Skip to content
2000
Volume 26, Issue 2
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

The current global epidemic of hypertension is not a disease in and of itself but rather a significant risk factor for serious cardiovascular conditions such as peripheral artery disease, heart failure, myocardial infarction, and stroke. Although many medications that work through various mechanisms of action are available on the market in conventional formulations to treat hypertension, these medications face significant difficulties with their bioavailability, dosing, and associated side effects, which significantly reduces the effectiveness of their therapeutic interventions. Numerous studies have shown that nanocarriers and nanoformulations can minimize the toxicity associated with high doses of the drug while greatly increasing the drug's bioavailability and reducing the frequency of dosing.

This review sheds light on the difficulties posed by traditional antihypertensive formulations and highlights the necessity of oral nanoparticulate systems to solve these issues. Because hypertension has a circadian blood pressure pattern, chronotherapeutics can be very important in treating the condition. On the other hand, nanoparticulate systems can be very important in managing hypertension.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010291414240322112508
2024-04-02
2024-12-26
Loading full text...

Full text loading...

References

  1. AlamT. KhanS. GabaB. HaiderM.F. BabootaS. AliJ. Nanocarriers as treatment modalities for hypertension.Drug Deliv.201724135836910.1080/10717544.2016.125599928165823
    [Google Scholar]
  2. KittJ. FoxR. TuckerK.L. McManusR.J. New approaches in hypertension management: A review of current and developing technologies and their potential impact on hypertension care.Curr. Hypertens. Rep.20192164410.1007/s11906‑019‑0949‑431025117
    [Google Scholar]
  3. PechanovaO. BartaA. KonerackaM. ZavisovaV. KubovcikovaM. KlimentovaJ. TӧrӧkJ. ZemancikovaA. CebovaM. Protective effects of nanoparticle-loaded aliskiren on cardiovascular system in spontaneously hypertensive rats.Molecules20192415271010.3390/molecules2415271031349653
    [Google Scholar]
  4. GoA.S. BaumanM.A. Coleman KingS.M. FonarowG.C. LawrenceW. WilliamsK.A. SanchezE. An effective approach to high blood pressure control: A science advisory from the American Heart Association, the American College of Cardiology, and the Centers for Disease Control and Prevention.Hypertension201463487888510.1161/HYP.000000000000000324243703
    [Google Scholar]
  5. ParkC. WangG. DurthalerJ.M. FangJ. Cost-effectiveness analyses of antihypertensive medicines: A systematic review.Am. J. Prev. Med.2017536S131S14210.1016/j.amepre.2017.06.02029153114
    [Google Scholar]
  6. MusiniV.M. GueyffierF. PuilL. SalzwedelD.M. WrightJ.M. Pharmacotherapy for hypertension in adults aged 18 to 59 years.Cochrane Libr.201720178CD00827610.1002/14651858.CD008276.pub228813123
    [Google Scholar]
  7. PaulisL. UngerT. Novel therapeutic targets for hypertension.Nat. Rev. Cardiol.20107843144110.1038/nrcardio.2010.8520567239
    [Google Scholar]
  8. PantzarisN.D. KaranikolasE. TsiotsiosK. VelissarisD. Renin inhibition with aliskiren: A decade of clinical experience.J. Clin. Med.2017666110.3390/jcm606006128598381
    [Google Scholar]
  9. MusiniV.M. LawrenceK.A.K. FortinP.M. BassettK. WrightJ.M. Blood pressure lowering efficacy of renin inhibitors for primary hypertension.Cochrane Libr.201720174CD00706610.1002/14651858.CD007066.pub328379619
    [Google Scholar]
