Skip to content
2000
Volume 26, Issue 2
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Alzheimer's disease (AD) is a neurological disorder that increases with age and must be treated immediately by worldwide healthcare systems. Internal neurofibrillary tau tangles and extracellular amyloid accumulation have been widely recognized as the primary causes of Alzheimer's disease. These degenerative age-related ailments are expected to proliferate exponentially as life expectancy rises. Experimental models of AD are essential for acquiring a deep knowledge of its pathogenesis and determining the viability of novel therapy options. Although there isn't a model that encompasses all the characteristics of real AD, these models are nonetheless highly helpful for the research of various modifications associated with it, even though they are only partially indicative of the disease circumstances being studied. Better knowledge of the advantages and disadvantages of each of the different models, as well as the use of more than one model to evaluate potential medications, would increase the effectiveness of therapy translation from preclinical research to patients. We outline the pathogenic characteristics and limitations of the main experimental models of AD in this review, including transgenic mice, transgenic rats, primates and non-primate models along with cell culture models in humans. Additionally, it highlights the possible future of experimental modeling of AD and includes the co-morbid models.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010331845240802073645
2024-08-16
2024-12-26
Loading full text...

Full text loading...

References

  1. BahadurS. SachanN. HarwanshR.K. DeshmukhR. Nanoparticlized system: Promising approach for the management of alzheimer’s disease through intranasal delivery.Curr. Pharm. Des.202026121331134410.2174/138161282666620031113165832160843
    [Google Scholar]
  2. AkhtarA. GuptaS.M. DwivediS. KumarD. ShaikhM.F. NegiA. Preclinical models for alzheimer’s disease: Past, present, and future approaches.ACS Omega2022751475044751710.1021/acsomega.2c0560936591205
    [Google Scholar]
  3. PiaceriI. NacmiasB. SorbiS. Genetics of familial and sporadic Alzheimer s disease.Front. Biosci.2013E5116717710.2741/E60523276979
    [Google Scholar]
  4. SaleemS. KannanR.R. Zebrafish: An emerging real-time model system to study Alzheimer’s disease and neurospecific drug discovery.Cell Death Discov.2018414510.1038/s41420‑018‑0109‑730302279
    [Google Scholar]
  5. VermaN. GuptaJ.K. VarshneyK.K. SrivastavaR. Ameliorative effect of acetyl l-carnitine in alzheimer’s disease via downregulating of homocysteine levels in hyperhomocysteinemia induced cognitive deficit in mouse model.Drug Metab. Lett.202114321923110.2174/187231281466621120910213634886786
    [Google Scholar]
  6. BreijyehZ. KaramanR. Comprehensive review on alzheimer’s disease: Causes and treatment.Molecules20202524578910.3390/molecules2524578933302541
    [Google Scholar]
  7. DrummondE. WisniewskiT. Alzheimer’s disease: Experimental models and reality.Acta Neuropathol.2017133215517510.1007/s00401‑016‑1662‑x28025715
    [Google Scholar]
  8. BouleauS. TricoireH. Drosophila models of Alzheimer’s disease: Advances, limits, and perspectives.J. Alzheimers Dis.20154541015103810.3233/JAD‑14280225697708
    [Google Scholar]
  9. HannanS.B. DrägerN.M. RasseT.M. VoigtA. JahnT.R. Cellular and molecular modifier pathways in tauopathies: The big picture from screening invertebrate models.J. Neurochem.20161371122510.1111/jnc.1353226756400
    [Google Scholar]
  10. PuzzoD. GulisanoW. PalmeriA. ArancioO. Rodent models for Alzheimer’s disease drug discovery.Expert Opin. Drug Discov.201510770371110.1517/17460441.2015.104191325927677
    [Google Scholar]
  11. KuhnA.J. RaskatovJ.A. Using mirror-image peptides to enhance robustness and reproducibility in studying the amyloid β-protein.Prog. Mol. Biol. Transl. Sci.2019168576710.1016/bs.pmbts.2019.05.01031699327
    [Google Scholar]
  12. AgrawalN. GoyalA. KushwahP.S. PathakS. APOE4: A culprit for the vulnerability of covid-19 in alzheimer’s patients.Curr. Neurovasc. Res.202320116216910.2174/156720262066623020214061236733199
    [Google Scholar]
  13. LiuZ. ZhangA. SunH. HanY. KongL. WangX. Two decades of new drug discovery and development for Alzheimer’s disease.RSC Advances201771060466058[Internet]10.1039/C6RA26737H
    [Google Scholar]
