2011.01.014 21292317
    [Google Scholar]
  66. Kim Y.C. Park J.H. Prausnitz M.R. Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev. 2012 64 14 1547 1568 10.1016/j.addr.2012.04.005 22575858
    [Google Scholar]
  67. Chowdhury A. Kunjiappan S. Panneerselvam T. Somasundaram B. Bhattacharjee C. Nanotechnology and nanocarrier-based approaches on treatment of degenerative diseases. Int. Nano. Lett. 2017 7 2 91 122 10.1007/s40089‑017‑0208‑0
    [Google Scholar]
  68. Chen W. Li H. Shi D. Liu Z. Yuan W. Microneedles as a delivery system for gene therapy. Front. Pharmacol. 2016 7 MAY 137 10.3389/fphar.2016.00137 27303298
    [Google Scholar]
  69. Makvandi P. Kirkby M. Hutton A.R.J. Engineering microneedle patches for improved penetration: Analysis, skin models and factors affecting needle insertion. Nano-Micro Lett. 2021 13 1 1 41 10.1007/s40820‑021‑00611‑9
    [Google Scholar]
  70. Gupta J. Gill H.S. Andrews S.N. Prausnitz M.R. Kinetics of skin resealing after insertion of microneedles in human subjects. J. Control. Release 2011 154 2 148 155 10.1016/j.jconrel.2011.05.021 21640148
    [Google Scholar]
  71. Pahwa M. Pahwa P. Zaheer A. “Tram track effect” after treatment of acne scars using a microneedling device. Dermatol. Surg. 2012 38 7 1107 1108 10.1111/j.1524‑4725.2012.02441.x 22587597
    [Google Scholar]
  72. Yadav S. Dogra S. A Cutaneous Reaction to Microneedling for Postacne Scarring Caused by Nickel Hypersensitivity. Aesthet. Surg. J. 2016 36 4 NP168 NP170 10.1093/asj/sjv229 26961992
    [Google Scholar]
  73. Donnelly R.F. Singh T.R.R. Tunney M.M. Morrow D.I.J. McCarron P.A. O’Mahony C. Woolfson A.D. Microneedle arrays allow lower microbial penetration than hypodermic needles in vitro. Pharm. Res. 2009 26 11 2513 2522 10.1007/s11095‑009‑9967‑2 19756972
    [Google Scholar]
  74. Gill H.S. Denson D.D. Burris B.A. Prausnitz M.R. Effect of microneedle design on pain in human volunteers. Clin. J. Pain 2008 24 7 585 594 10.1097/AJP.0b013e31816778f9 18716497
    [Google Scholar]
  75. Narayanan P.S. Raghavan S. Solid silicon microneedles for drug delivery applications. Int. J. Adv. Manuf. Technol. 2016 93 1 407 422 10.1007/s00170‑016‑9698‑6
    [Google Scholar]
  76. Jeong S.Y. Park J.H. Lee Y.S. Kim Y.S. Park J.Y. Kim S.Y. pharmaceutics The Current Status of Clinical Research Involving Microneedles. Syst. Rev. 10.3390/pharmaceutics12111113 33228098
    [Google Scholar]
  77. Paudel K.S. Milewski M. Swadley C.L. Brogden N.K. Ghosh P. Stinchcomb A.L. Challenges and Opportunities in dermal/transdermal Delivery. Ther. Deliv. 2010 1 1 109 131 10.4155/tde.10.16 21132122
    [Google Scholar]
  78. Cheung K. Das D.B. Microneedles for drug delivery: trends and progress. Drug Deliv. 2014 23 7 2338 2354
    [Google Scholar]
  79. Tuan-Mahmood T.M. McCrudden M.T.C. Torrisi B.M. McAlister E. Garland M.J. Singh T.R.R. Donnelly R.F. Microneedles for intradermal and transdermal drug delivery. Eur. J. Pharm. Sci. 2013 50 5 623 637 10.1016/j.ejps.2013.05.005 23680534
    [Google Scholar]
  80. Zhang W. Zhang W. Li C. Zhang J. Qin L. Lai Y. Recent Advances of Microneedles and Their Application in Disease Treatment. Int. J. Mol. Sci. 2022 23 5 2401 10.3390/ijms23052401 35269545
    [Google Scholar]
  81. Jeong W.Y. Kwon M. Choi H.E. Kim K.S. Recent advances in transdermal drug delivery systems: a review. Biomater. Res. 2021 25 1 24 10.1186/s40824‑021‑00226‑6 34321111
    [Google Scholar]
  82. Bariya S.H. Gohel M.C. Mehta T.A. Sharma O.P. Microneedles: an emerging transdermal drug delivery system. J. Pharm. Pharmacol. 2011 64 1 11 29 10.1111/j.2042‑7158.2011.01369.x 22150668
    [Google Scholar]
  83. So J.W. Park H.H. Lee S.S. Kim D.C. Shin S.C. Cho C.W. Effect of microneedle on the pharmacokinetics of ketoprofen from its transdermal formulations. Drug Deliv. 2009 16 1 52 56 10.1080/10717540802518082 19555309
    [Google Scholar]
  84. Jiang J. Moore J.S. Edelhauser H.F. Prausnitz M.R. Intrascleral drug delivery to the eye using hollow microneedles. Pharm. Res. 2009 26 2 395 403 10.1007/s11095‑008‑9756‑3 18979189
    [Google Scholar]
  85. Marshall S. Sahm L.J. Moore A.C. The success of microneedle-mediated vaccine delivery into skin. Hum. Vaccin. Immunother. 2016 12 11 2975 2983 10.1080/21645515.2016.1171440 27050528
    [Google Scholar]
  86. Dardano P. Rea I. De Stefano L. Microneedles-based electrochemical sensors: New tools for advanced biosensing. Curr. Opin. Electrochem. 2019 17 121 127 10.1016/j.coelec.2019.05.012
    [Google Scholar]
  87. Gupta J. Park S.S. Bondy B. Felner E.I. Prausnitz M.R. Infusion pressure and pain during microneedle injection into skin of human subjects. Biomaterials 2011 32 28 6823 6831 10.1016/j.biomaterials.2011.05.061 21684001
    [Google Scholar]
  88. Gowda A. A Systematic Review Examining the Potential Adverse Effects of Microneedling. J. Clin. Aesthet. Dermatol. 2021 14 1 45 54
    [Google Scholar]
  89. Halder J. Gupta S. Kumari R. Gupta G.D. Rai V.K. Microneedle Array: Applications, Recent Advances, and Clinical Pertinence in Transdermal Drug Delivery. J. Pharm. Innov. 2021 16 3 558 565 10.1007/s12247‑020‑09460‑2 32837607
    [Google Scholar]
  90. Zhang W. Cai L. Gan J. Zhao Y. Photothermal responsive porous hollow microneedles as Chinese medicine versatile delivery system for wound healing. Smart Med. 2024 2024 e20240007 10.1002/SMMD.20240007
    [Google Scholar]
  91. Li W. Yang X. Lai P. Shang L. Bio‐inspired adhesive hydrogel for biomedicine—principles and design strategies. Smart Medicine 2022 1 1 e20220024 10.1002/SMMD.20220024
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010310769240924053724
Loading
/content/journals/cpb/10.2174/0113892010310769240924053724
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test