  10. YaxleyJ. ThambarS. Resistant hypertension: An approach to management in primary care.J. Family Med. Prim. Care20154219319910.4103/2249‑4863.15463025949966
    [Google Scholar]
  11. Martín GiménezV.M. NoriegaS.E. KassuhaD.E. FuentesL.B. ManuchaW. Anandamide and endocannabinoid system: An attractive therapeutic approach for cardiovascular disease.Ther. Adv. Cardiovasc. Dis.201812717719010.1177/175394471877369029764302
    [Google Scholar]
  12. TaylorD.A. Hypertensive crisis: A review of pathophysiology and treatment.Critical Care Nursing Clinics201527443944726567490
    [Google Scholar]
  13. PapadopoulosD.P. MourouzisI. ThomopoulosC. MakrisT. PapademetriouV. Hypertension crisis.Blood Press.201019632833610.3109/08037051.2010.48805220504242
    [Google Scholar]
  14. van den BornB.J.H. LöwenbergE.C. van der HoevenN.V. de LaatB. MeijersJ.C.M. LeviM. van MontfransG.A. Endothelial dysfunction, platelet activation, thrombogenesis and fibrinolysis in patients with hypertensive crisis.J. Hypertens.201129592292710.1097/HJH.0b013e328345023d21372741
    [Google Scholar]
  15. BarkerD.J. OsmondC. GoldingJ. KuhD. WadsworthM.E. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease.BMJ1989298667356456710.1136/bmj.298.6673.5642495113
    [Google Scholar]
  16. NgR. SutradharR. YaoZ. WodchisW.P. RosellaL.C. Smoking, drinking, diet and physical activity—modifiable lifestyle risk factors and their associations with age to first chronic disease.Int. J. Epidemiol.202049111313010.1093/ije/dyz07831329872
    [Google Scholar]
  17. BeeversG. LipG.Y. O’BrienE. ABC of hypertension: The pathophysiology of hypertension.BMJ2001322729191291610.1136/bmj.322.7291.91211302910
    [Google Scholar]
  18. GuilbertJ.J. The world health report 2002 - reducing risks, promoting healthy life.Educ. Health2003162230
    [Google Scholar]
  19. Preventing chronic diseases:A vital investment; World Health Organization2005
    [Google Scholar]
  20. AnselmiM. AvanziniF. MoreíraJ.M. MontalvoG. ArmaniD. PrandiR. MarquezM. CaicedoC. ColomboF. TognoniG. Treatment and control of arterial hypertension in a rural community in Ecuador.Lancet200336193641186118710.1016/S0140‑6736(03)12918‑212686043
    [Google Scholar]
  21. KearneyP.M. WheltonM. ReynoldsK. MuntnerP. WheltonP.K. HeJ. Global burden of hypertension: Analysis of worldwide data.Lancet2005365945521722310.1016/S0140‑6736(05)17741‑115652604
    [Google Scholar]
  22. FuentesR. IlmaniemiN. LaurikainenE. TuomilehtoJ. NissinenA. Hypertension in developing economies.J. Hypertens.200018552152910.1097/00004872‑200018050‑0000310826553
    [Google Scholar]
  23. MayosiB. A statement of intent on the formation of the NCRP on cardiovascular and metabolic disease: A new initiative to fight heart disease, stroke, diabetes and obesity in South Africa.Cardiovasc. J. S. Afr.20071814617392988
    [Google Scholar]
  24. PadmavatiS. Prevention of heart disease in India in the 21st century: need for a concerted effort.Indian Heart J.20025419910211999100
    [Google Scholar]
  25. TranJ. MirzaeiM. LeederS. Hypertension: its prevalence and population-attributable fraction for mortality from stroke in the Middle East and north Africa.InCirculation2010122E174E174
    [Google Scholar]
  26. YachD. HawkesC. GouldC.L. HofmanK.J. The global burden of chronic diseases: Overcoming impediments to prevention and control.JAMA2004291212616262210.1001/jama.291.21.261615173153
    [Google Scholar]
  27. PerkovicV. HuxleyR. WuY. PrabhakaranD. MacMahonS. The burden of blood pressure-related disease: A neglected priority for global health.Hypertension200750699199710.1161/HYPERTENSIONAHA.107.09549717954719