  14. KumarA. SinghA. Ekavali, A review on Alzheimer’s disease pathophysiology and its management: An update.Pharmacol. Rep.201567219520310.1016/j.pharep.2014.09.00425712639
    [Google Scholar]
  15. RosenmannH. Immunotherapy for targeting tau pathology in Alzheimer’s disease and tauopathies.Curr. Alzheimer Res.201310321722810.2174/156720501131003000123534533
    [Google Scholar]
  16. Dal PràI ChiariniA GuiL ChakravarthyB PacchianaR GardenalE Do astrocytes collaborate with neurons in spreading the “infectious” aβ and Tau drivers of Alzheimer’s disease?Neurosci Rev J bringing Neurobiol Neurol psychiatry.201521192910.1177/1073858414529828
    [Google Scholar]
  17. KurzA. PerneczkyR. Novel insights for the treatment of Alzheimer’s disease.Prog. Neuropsychopharmacol. Biol. Psychiatry201135237337910.1016/j.pnpbp.2010.07.01820655969
    [Google Scholar]
  18. SinghA. Kumar SinghN. Pre-clinical evidence-based neuroprotective potential of naringin against alzheimer’s disease-like pathology: A comprehensive review.Curr. Pharm. Biotechnol.202311237526460
    [Google Scholar]
  19. MohamedT. ShakeriA. RaoP.P.N. Amyloid cascade in Alzheimer’s disease: Recent advances in medicinal chemistry.Eur. J. Med. Chem.201611325827210.1016/j.ejmech.2016.02.04926945113
    [Google Scholar]
  20. AudrainN.C.L.B.D.H. Alzheimer’s disease animal model.U.S. Patent 10986821B22014
    [Google Scholar]
  21. Animal model - Google Patents.W.O. Patent 2016198882A12015
    [Google Scholar]
  22. New alzheimer’s disease animal model.W.O. Patent 2015067668A12014
    [Google Scholar]
  23. New alzheimer’s disease animal model.E.P. Patent 3066203B2,2014
    [Google Scholar]
  24. Transgenic animal model for alzheimer disease.W.O. Patent 1998003644A1.1997
    [Google Scholar]
  25. HoudebineL.M. Transgenic animal models in biomedical research.Methods Mol. Biol.200736016320217172731
    [Google Scholar]
  26. ShekarianM. KomakiA. ShahidiS. SarihiA. SalehiI. RaoufiS. The protective and therapeutic effects of vinpocetine, a PDE1 inhibitor, on oxidative stress and learning and memory impairment induced by an intracerebroventricular (ICV) injection of amyloid beta (aβ) peptide.Behav. Brain Res.202038311251210.1016/j.bbr.2020.11251231991177
    [Google Scholar]
  27. Athaide RochaK.M. MachadoF.R. PoetiniM. GiacomeliR. BoeiraS.P. JesseC.R. Gomes de GomesM. Assessment of suberoylanilide hydroxamic acid on a Alzheimer’s disease model induced by β-amyloid(1-42) in aged female mice: Neuromodulatory and epigenetic effect.Chem. Biol. Interact.202337511042910.1016/j.cbi.2023.11042936870467
    [Google Scholar]
  28. GongC.X. LiuF. Grundke-IqbalI. IqbalK. Impaired brain glucose metabolism leads to Alzheimer neurofibrillary degeneration through a decrease in tau O-GlcNAcylation.J. Alzheimers Dis.20069111210.3233/JAD‑2006‑910116627930
    [Google Scholar]
  29. AndradeMK SouzaLC AzevedoEM BailEL ZanataSM AndreatiniR Melatonin reduces β-amyloid accumulation and improves short-term memory in streptozotocin-induced sporadic Alzheimer’s disease model.IBRO Neurosci reports20231426427210.1016/j.ibneur.2023.01.005
    [Google Scholar]
  30. RapakaD. AdiukwuP.C. BitraV.R. Experimentally induced animal models for cognitive dysfunction and Alzheimer’s disease.MethodsX2022910193310.1016/j.mex.2022.10193336479589
    [Google Scholar]
  31. DobryakovaY.V. KasianovA. ZaichenkoM.I. StepanichevM.Y. ChesnokovaE.A. KolosovP.M. MarkevichV.A. BolshakovA.P. Intracerebroventricular administration of 192IgG-saporin alters expression of microglia-associated genes in the dorsal but not ventral hippocampus.Front. Mol. Neurosci.20181042910.3389/fnmol.2017.0042929386992
    [Google Scholar]
  32. WalshT.J. KellyR.M. DoughertyK.D. StackmanR.W. WileyR.G. KutscherC.L. Behavioral and neurobiological alterations induced by the immunotoxin 192-IgG-saporin: Cholinergic and non-cholinergic effects following i.c.v. injection.Brain Res.19957021-223324510.1016/0006‑8993(95)01050‑X8846082
    [Google Scholar]
  33. DyrW. KostowskiW. ZacharskiB. BidzinskiA. Differential clonidine effects on EEG following lesions of the dorsal and median raphe nuclei in rats.Pharmacol. Biochem. Behav.198319217718510.1016/0091‑3057(83)90036‑96356170
    [Google Scholar]
  34. HolahanM.R. RouttenbergA. Lidocaine injections targeting CA3 hippocampus impair long‐term spatial memory and prevent learning‐induced mossy fiber remodeling.Hippocampus201121553254010.1002/hipo.2078620865723
    [Google Scholar]