    [Google Scholar]
  28. TabassumN. AhmadF. Role of natural herbs in the treatment of hypertension.Pharmacogn. Rev.201159304010.4103/0973‑7847.7909722096316
    [Google Scholar]
  29. HasratJ.A. PietersL. VlietinckA.J. Medicinal plants in Suriname: Hypotensive effect of Gossypium barbadense.J. Pharm. Pharmacol.201056338138710.1211/002235702291715025864
    [Google Scholar]
  30. BawaR. Nanopharmaceuticals for drug delivery—A review.Drug Deliv.2009312212712
    [Google Scholar]
  31. SahooS. DilnawazF. KrishnakumarS. Nanotechnology in ocular drug delivery.Drug Discov. Today2008133-414415110.1016/j.drudis.2007.10.02118275912
    [Google Scholar]
  32. MüllerR.H. GohlaS. KeckC.M. State of the art of nanocrystals – Special features, production, nanotoxicology aspects and intracellular delivery.Eur. J. Pharm. Biopharm.20117811910.1016/j.ejpb.2011.01.00721266197
    [Google Scholar]
  33. NasimiP. HaidariM. Medical use of nanoparticles: Drug delivery and diagnosis diseases.Int. J. Green Nanotechnol.201311510.1177/1943089213506978
    [Google Scholar]
  34. de JongW.H. BormP.J. Drug delivery and nanoparticles: Applications and hazards.Int. J. Nanomedicine20083213314910.2147/IJN.S59618686775
    [Google Scholar]
  35. IacobazziR.M. LopalcoA. CutrignelliA. LaquintanaV. LopedotaA. FrancoM. DenoraN. Bridging pharmaceutical chemistry with drug and nanoparticle targeting to investigate the role of the 18‐kDa translocator protein TSPO.ChemMedChem201712161261127410.1002/cmdc.20170032228771957
    [Google Scholar]
  36. LopalcoA. AliH. DenoraN. RyttingE. Oxcarbazepine-loaded polymeric nanoparticles: Development and permeability studies across in vitro models of the blood-brain barrier and human placental trophoblast.Int. J. Nanomedicine2015101985199625792832
    [Google Scholar]
  37. DenoraN. LaquintanaV. LopalcoA. IacobazziR.M. LopedotaA. CutrignelliA. IacobellisG. AnneseC. CascioneM. LeporattiS. FrancoM. In vitro targeting and imaging the translocator protein TSPO 18-kDa through G(4)-PAMAM–FITC labeled dendrimer.J. Control. Release201317231111112510.1016/j.jconrel.2013.09.02424096015
    [Google Scholar]
  38. DenoraN. LopedotaA. PerroneM. LaquintanaV. IacobazziR.M. MilellaA. FanizzaE. DepaloN. CutrignelliA. LopalcoA. FrancoM. Spray-dried mucoadhesives for intravesical drug delivery using N-acetylcysteine- and glutathione-glycol chitosan conjugates.Acta Biomater.20164317018410.1016/j.actbio.2016.07.02527427225
    [Google Scholar]
  39. LaquintanaV. DenoraN. LopalcoA. LopedotaA. CutrignelliA. LasorsaF.M. AgostinoG. FrancoM. Translocator protein ligand-PLGA conjugated nanoparticles for 5-fluorouracil delivery to glioma cancer cells.Mol. Pharm.201411385987110.1021/mp400536z24410438
    [Google Scholar]
  40. IacobazziR.M. PorcelliL. LopedotaA.A. LaquintanaV. LopalcoA. CutrignelliA. AltamuraE. Di FonteR. AzzaritiA. FrancoM. DenoraN. Targeting human liver cancer cells with lactobionic acid-G(4)-PAMAM-FITC sorafenib loaded dendrimers.Int. J. Pharm.20175281-248549710.1016/j.ijpharm.2017.06.04928624661
    [Google Scholar]
  41. VarshosazJ. TaymouriS. HamishehkarH. Fabrication of polymeric nanoparticles of poly(ethylene‐ co ‐vinyl acetate) coated with chitosan for pulmonary delivery of carvedilol.J. Appl. Polym. Sci.20141311app.3969410.1002/app.39694
    [Google Scholar]
  42. JavedI. RanjhaN.M. MahmoodK. KashifS. RehmanM. UsmanF. Drug release optimization from microparticles of poly(E-caprolactone) and hydroxypropyl methylcellulose polymeric blends: formulation and characterization.J. Drug Deliv. Sci. Technol.201424660761210.1016/S1773‑2247(14)50126‑8