  35. BatistaC.R.A. GomesG.F. Candelario-JalilE. FiebichB.L. de OliveiraA.C.P. Lipopolysaccharide-induced neuroinflammation as a bridge to understand neurodegeneration.Int. J. Mol. Sci.2019209229310.3390/ijms2009229331075861
    [Google Scholar]
  36. ZhaoJ. BiW. XiaoS. LanX. ChengX. ZhangJ. LuD. WeiW. WangY. LiH. FuY. ZhuL. Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice.Sci. Rep.201991579010.1038/s41598‑019‑42286‑830962497
    [Google Scholar]
  37. Skrzypczak-WierciochA. SałatK. Lipopolysaccharide-induced model of neuroinflammation: Mechanisms of action, research application and future directions for its use.Molecules20222717548110.3390/molecules2717548136080253
    [Google Scholar]
  38. NielE Scherrmann, JM Colchicine today Jt bone spine200673667267810.1016/j.jbspin.2006.03.006
    [Google Scholar]
  39. KumarA. DograS. PrakashA. Protective effect of naringin, a citrus flavonoid, against colchicine-induced cognitive dysfunction and oxidative damage in rats.J. Med. Food201013497698410.1089/jmf.2009.125120673063
    [Google Scholar]
  40. NakayamaT. SawadaT. Involvement of microtubule integrity in memory impairment caused by colchicine.Pharmacol. Biochem. Behav.2002711-211913810.1016/S0091‑3057(01)00634‑711812515
    [Google Scholar]
  41. BagchiA. SwainD.K. MitraA. Comparative assessment of organic and inorganic tea leaf extract feeding on anxiety behaviour status of colchicine-induced rat model of Alzheimer’s disease.Inflammopharmacology202230260962010.1007/s10787‑022‑00943‑x35260974
    [Google Scholar]
  42. SainH. SharmaB. JaggiA.S. SinghN. Pharmacological investigations on potential of peroxisome proliferator-activated receptor-gamma agonists in hyperhomocysteinemia-induced vascular dementia in rats.Neuroscience201119232233310.1016/j.neuroscience.2011.07.00221777659
    [Google Scholar]
  43. KhodirS.A. FariedM.A. Abd-ElhafizH.I. SweedE.M. Sitagliptin attenuates the cognitive deficits in l-methionine-induced vascular dementia in rats.BioMed Res. Int.2022202211710.1155/2022/722259035265716
    [Google Scholar]
  44. AlzoubiK.H. KhabourO.F. AlfaqihM. TashtoushM. Al-AzzamS.I. MhaidatN.M. AlrabadiN. The protective effects of pioglitazone against cognitive impairment caused by l-methionine administration in a rat model.CNS Neurol. Disord. Drug Targets2022211778410.2174/187152732066621080912252334370649
    [Google Scholar]
  45. FeinG. MerrinE.L. DavenportL. BuffumJ.C. Memory deficits associated with clonidine.Gen. Hosp. Psychiatry19879215415510.1016/0163‑8343(87)90029‑63569890
    [Google Scholar]
  46. LuM.C. HsiehM.T. WuC.R. ChengH.Y. HsiehC.C. LinY.T. PengW.H. Ameliorating effect of emodin, a constitute of Polygonatum multiflorum, on cycloheximide-induced impairment of memory consolidation in rats.J. Ethnopharmacol.2007112355255610.1016/j.jep.2007.05.00417572029
    [Google Scholar]
  47. HernándezR. Decrease of folic acid and cognitive alterations in patients with epilepsy treated with phenytoin or carbamazepine, pilot study. Rev. Investig. Clin. organo Hosp.Enferm. Nutr.2005574522531
    [Google Scholar]
  48. ReetaK.H. MehlaJ. GuptaY.K. Curcumin is protective against phenytoin-induced cognitive impairment and oxidative stress in rats.Brain Res.20091301526010.1016/j.brainres.2009.09.02719765566
    [Google Scholar]
  49. SudhaS. LakshmanaM.K. PradhanN. Chronic phenytoin induced impairment of learning and memory with associated changes in brain acetylcholine esterase activity and monoamine levels.Pharmacol. Biochem. Behav.199552111912410.1016/0091‑3057(95)00059‑67501653
    [Google Scholar]
  50. CarnicellaS. PainL. OberlingP. Cholinergic effects on fear conditioning II: Nicotinic and muscarinic modulations of atropine-induced disruption of the degraded contingency effect.Psychopharmacology2005178453354110.1007/s00213‑004‑2101‑615696332
    [Google Scholar]
  51. MeloJ.B. AgostinhoP. OliveiraC.R. Amyloid beta-peptide 25-35 reduces [ 3 H] acetylcholine release in retinal neurons. Involvement of metabolic dysfunction.Amyloid20029422122810.3109/1350612020911409712557749
    [Google Scholar]
  52. HaoL. HuangH. GaoJ. MarshallC. ChenY. XiaoM. The influence of gender, age and treatment time on brain oxidative stress and memory impairment induced by d-galactose in mice.Neurosci. Lett.2014571454910.1016/j.neulet.2014.04.03824796811
    [Google Scholar]
  53. PourmemarE MajdiA HaramshahiM TalebiM KarimiP Sadigh-EteghadS Intranasal cerebrolysin attenuates learning and memory impairments in D-galactose-induced senescence in mice.Exp Gerontol.201787Pt A1622
    [Google Scholar]