    [Google Scholar]
  43. MoeedA. KhalidA. BashirS. BashirH. Al KahramanY.M.S.A. IsmailT. AmirzadaM.I. Verapamil hydrochloride nanoparticles formulated with chitosan and sodium alginate by an ionic gelation method.Trop. J. Pharm. Res.20222061105111110.4314/tjpr.v20i6.1
    [Google Scholar]
  44. JanaU. MohantyA.K. PalS.L. MannaP.K. MohantaG.P. Felodipine loaded PLGA nanoparticles: Preparation, physicochemical characterization and in vivo toxicity study.Nano Converg.2014113110.1186/s40580‑014‑0031‑528191387
    [Google Scholar]
  45. SilvaA.C. SantosD. FerreiraD.C. SoutoE.B. Minoxidil-loaded nanostructured lipid carriers (NLC): Characterization and rheological behaviour of topical formulations.Pharmazie200964317718219348340
    [Google Scholar]
  46. Tamayo-EsquivelD. Ganem-QuintanarA. MartínezA.L. Navarrete-RodríguezM. Rodríguez-RomoS. Quintanar-GuerreroD. Evaluation of the enhanced oral effect of omapatrilat-monolein nanoparticles prepared by the emulsification-diffusion method.J. Nanosci. Nanotechnol.2006693134313810.1166/jnn.2006.47417048528
    [Google Scholar]
  47. UthamanM. KolandM. Investigation of polymeric micellar nanoparticles of amlodipine besylatefor transdermal delivery.J. Young Pharm.202012431432010.5530/jyp.2020.12.84
    [Google Scholar]
  48. AboudH.M. MahmoudM.O. Abdeltawab MohammedM. Shafiq AwadM. SabryD. Preparation and appraisal of self-assembled valsartan-loaded amalgamated Pluronic F127/Tween 80 polymeric micelles: Boosted cardioprotection via regulation of Mhrt/Nrf2 and Trx1 pathways in cisplatin-induced cardiotoxicity.J. Drug Target.202028328229910.1080/1061186X.2019.165005331353972
    [Google Scholar]
  49. AhadA. AqilM. KohliK. SultanaY. MujeebM. AliA. Formulation and optimization of nanotransfersomes using experimental design technique for accentuated transdermal delivery of valsartan.Nanomedicine20128223724910.1016/j.nano.2011.06.00421704600
    [Google Scholar]
  50. PandyaN.T. JaniP. VanzaJ. TandelH. Solid lipid nanoparticles as an efficient drug delivery system of olmesartan medoxomil for the treatment of hypertension.Colloids Surf. B Biointerfaces2018165374410.1016/j.colsurfb.2018.02.01129453084
    [Google Scholar]
  51. PaliwalS. SharmaJ. DaveV. SharmaS. VermaK. TakK. KakarlaR.R. SadhuV. WalvekarP. AminabhaviT.M. Novel biocompatible polymer-modified liposome nanoparticles for biomedical applications.Polym. Bull.202313
    [Google Scholar]
  52. MundadaV.P. PatelM.H. MundadaP.K. SawantK.K. Enhanced bioavailability and antihypertensive activity of nisoldipine loaded nanoemulsion: optimization, cytotoxicity and uptake across Caco-2 cell line, pharmacokinetic and pharmacodynamic studies.Drug Dev. Ind. Pharm.202046337638710.1080/03639045.2020.172412832031412
    [Google Scholar]
  53. ÖzdemirS. ÇelikB. SümerE. AcarE.T. ÜnerM. Eplerenone nanoemulsions for treatment of hypertension. Part II: Physical stability assessment and in vivo study.J. Drug Deliv. Sci. Technol.20184528729510.1016/j.jddst.2018.03.014
    [Google Scholar]
  54. AbbasiE. AvalS.F. AkbarzadehA. MilaniM. NasrabadiH.T. JooS.W. HanifehpourY. Nejati-KoshkiK. Pashaei-AslR. Dendrimers: Synthesis, applications, and properties.Nanoscale Res. Lett.20149124710.1186/1556‑276X‑9‑24724994950
    [Google Scholar]
  55. FréchetJ.M.J. Dendrimers and supramolecular chemistry.Proc. Natl. Acad. Sci. USA20029984782478710.1073/pnas.08201389911959930
    [Google Scholar]
  56. UmorenS.A. SolomonM.M. Saji, VS Polymeric Materials in Corrosion Inhibition: Fundamentals and Applications.Elsevier2022
    [Google Scholar]
  57. SharmaA.K. KeservaniR.K. Eds.; Dendrimers for drug delivery.CRC Press201810.1201/b22463
    [Google Scholar]
  58. SmithR.J. GormanC. MenegattiS. Synthesis, structure, and function of internally functionalized dendrimers.J. Polym. Sci.2021591102810.1002/pol.20200721
    [Google Scholar]
  59. LeeC.C. MacKayJ.A. FréchetJ.M.J. SzokaF.C. Designing dendrimers for biological applications.Nat. Biotechnol.200523121517152610.1038/nbt117116333296
    [Google Scholar]
  60. KrugP. BartelM. GłowalaP. WysockaB. MojzychI. KwiatkowskaM. SkibaA. WójtowiczA. MazurM. Organic polymer particles for biomedical applications. In: Materials for Biomedical Engineering.Elsevier20195911110.1016/B978‑0‑12‑818433‑2.00003‑0
    [Google Scholar]
  61. PerumalS. AtchudanR. RamalingamS. EdisonT.N.J.I. LeeH.M. CheongI.W. DevarajanN. LeeY.R. Comparative investigation on antibacterial studies of Oxalis corniculata and silver nanoparticle stabilized graphene surface.J. Mater. Sci.20225725116301164810.1007/s10853‑022‑07289‑3
    [Google Scholar]
  62. GagliardiA. GiulianoE. VenkateswararaoE. FrestaM. BulottaS. AwasthiV. CoscoD. Biodegradable polymeric nanoparticles for drug delivery to solid tumors.Front. Pharmacol.20211260162610.3389/fphar.2021.60162633613290
    [Google Scholar]
  63. PerumalS. Polymer nanoparticles: Synthesis and applications.Polymers20221424544910.3390/polym1424544936559816
    [Google Scholar]
  64. BeginesB. OrtizT. Pérez-ArandaM. MartínezG. MerineroM. Argüelles-AriasF. AlcudiaA. Polymeric nanoparticles for drug delivery: Recent developments and future prospects.Nanomaterials2020107140310.3390/nano1007140332707641
    [Google Scholar]
  65. VauthierC. A journey through the emergence of nanomedicines with poly(alkylcyanoacrylate) based nanoparticles.J. Drug Target.2019275-650252410.1080/1061186X.2019.158828030889991
    [Google Scholar]
  66. AkbarzadehA. Rezaei-SadabadyR. DavaranS. JooS.W. ZarghamiN. HanifehpourY. SamieiM. KouhiM. Nejati-KoshkiK. Liposome: Classification, preparation, and applications.Nanoscale Res. Lett.20138110210.1186/1556‑276X‑8‑10223432972
    [Google Scholar]
  67. TorchilinV.P. Multifunctional nanocarriers.Adv. Drug Deliv. Rev.20126430231510.1016/j.addr.2012.09.03117092599
    [Google Scholar]
  68. LargeD.E. AbdelmessihR.G. FinkE.A. AugusteD.T. Liposome composition in drug delivery design, synthesis, characterization, and clinical application.Adv. Drug Deliv. Rev.202117611385110.1016/j.addr.2021.11385134224787
    [Google Scholar]
  69. ŠturmL. Poklar UlrihN. Basic methods for preparation of liposomes and studying their interactions with different compounds, with the emphasis on polyphenols.Int. J. Mol. Sci.20212212654710.3390/ijms2212654734207189
    [Google Scholar]
  70. BlankenD. FoschepothD. SerrãoA.C. DanelonC. Genetically controlled membrane synthesis in liposomes.Nat. Commun.2020111431710.1038/s41467‑020‑17863‑532859896
    [Google Scholar]
  71. LujanH. GriffinW.C. TaubeJ.H. SayesC.M. Synthesis and characterization of nanometer-sized liposomes for encapsulation and microRNA transfer to breast cancer cells.Int. J. Nanomedicine2019145159517310.2147/IJN.S20333031371954
    [Google Scholar]
  72. BennetD. KimS. Polymer nanoparticles for smart drug delivery. In: Application of Nanotechnology in Drug Delivery.InTech201410.5772/58422
    [Google Scholar]
  73. NsairatH. KhaterD. SayedU. OdehF. Al BawabA. AlshaerW. Liposomes: Structure, composition, types, and clinical applications.Heliyon202285e0939410.1016/j.heliyon.2022.e0939435600452
    [Google Scholar]
  74. CouvreurP. KanteB. RolandM. Perspective on the use of microdisperse forms as intracellular vehicles.Pharm. Acta Helv.19785312341347746043