  54. WangX. ZhuG. YangS. WangX. ChengH. WangF. LiX. LiQ. Paeonol prevents excitotoxicity in rat pheochromocytoma PC12 cells via downregulation of ERK activation and inhibition of apoptosis.Planta Med.201177151695170110.1055/s‑0030‑127103321509715
    [Google Scholar]
  55. Larry SparksD. Cholesterol, copper, and accumulation of thioflavine S-reactive Alzheimer’s-like amyloid beta in rabbit brain.J. Mol. Neurosci.200424109710410.1385/JMN:24:1:09715314257
    [Google Scholar]
  56. SparksD.L. SchreursB.G. Trace amounts of copper in water induce β-amyloid plaques and learning deficits in a rabbit model of Alzheimer’s disease.Proc. Natl. Acad. Sci. USA200310019110651106910.1073/pnas.183276910012920183
    [Google Scholar]
  57. SongX.Y. HuJ.F. ChuS.F. ZhangZ. XuS. YuanY.H. HanN. LiuY. NiuF. HeX. ChenN.H. Ginsenoside Rg1 attenuates okadaic acid induced spatial memory impairment by the GSK3β/tau signaling pathway and the Aβ formation prevention in rats.Eur. J. Pharmacol.20137101-3293810.1016/j.ejphar.2013.03.05123588117
    [Google Scholar]
  58. ChouC.H. YangC.R. Neuroprotective studies of evodiamine in an okadaic acid-induced neurotoxicity.Int. J. Mol. Sci.20212210534710.3390/ijms2210534734069531
    [Google Scholar]
  59. ChenC. LuJ. PengW. MakM.S.H. YangY. ZhuZ. WangS. HouJ. ZhouX. XinW. HuY. TsimK.W.K. HanY. LiuQ. PiR. Acrolein, an endogenous aldehyde induces Alzheimer’s disease-like pathologies in mice: A new sporadic AD animal model.Pharmacol. Res.202217510600310.1016/j.phrs.2021.10600334838693
    [Google Scholar]
  60. Van DamD. De DeynP.P. Animal models in the drug discovery pipeline for Alzheimer’s disease.Br. J. Pharmacol.201116441285130010.1111/j.1476‑5381.2011.01299.x21371009
    [Google Scholar]
  61. JohnstoneE.M. ChaneyM.O. NorrisF.H. PascualR. LittleS.P. Conservation of the sequence of the Alzheimer’s disease amyloid peptide in dog, polar bear and five other mammals by cross-species polymerase chain reaction analysis.Brain Res. Mol. Brain Res.199110429930510.1016/0169‑328X(91)90088‑F1656157
    [Google Scholar]
  62. LaurijssensB. AujardF. RahmanA. Animal models of Alzheimer’s disease and drug development.Drug Discov. Today. Technol.2013103e319e32710.1016/j.ddtec.2012.04.00124050129
    [Google Scholar]
  63. GamesD. AdamsD. AlessandriniR. BarbourR. BortheletteP. BlackwellC. CarrT. ClemensJ. DonaldsonT. GillespieF. GuidoT. HagopianS. Johnson-WoodK. KhanK. LeeM. LeibowitzP. LieberburgI. LittleS. MasliahE. McConlogueL. Montoya-ZavalaM. MuckeL. PaganiniL. PennimanE. PowerM. SchenkD. SeubertP. SnyderB. SorianoF. TanH. VitaleJ. WadsworthS. WolozinB. ZhaoJ. Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein.Nature1995373651452352710.1038/373523a07845465
    [Google Scholar]
  64. DavisS. LarocheS. What can rodent models tell us about cognitive decline in Alzheimer’s disease?Mol. Neurobiol.200327324927610.1385/MN:27:3:24912845151
    [Google Scholar]
  65. a SasaguriH. NilssonP. HashimotoS. NagataK. SaitoT. De StrooperB. HardyJ. VassarR. WinbladB. SaidoT.C. APP mouse models for Alzheimer’s disease preclinical studies.EMBO J.201736172473248710.15252/embj.20179739728768718
    [Google Scholar]
  66. b WangA. DasP. SwitzerR.C.3rd GoldeT.E. JankowskyJ.L. Robust amyloid clearance in a mouse model of Alzheimer’s disease provides novel insights into the mechanism of amyloid-beta immunotherapy.J. Neurosci. Off. J. Soc Neurosci.20113111124136
    [Google Scholar]
  67. RenX.Q. HuangX. XingS.Y. LongY. YuanD.H. HongH. TangS.S. Neuroprotective effects of novel compound FMDB on cognition, neurogenesis and apoptosis in APP/PS1 transgenic mouse model of Alzheimer’s disease.Neurochem. Int.202316510551010.1016/j.neuint.2023.10551036893915
    [Google Scholar]
  68. GötzJ. BodeaL.G. GoedertM. Rodent models for Alzheimer disease.Nat. Rev. Neurosci.2018191058359810.1038/s41583‑018‑0054‑830194347
    [Google Scholar]
  69. GuoT. NobleW. HangerD.P. Roles of tau protein in health and disease.Acta Neuropathol.2017133566570410.1007/s00401‑017‑1707‑928386764
    [Google Scholar]
  70. WangY. MandelkowE. Tau in physiology and pathology.Nat. Rev. Neurosci.2016171223510.1038/nrn.2015.126631930
    [Google Scholar]
  71. LeeV.M.Y. GoedertM. TrojanowskiJ.Q. Neurodegenerative tauopathies.Annu. Rev. Neurosci.20012411121115910.1146/annurev.neuro.24.1.112111520930
    [Google Scholar]
  72. KovacsG.G. Tauopathies.Handb. Clin. Neurol.201814535536810.1016/B978‑0‑12‑802395‑2.00025‑028987182
    [Google Scholar]