    [Google Scholar]
  75. Muñoz-BonillaA. van HerkA.M. HeutsJ.P.A. Preparation of hairy particles and antifouling films using brush-type amphiphilic block copolymer surfactants in emulsion polymerization.Macromolecules20104362721273110.1021/ma9027257
    [Google Scholar]
  76. LuS. QuR. ForcadaJ. Preparation of magnetic polymeric composite nanoparticles by seeded emulsion polymerization.Mater. Lett.2009639-1077077210.1016/j.matlet.2008.12.045
    [Google Scholar]
  77. CostaC. SantosA.F. FortunyM. AraújoP.H.H. SayerC. Kinetic advantages of using microwaves in the emulsion polymerization of MMA.Mater. Sci. Eng. C200929241541910.1016/j.msec.2008.08.013
    [Google Scholar]
  78. ChengX. ChenM. ZhouS. WuL. Preparation of SiO 2/PMMA composite particles via conventional emulsion polymerization.J. Polym. Sci. A Polym. Chem.200644123807381610.1002/pola.21472
    [Google Scholar]
  79. YoonS.J. ChunH. LeeM.S. KimN. Preparation of poly(N-vinylcarbazole) (PVK) nanoparticles by emulsion polymerization and PVK hollow particles.Synth. Met.20091595-651852210.1016/j.synthmet.2008.11.011
    [Google Scholar]
  80. el-SamaligyM. RohdewaldP. MahmoudH. Polyalkyl cyanoacrylate nanocapsules.J. Pharm. Pharmacol.1986383e216e218
    [Google Scholar]
  81. KriwetB. WalterE. KisselT. Synthesis of bioadhesive poly(acrylic acid) nano- and microparticles using an inverse emulsion polymerization method for the entrapment of hydrophilic drug candidates.J. Control. Release1998561-314915810.1016/S0168‑3659(98)00078‑99801438
    [Google Scholar]
  82. LandfesterK. WillertM. AntoniettiM. Preparation of polymer particles in nonaqueous direct and inverse miniemulsions.Macromolecules20003372370237610.1021/ma991782n
    [Google Scholar]
  83. JeevanandamJ. ChanY.S. DanquahM.K. Nano-formulations of drugs: Recent developments, impact and challenges.Biochimie2016128-1299911210.1016/j.biochi.2016.07.00827436182
    [Google Scholar]
  84. KimH.S. MasonT.G. Advances and challenges in the rheology of concentrated emulsions and nanoemulsions.Adv. Colloid Interface Sci.201724739741210.1016/j.cis.2017.07.00228821349
    [Google Scholar]
  85. LandfesterK EisenblätterJ RotheR Preparation of polymerizable miniemulsions by ultrasonication.JCT research2004656810.1007/s11998‑004‑0026‑y
    [Google Scholar]
  86. VangeyteP. GautierS. JérômeR. About the methods of preparation of poly(ethylene oxide)-b-poly(ε-caprolactone) nanoparticles in water.Colloids Surf. A Physicochem. Eng. Asp.20042421-320321110.1016/j.colsurfa.2004.04.070
    [Google Scholar]
  87. KabanovA.V. AlakhovV.Y. Pluronic block copolymers in drug delivery: From micellar nanocontainers to biological response modifiers.Crit. Rev. Ther. Drug Carrier Syst.2002191172
    [Google Scholar]
  88. ZhangX. JacksonJ.K. BurtH.M. Development of amphiphilic diblock copolymers as micellar carriers of taxol.Int. J. Pharm.19961321-219520610.1016/0378‑5173(95)04386‑1
    [Google Scholar]
  89. BurtH.M. ZhangX. ToleikisP. EmbreeL. HunterW.L. Development of copolymers of poly(d,l-lactide) and methoxypolyethylene glycol as micellar carriers of paclitaxel.Colloids Surf. B Biointerfaces1999161-416117110.1016/S0927‑7765(99)00067‑3
    [Google Scholar]
  90. LiuJ. XiaoY. AllenC. Polymer–drug compatibility: A guide to the development of delivery systems for the anticancer agent, ellipticine.J. Pharm. Sci.200493113214310.1002/jps.1053314648643
    [Google Scholar]
  91. KimS.Y. ShinI.L.G. LeeY.M. ChoC.S. SungY.K. Methoxy poly(ethylene glycol) and ϵ-caprolactone amphiphilic block copolymeric micelle containing indomethacin.J. Control. Release1998511132210.1016/S0168‑3659(97)00124‑79685900
    [Google Scholar]
  92. Galindo-RodriguezS. AllémannE. FessiH. DoelkerE. Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification-diffusion, and nanoprecipitation methods.Pharm. Res.20042181428143910.1023/B:PHAM.0000036917.75634.be15359578
    [Google Scholar]
  93. RathorS. BhattD.C. AamirS. SinghS.K. KumarV. A comprehensive review on role of nanoparticles in therapeutic delivery of medicine.Pharm. Nanotechnol.20175426327529141578
    [Google Scholar]
  94. KaurH. KumarV. KumarK. RathorS. KumariP. SinghJ. Polymer particulates in drug delivery.Curr. Pharm. Des.201622192761278710.2174/138161282266616021712573426898740
    [Google Scholar]
  95. KumarV. RathorS. Overactive Bladder (OAB) Management: An Overview and Scope of Nano Drug Carriers.Nanosci. Nanotechnol. Asia2021116e08012119000710.2174/2210681210666210108111413
    [Google Scholar]
  96. SantV.P. SmithD. LerouxJ.C. Novel pH-sensitive supramolecular assemblies for oral delivery of poorly water soluble drugs: preparation and characterization.J. Control. Release200497230131210.1016/j.jconrel.2004.03.02615196757
    [Google Scholar]
  97. DiSantoR.M. SubramanianV. GuZ. Recent advances in nanotechnology for diabetes treatment.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20157454856410.1002/wnan.132925641955
    [Google Scholar]
  98. DashT.K. KonkimallaV.B. Poly-є-caprolactone based formulations for drug delivery and tissue engineering: A review.J. Control. Release20121581153310.1016/j.jconrel.2011.09.06421963774
    [Google Scholar]
  99. RaiV.K. MishraN. AgrawalA.K. JainS. YadavN.P. Novel drug delivery system: An immense hope for diabetics.Drug Deliv.20162372371239010.3109/10717544.2014.99100125544604
    [Google Scholar]
  100. CraparoE.F. CabibboM. ConigliaroA. BarrecaM.M. MusumeciT. GiammonaG. CavallaroG. Rapamycin-loaded polymeric nanoparticles as an advanced formulation for macrophage targeting in atherosclerosis.Pharmaceutics202113450310.3390/pharmaceutics1304050333916918
    [Google Scholar]
  101. Di TraniN. LiuH.C. QiR. ViswanathD.I. LiuX. ChuaC.Y.X. GrattoniA. Long-acting tunable release of amlodipine loaded PEG-PCL micelles for tailored treatment of chronic hypertension.Nanomedicine20213710241710.1016/j.nano.2021.10241734171469
    [Google Scholar]
  102. Martín GiménezV.M. Díaz-RodríguezP. SanzR.L. Vivero-LopezM. ConcheiroA. DiezE. PradoN. Enrique KassuhaD. Alvarez-LorenzoC. ManuchaW. Anandamide-nanoformulation obtained by electrospraying for cardiovascular therapy.Int. J. Pharm.201956611010.1016/j.ijpharm.2019.05.04731112795
    [Google Scholar]
  103. MishraA. ImamS.S. AqilM. AhadA. SultanaY. Ameeduzzafar; Ali, A. Carvedilol nano lipid carriers: Formulation, characterization and in-vivo evaluation.Drug Deliv.20162341486149410.3109/10717544.2016.116531426978072
    [Google Scholar]
  104. Hajba-HorváthE. BiróE. MirankóM. Fodor-KardosA. TrifL. FeczkóT. Preparation and in vitro characterization of valsartan-loaded ethyl cellulose and poly(methyl methacrylate) nanoparticles.RSC Advances20201072439154392610.1039/D0RA07218D35517152
    [Google Scholar]
  105. PlumleyC. GormanE.M. El-GendyN. BybeeC.R. MunsonE.J. BerklandC. Nifedipine nanoparticle agglomeration as a dry powder aerosol formulation strategy.Int. J. Pharm.20093691-213614310.1016/j.ijpharm.2008.10.01619015016
    [Google Scholar]
  106. KumarL. Rapidly dissolving Felodipine nanoparticle strips-formulation using design of experiment and characterisation.J. Drug Deliv. Sci. Technol.20206015
    [Google Scholar]