  73. SchindowskiK. BrettevilleA. LeroyK. BégardS. BrionJ.P. HamdaneM. BuéeL. Alzheimer’s disease-like tau neuropathology leads to memory deficits and loss of functional synapses in a novel mutated tau transgenic mouse without any motor deficits.Am. J. Pathol.2006169259961610.2353/ajpath.2006.06000216877359
    [Google Scholar]
  74. WattG. PrzybylaM. ZakV. van EerselJ. IttnerA. IttnerL.M. KarlT. Novel behavioural characteristics of male human P301S mutant tau transgenic mice – A model for tauopathy.Neuroscience202043116617510.1016/j.neuroscience.2020.01.04732058066
    [Google Scholar]
  75. LiX. BaoX. WangR. Experimental models of Alzheimer’s disease for deciphering the pathogenesis and therapeutic screening. (Review)Int. J. Mol. Med. 201637227128310.3892/ijmm.2015.242826676932
    [Google Scholar]
  76. BlaikieL. KayG. MacielP. Kong Thoo LinP. Experimental modelling of Alzheimer’s disease for therapeutic screening.Eur. J. Med. Chem. Rep.2022510004410.1016/j.ejmcr.2022.100044
    [Google Scholar]
  77. NakamuraS. MurayamaN. NoshitaT. AnnouraH. OhnoT. Progressive brain dysfunction following intracerebroventricular infusion of beta1–42-amyloid peptide.Brain Res.2001912212813610.1016/S0006‑8993(01)02704‑411532428
    [Google Scholar]
  78. DuyckaertsC. PotierM.C. DelatourB. Alzheimer disease models and human neuropathology: Similarities and differences.Acta Neuropathol.2008115153810.1007/s00401‑007‑0312‑818038275
    [Google Scholar]
  79. FineA. DunnettS.B. BjörklundA. IversenS.D. Cholinergic ventral forebrain grafts into the neocortex improve passive avoidance memory in a rat model of Alzheimer disease.Proc. Natl. Acad. Sci. USA198582155227523010.1073/pnas.82.15.52273860857
    [Google Scholar]
  80. CarrodeguasJ.A. RodolosseA. GarzaM.V. Sanz-ClementeA. Pérez-PéR. LacostaA.M. DomínguezL. MonleónI. Sánchez-DíazR. SorribasV. SarasaM. The chick embryo appears as a natural model for research in beta-amyloid precursor protein processing.Neuroscience200513441285130010.1016/j.neuroscience.2005.05.02016039787
    [Google Scholar]
  81. MarquesC.F. PinheiroP.F. JustinoG.C. Optimized protocol for obtaining and characterizing primary neuron-enriched cultures from embryonic chicken brains.STAR Protocols20223410175310.1016/j.xpro.2022.10175336209426
    [Google Scholar]
  82. RuehlW.W. BruyetteD.S. DePaoliA. CotmanC.W. HeadE. MilgramN.W. CummingsB.J. Canine cognitive dysfunction as a model for human age-related cognitive decline, dementia and Alzheimer’s disease: Clinical presentation, cognitive testing, pathology and response to 1-deprenyl therapy.Prog. Brain Res.199510621722510.1016/S0079‑6123(08)61218‑28584657
    [Google Scholar]
  83. SarasaM. Experimental models for Alzheimer’s disease research.Rev. Neurol.200642529730110.33588/rn.4205.200522916538593
    [Google Scholar]
  84. BegoñaL.A. Drosophila melanogaster as a model of early synaptic loss in Alzheimer’s disease.2012Available from:
    [Google Scholar]
  85. CastleW.E. Inbreeding, cross-breeding and sterility in drosophila.Science19062357815310.1126/science.23.578.153.a17778994
    [Google Scholar]
  86. TueN.T. DatT.Q. LyL.L. AnhV.D. Yoshida, H Insights from Drosophila melanogaster model of Alzheimer’s disease.Front. Biosci.2020251134146
    [Google Scholar]
  87. FinelliA. KelkarA. SongH.J. YangH. KonsolakiM. A model for studying Alzheimer’s Aβ42-induced toxicity in Drosophila melanogaster.Mol. Cell. Neurosci.200426336537510.1016/j.mcn.2004.03.00115234342
    [Google Scholar]
  88. Parada FerroL.K. Gualteros BustosA.V. Sánchez MoraM.R. Phenotypic characterization of Caenorhabditis elegans strain N2 as a model in neurodegenerative diseases.Nova20171528697810.22490/24629448.2080
    [Google Scholar]
  89. CaldwellK.A. WillicottC.W. CaldwellG.A. Modeling neurodegeneration in Caenorhabditis elegans.Dis. Model. Mech.20201310dmm04611010.1242/dmm.04611033106318
    [Google Scholar]
  90. KraemerB.C. ZhangB. LeverenzJ.B. ThomasJ.H. TrojanowskiJ.Q. SchellenbergG.D. Neurodegeneration and defective neurotransmission in a Caenorhabditis elegans model of tauopathy.Proc. Natl. Acad. Sci. USA2003100179980998510.1073/pnas.153344810012872001
    [Google Scholar]
  91. NorthcuttR.G. Connections of the lateral and medial divisions of the goldfish telencephalic pallium.J. Comp. Neurol.2006494690394310.1002/cne.2085316385483
    [Google Scholar]
  92. ParkE. LeeY. KimY. LeeC.J. Cholinergic modulation of neural activity in the telencephalon of the zebrafish.Neurosci. Lett.20084391798310.1016/j.neulet.2008.04.06418501513
    [Google Scholar]
  93. ChenY.C. PriyadarshiniM. PanulaP. Complementary developmental expression of the two tyrosine hydroxylase transcripts in zebrafish.Histochem. Cell Biol.2009132437538110.1007/s00418‑009‑0619‑819603179
    [Google Scholar]
  94. RaduanS.Z. AhmedQ.U. KasmuriA.R. RusmiliM.R.A. SulaimanW.A.W. ShaikhM.F. MahmoodM.H. AzmiS.N.H. AhmedM.Z. KazmiS. Neurotoxicity of aluminium chloride and okadaic acid in zebrafish: Insights into Alzheimer’s disease models through anxiety and locomotion testing, and acute toxicity assessment with Litsea garciae bark’s methanolic extract.J. King Saud Univ. Sci.202335710280710.1016/j.jksus.2023.102807
    [Google Scholar]
  95. GreeneL.A. TischlerA.S. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor.Proc. Natl. Acad. Sci. USA19767372424242810.1073/pnas.73.7.24241065897
    [Google Scholar]
  96. ShaferT.J. AtchisonW.D. Transmitter, ion channel and receptor properties of pheochromocytoma (PC12) cells: A model for neurotoxicological studies.Neurotoxicology19911234734921720882
    [Google Scholar]
  97. QiuW.Q. YeZ. KholodenkoD. SeubertP. SelkoeD.J. Degradation of amyloid beta-protein by a metalloprotease secreted by microglia and other neural and non-neural cells.J. Biol. Chem.1997272106641664610.1074/jbc.272.10.66419045694
    [Google Scholar]
  98. EvangelopoulosM.E. WeisJ. KrüttgenA. Signalling pathways leading to neuroblastoma differentiation after serum withdrawal: HDL blocks neuroblastoma differentiation by inhibition of EGFR.Oncogene200524203309331810.1038/sj.onc.120849415735700
    [Google Scholar]
  99. FunkeS.A. LiuH. SehlT. BartnikD. BrenerO. Nagel-StegerL. WiesehanK. WillboldD. Identification and characterization of an aβ oligomer precipitating peptide that may be useful to explore gene therapeutic approaches to Alzheimer disease.Rejuvenation Res.201215214414710.1089/rej.2011.126222533419
    [Google Scholar]
  100. VenkatesanR. ParkY.U. JiE. YeoE.J. KimS.Y. Malathion increases apoptotic cell death by inducing lysosomal membrane permeabilization in N2a neuroblastoma cells: A model for neurodegeneration in Alzheimer’s disease.Cell Death Discov.2017311700710.1038/cddiscovery.2017.728487766
    [Google Scholar]
  101. FilogranaR. CivieroL. FerrariV. CodoloG. GreggioE. BubaccoL. BeltraminiM. BisagliaM. Analysis of the catecholaminergic phenotype in human SH-SY5Y and BE(2)-M17 neuroblastoma cell lines upon differentiation.PLoS One2015108e013676910.1371/journal.pone.013676926317353
    [Google Scholar]
  102. de MedeirosL.M. De BastianiM.A. RicoE.P. SchonhofenP. PfaffensellerB. Wollenhaupt-AguiarB. GrunL. Barbé-TuanaF. ZimmerE.R. CastroM.A.A. ParsonsR.B. KlamtF. Cholinergic differentiation of human neuroblastoma SH-SY5Y cell line and its potential use as an in vitro model for alzheimer’s disease studies.Mol. Neurobiol.201956117355736710.1007/s12035‑019‑1605‑331037648
    [Google Scholar]
  103. TakahashiK. TanabeK. OhnukiM. NaritaM. IchisakaT. TomodaK. YamanakaS. Induction of pluripotent stem cells from adult human fibroblasts by defined factors.Cell2007131586187210.1016/j.cell.2007.11.01918035408
    [Google Scholar]
  104. SullivanS.E. Young-PearseT.L. Induced pluripotent stem cells as a discovery tool for Alzheimer׳s disease.Brain Res.201716569810610.1016/j.brainres.2015.10.00526459988
    [Google Scholar]
  105. YagiT. ItoD. OkadaY. AkamatsuW. NiheiY. YoshizakiT. YamanakaS. OkanoH. SuzukiN. Modeling familial Alzheimer’s disease with induced pluripotent stem cells.Hum. Mol. Genet.201120234530453910.1093/hmg/ddr39421900357
    [Google Scholar]
  106. MoghadamF.H. AlaieH. KarbalaieK. TanhaeiS. Nasr EsfahaniM.H. BaharvandH. Transplantation of primed or unprimed mouse embryonic stem cell-derived neural precursor cells improves cognitive function in Alzheimerian rats.Differentiation2009782-3596810.1016/j.diff.2009.06.00519616885
    [Google Scholar]
  107. WenZ. ChristianK.M. SongH. MingG. Modeling psychiatric disorders with patient-derived iPSCs.Curr. Opin. Neurobiol.20163611812710.1016/j.conb.2015.11.00326705693
    [Google Scholar]
  108. AliA. ShahS.A. ZamanN. UddinM.N. KhanW. AliA. RiazM. KamilA. Vitamin D exerts neuroprotection via SIRT1/nrf-2/NF-kB signaling pathways against D-galactose-induced memory impairment in adult mice.Neurochem. Int.202114210489310.1016/j.neuint.2020.10489333159979
    [Google Scholar]
  109. AndresD. KeyserB.M. PetraliJ. BentonB. HubbardK.S. McNuttP.M. RayR. Morphological and functional differentiation in BE(2)-M17 human neuroblastoma cells by treatment with Trans-retinoic acid.BMC Neurosci.20131414910.1186/1471‑2202‑14‑4923597229