  107. Al AshmawyA.Z.G. EissaN.G. El NahasH.M. BalataG.F. Fast disintegrating tablet of Doxazosin Mesylate nanosuspension: Preparation and characterization.J. Drug Deliv. Sci. Technol.20216110221010.1016/j.jddst.2020.102210
    [Google Scholar]
  108. ÖzdemirS. ÇelikB. Türköz AcarE. DumanG. ÜnerM. Eplerenone nanoemulsions for treatment of hypertension. Part I: Experimental design for optimization of formulations and physical characterization.J. Drug Deliv. Sci. Technol.20184535736610.1016/j.jddst.2018.03.011
    [Google Scholar]
  109. Leroueil-Le VergerM. FluckigerL. KimY.I. HoffmanM. MaincentP. Preparation and characterization of nanoparticles containing an antihypertensive agent.Eur. J. Pharm. Biopharm.199846213714310.1016/S0939‑6411(98)00015‑09795032
    [Google Scholar]
  110. ShrimalP. JadejaG. PatelS. Microfluidics nanoprecipitation of telmisartan nanoparticles: Effect of process and formulation parameters.Chem. Pap.202175120521410.1007/s11696‑020‑01289‑w
    [Google Scholar]
  111. FuQ. MaM. LiM. WangG. GuoM. LiJ. HouY. FangM. Improvement of oral bioavailability for nisoldipine using nanocrystals.Powder Technol.201730575776310.1016/j.powtec.2016.10.068
    [Google Scholar]
  112. LiJ. ChenB. YuT. GuoM. ZhaoS. ZhangY. JinC. PengX. ZengJ. YangJ. SongX. An efficient controlled release strategy for hypertension therapy: Folate-mediated lipid nanoparticles for oral peptide delivery.Pharmacol. Res.202015710479610.1016/j.phrs.2020.10479632278048
    [Google Scholar]
  113. SummerlinN. SooE. ThakurS. QuZ. JambhrunkarS. PopatA. Resveratrol nanoformulations: Challenges and opportunities.Int. J. Pharm.2015479228229010.1016/j.ijpharm.2015.01.00325572692
    [Google Scholar]
  114. HassanzadehP. ArbabiE. AtyabiF. DinarvandR. Ferulic acid-loaded nanostructured lipid carriers: A promising nanoformulation against the ischemic neural injuries.Life Sci.2018193647610.1016/j.lfs.2017.11.04629196052
    [Google Scholar]
  115. ManchandaS. SahooP.K. Fabrication and characterization of mucoadhesive topical nanoformulations of dorzolamide HCl for ocular hypertension.J. Pharm. Investig.201848332333210.1007/s40005‑017‑0324‑x
    [Google Scholar]
  116. MohammadipourF. KianiA. AminA. The high potency of polymeric nanoparticles in the drug delivery system for hypertension treatment: A systematic review.Curr. Hypertens. Rev.2022181546310.2174/157340211766621092112162234547998
    [Google Scholar]
  117. MoradifarN. KianiA.A. VeiskaramianA. KaramiK. Role of organic and inorganic nanoparticles in the drug delivery system for hypertension treatment: A systematic review.Curr. Cardiol. Rev.2022181e11062119402510.2174/1573403X1766621061111582335297343
    [Google Scholar]
  118. MasilelaC. AdeniyiO.V. BenjeddouM. Single nucleotide polymorphisms in amlodipine-associated genes and their correlation with blood pressure control among south african adults with hypertension.Genes2022138139410.3390/genes1308139436011305
    [Google Scholar]
  119. PawarK. KachaveR. KanawadeM. ZagreV. A review on nanoparticles drug delivery system.J. Drug Deliv. Ther.202111410110410.22270/jddt.v11i4.4865
    [Google Scholar]
  120. FancherI.S. RubinsteinI. LevitanI. Potential strategies to reduce blood pressure in treatment-resistant hypertension using food and drug administration–approved nanodrug delivery platforms.Hypertension201973225025710.1161/HYPERTENSIONAHA.118.1200530624988
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010291414240322112508
Loading
/content/journals/cpb/10.2174/0113892010291414240322112508
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test