    [Google Scholar]
  110. NieznanskiK. ChoiJ.K. ChenS. SurewiczK. SurewiczW.K. Soluble prion protein inhibits amyloid-β (Aβ) fibrillization and toxicity.J. Biol. Chem.201228740331043310810.1074/jbc.C112.40061422915585
    [Google Scholar]
  111. GuX. ZhangG. QinZ. YinM. ChenW. ZhangY. LiuX. Safinamide protects against amyloid β (Aβ)-induced oxidative stress and cellular senescence in M17 neuronal cells.Bioengineered20221311921193010.1080/21655979.2021.202226235001806
    [Google Scholar]
  112. WeidnerA.M. HousleyM. MurphyM.P. LeVineH. III Purified high molecular weight synthetic Aβ(1–42) and biological Aβ oligomers are equipotent in rapidly inducing MTT formazan exocytosis.Neurosci. Lett.201149711510.1016/j.neulet.2011.03.08221504780
    [Google Scholar]
  113. RamsayR. TiptonK. Assessment of enzyme inhibition: A review with examples from the development of monoamine oxidase and cholinesterase inhibitory drugs.Molecules2017227119210.3390/molecules2207119228714881
    [Google Scholar]
  114. Guzmán-RamosK. Moreno-CastillaP. Castro-CruzM. McGaughJ.L. Martínez-CoriaH. LaFerlaF.M. Bermúdez-RattoniF. Restoration of dopamine release deficits during object recognition memory acquisition attenuates cognitive impairment in a triple transgenic mice model of Alzheimer’s disease.Learn. Mem.2012191045346010.1101/lm.026070.11222984283
    [Google Scholar]
  115. MassouliéJ. The origin of the molecular diversity and functional anchoring of cholinesterases.Neurosignals200211313014310.1159/00006505412138250
    [Google Scholar]
  116. ShawF.H. BentleyG. Some aspects of the pharmacology of morphine with special reference to its antagonism by 5-amino-acridine and other chemically related compounds.Med. J. Aust.194922586887410.5694/j.1326‑5377.1949.tb37429.x15401512
    [Google Scholar]
  117. MajidH. SilvaF.V.M. Inhibition of enzymes important for Alzheimer’s disease by antioxidant extracts prepared from 15 New Zealand medicinal trees and bushes.J. R. Soc. N. Z.202050453855110.1080/03036758.2020.1741403
    [Google Scholar]
  118. LeeH.J. SeongY.H. BaeK.H. KwonS.H. KwakH.M. NhoS.K. KimK.A. HurJ.M. LeeK.B. KangY.H. SongK.S. β-Secretase (BACE1) inhibitors from Sanguisorbae Radix.Arch. Pharm. Res.200528779980310.1007/BF0297734516114494
    [Google Scholar]
  119. NakaiT. YamadaK. MizoguchiH. Alzheimer’s disease animal models: Elucidation of biomarkers and therapeutic approaches for cognitive impairment.Int. J. Mol. Sci.20212211554910.3390/ijms2211554934074018
    [Google Scholar]
  120. OddoS. CaccamoA. ShepherdJ.D. MurphyM.P. GoldeT.E. KayedR. MetherateR. MattsonM.P. AkbariY. LaFerlaF.M. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: Intracellular Abeta and synaptic dysfunction.Neuron200339340942110.1016/S0896‑6273(03)00434‑312895417
    [Google Scholar]
  121. YuH. ShiJ. LinY. ZhangY. LuoQ. HuangS. WangS. WeiJ. HuangJ. LiC. JiL. Icariin ameliorates alzheimer’s disease pathology by alleviating myelin injury in 3 × Tg-AD mice.Neurochem. Res.20224741049105910.1007/s11064‑021‑03507‑735037164
    [Google Scholar]
  122. MasudaA. KobayashiY. KogoN. SaitoT. SaidoT.C. ItoharaS. Cognitive deficits in single App knock-in mouse models.Neurobiol. Learn. Mem.2016135738210.1016/j.nlm.2016.07.00127377630
    [Google Scholar]
  123. JankowskyJ.L. ZhengH. Practical considerations for choosing a mouse model of Alzheimer’s disease.Mol. Neurodegener.20171218910.1186/s13024‑017‑0231‑729273078
    [Google Scholar]
  124. ReidS.J. MckeanN.E. HentyK. PorteliusE. BlennowK. RudigerS.R. BawdenC.S. HandleyR.R. VermaP.J. FaullR.L.M. WaldvogelH.J. ZetterbergH. SnellR.G. Alzheimer’s disease markers in the aged sheep (Ovis aries).Neurobiol. Aging20175811211910.1016/j.neurobiolaging.2017.06.02028728117
    [Google Scholar]
  125. BraakH. BraakE. StrothjohannM. Abnormally phosphorylated tau protein related to the formation of neurofibrillary tangles and neuropil threads in the cerebral cortex of sheep and goat.Neurosci. Lett.19941711-21410.1016/0304‑3940(94)90589‑47521944
    [Google Scholar]
  126. WuD.T. ChoY.W. SpaltiM.D. BisharaM. NguyenT.T. The link between periodontitis and Alzheimer’s disease – emerging clinical evidence.Dent. Rev.20233110006210.1016/j.dentre.2022.100062
    [Google Scholar]
  127. ZengF. LiuY. HuangW. QingH. KadowakiT. KashiwazakiH. NiJ. WuZ. Receptor for advanced glycation end products up‐regulation in cerebral endothelial cells mediates cerebrovascular‐related amyloid β accumulation after Porphyromonas gingivalis infection.J. Neurochem.2021158372473610.1111/jnc.1509632441775
    [Google Scholar]
  128. SaniS. TraulD. KlinkA. NiarakiN. Gonzalo-RuizA. WuC.K. GeulaC. Distribution, progression and chemical composition of cortical amyloid-β deposits in aged rhesus monkeys: Similarities to the human.Acta Neuropathol.2003105214515610.1007/s00401‑002‑0626‑512536225
    [Google Scholar]
  129. KantarciA. TognoniC.M. YaghmoorW. MarghalaniA. StephensD. AhnJ.Y. CarrerasI. DedeogluA. Microglial response to experimental periodontitis in a murine model of Alzheimer’s disease.Sci. Rep.20201011856110.1038/s41598‑020‑75517‑433122702
    [Google Scholar]
  130. NagaiM. DoteK. KatoM. SasakiS. OdaN. KagawaE. NakanoY. YamaneA. HigashiharaT. MiyauchiS. TsuchiyaA. Visit-to-visit blood pressure variability and alzheimer’s disease: Links and risks.J. Alzheimers Dis.201759251552610.3233/JAD‑16117228598842
    [Google Scholar]
  131. NagaiM. HoshideS. DoteK. KarioK. Visit‐to‐visit blood pressure variability and dementia.Geriatr. Gerontol. Int.201515S1Suppl. 1263310.1111/ggi.1266026671154
    [Google Scholar]
  132. IrwinM.R. VitielloM.V. Implications of sleep disturbance and inflammation for Alzheimer’s disease dementia.Lancet Neurol.201918329630610.1016/S1474‑4422(18)30450‑230661858
    [Google Scholar]
  133. DurazzoT.C. MattssonN. WeinerM.W. Smoking and increased Alzheimer’s disease risk: A review of potential mechanisms.Alzheimers Dement.2014103SSuppl.S122S14510.1016/j.jalz.2014.04.00924924665
    [Google Scholar]
  134. BakerD.J. PetersenR.C. Cellular senescence in brain aging and neurodegenerative diseases: Evidence and perspectives.J. Clin. Invest.201812841208121610.1172/JCI9514529457783
    [Google Scholar]
  135. StanciuG.D. BildV. AbabeiD.C. RusuR.N. CobzaruA. PaduraruL. BuleaD. Link between diabetes and alzheimer’s disease due to the shared amyloid aggregation and deposition involving both neurodegenerative changes and neurovascular damages.J. Clin. Med.202096171310.3390/jcm906171332503113
    [Google Scholar]
  136. TakedaS. SatoN. Uchio-YamadaK. SawadaK. KuniedaT. TakeuchiD. KurinamiH. ShinoharaM. RakugiH. MorishitaR. Diabetes-accelerated memory dysfunction via cerebrovascular inflammation and Aβ deposition in an Alzheimer mouse model with diabetes.Proc. Natl. Acad. Sci. USA2010107157036704110.1073/pnas.100064510720231468
    [Google Scholar]
  137. Flores-CorderoJ.A. Pérez-PérezA. Jiménez-CorteganaC. AlbaG. Flores-BarragánA. Sánchez-MargaletV. Obesity as a risk factor for dementia and alzheimer’s disease: The role of leptin.Int. J. Mol. Sci.2022239520210.3390/ijms2309520235563589
    [Google Scholar]
  138. NguyenT.T. TaQ.T.H. NguyenT.K.O. NguyenT.T.D. VoV.G. Role of body-fluid biomarkers in alzheimer’s disease diagnosis.Diagnostics202010510.3390/diagnostics10050326
    [Google Scholar]
  139. ZetterbergH. BlennowK. Moving fluid biomarkers for Alzheimer’s disease from research tools to routine clinical diagnostics.Mol. Neurodegener.20211611010.1186/s13024‑021‑00430‑x33608044
    [Google Scholar]
  140. AndreasenN. MinthonL. DavidssonP. VanmechelenE. VandersticheleH. WinbladB. BlennowK. Evaluation of CSF-tau and CSF-Abeta42 as diagnostic markers for Alzheimer disease in clinical practice.Arch. Neurol.200158337337910.1001/archneur.58.3.37311255440
    [Google Scholar]
  141. YounY.C. KangS. SuhJ. ParkY.H. KangM.J. PyunJ.M. ChoiS.H. JeongJ.H. ParkK.W. LeeH.W. AnS.S.A. DominguezJ.C. KimS. Blood amyloid-β oligomerization associated with neurodegeneration of Alzheimer’s disease.Alzheimers Res. Ther.20191114010.1186/s13195‑019‑0499‑731077246
    [Google Scholar]
  142. YangY. GiauV.V. AnS.S.A. KimS. Plasma oligomeric beta amyloid in alzheimer’s disease with history of agent orange exposure.Dement. Neurocognitive Disord.2018172414910.12779/dnd.2018.17.2.4130906391
    [Google Scholar]
  143. SjögrenM. GisslénM. VanmechelenE. BlennowK. Low cerebrospinal fluid β-amyloid 42 in patients with acute bacterial meningitis and normalization after treatment.Neurosci. Lett.20013141-2333610.1016/S0304‑3940(01)02285‑611698140
    [Google Scholar]
  144. ZetterbergH. WilsonD. AndreassonU. MinthonL. BlennowK. RandallJ. HanssonO. Plasma tau levels in Alzheimer’s disease.Alzheimers Res. Ther.201352910.1186/alzrt16323551972
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010331845240802073645
Loading
/content/journals/cpb/10.2174/0113892010331845240802073645
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test