Skip to content
2000
Volume 26, Issue 2
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

In the last few decades, the rates of infertility among women have been on the rise, usually due to complications with the uterus and related tissue. A wide variety of reasons can cause uterine factor infertility and can be congenital or a result of disease. Uterine transplantation is currently used as a means to enable women with fertility issues to have a natural birth. However, multiple risk factors are involved in uterine transplantation that threaten the lives of the growing fetus and the mother, as a result of which the procedure is not prominently practiced. Uterine tissue engineering provides a potential solution to infertility through the regeneration of replacement of damaged tissue, thus allowing healing and restoration of reproductive capacity. It involves the use of stem cells from the patient incorporated within biocompatible scaffolds to regenerate the entire tissue. This manuscript discusses the need for uterine tissue engineering, giving an overview of the biological and organic material involved in the process. There are numerous existing animal models in which this procedure has been actualized, and the observations from them have been compiled here. These models are used to develop a further understanding of the integration of engineered tissues and the scope of tissue engineering as a treatment for uterine disorders. Additionally, this paper examines the scope and limitations of the procedure.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010316780240807104149
2024-08-16
2024-12-26
Loading full text...

Full text loading...

References

  1. KatoleA. SaojiA. Prevalence of primary infertility and its associated risk factors in urban population of central India: A community-based cross-sectional study.Indian J. Community Med.201944433734110.4103/ijcm.IJCM_7_1931802796
    [Google Scholar]
  2. SalléeC. MargueritteF. MarquetP. PiverP. AubardY. LavouéV. Uterine factor infertility, a systematic review.J. Clin. Med.20221116490710.3390/jcm11164907
    [Google Scholar]
  3. MorcelK. CamborieuxL. GuerrierD. Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome.Orphanet J. Rare Dis.2007211310.1186/1750‑1172‑2‑1317359527
    [Google Scholar]
  4. HosseinzadehP. BarskyM. GibbonsW.E. BlessonC.S. Polycystic ovary syndrome and the forgotten uterus.F&S Reviews202121112010.1016/j.xfnr.2020.12.001
    [Google Scholar]
  5. SaundersP.T.K. HorneA.W. Endometriosis: Etiology, pathobiology, and therapeutic prospects.Cell2021184112807282410.1016/j.cell.2021.04.04134048704
    [Google Scholar]
  6. De La CruzM.S.D. BuchananE.M. Uterine fibroids: Diagnosis and treatment.Am. Fam. Physician201795210010728084714
    [Google Scholar]
  7. BoganiG. Ray-CoquardI. ConcinN. NgoiN.Y.L. MoriceP. EnomotoT. TakeharaK. DenysH. NoutR.A. LorussoD. VaughanM.M. BiniM. TakanoM. ProvencherD. IndiniA. SagaeS. WimbergerP. PókaR. SegevY. KimS.I. Candido dos ReisF.J. LopezS. MarianiA. LeitaoM.M.Jr RaspagliesiF. PaniciP.B. Di DonatoV. MuziiL. ColomboN. ScambiaG. PignataS. MonkB.J. Uterine serous carcinoma.Gynecol. Oncol.2021162122623410.1016/j.ygyno.2021.04.02933934848
    [Google Scholar]
  8. Favre-InhoferA. RafiiA. CarbonnelM. RevauxA. AyoubiJ.M. Uterine transplantation: Review in human research.J. Gynecol. Obstet. Hum. Reprod.201847621322110.1016/j.jogoh.2018.03.00629574054
    [Google Scholar]
  9. GyllenhammerD. TriplettC. GyllenhammerR.T. The pharmacology of uterine transplants.US Pharm.2016419HS2HS6
    [Google Scholar]
  10. WeiZ. HuY. HeX. LingW. YaoJ. LiZ. WangQ. LiL. Biomaterializing the advances in uterine tissue engineering.iScience2022251210565710.1016/j.isci.2022.10565736536678
    [Google Scholar]
  11. HellströmM. BandsteinS. BrännströmM. Uterine tissue engineering and the future of uterus transplantation.Ann. Biomed. Eng.20174571718173010.1007/s10439‑016‑1776‑227995397
    [Google Scholar]
  12. MaP.X. Scaffolds for tissue fabrication.Mater. Today200475304010.1016/S1369‑7021(04)00233‑0
    [Google Scholar]
  13. CampoH. SantamariaX. CervellóI. SimónC. Scaffolds for bioengineered uterus.In: Handbook of Tissue Engineering Scaffolds. MozafariM. SefatF. AtalaA. Elsevier201928331610.1016/B978‑0‑08‑102561‑1.00011‑7
    [Google Scholar]
  14. BrownellD. ChabaudS. BolducS. Tissue engineering in gynecology.Int. J. Mol. Sci.202223201231910.3390/ijms232012319
    [Google Scholar]
  15. LeeS.J. YooJ.J. AtalaA. Clinical regenerative medicine in urology.In: Clinical Regenerative Medicine in Urology.SingaporeSpringer2018
    [Google Scholar]
  16. YoshimasaY. MaruyamaT. Bioengineering of the Uterus.Reprod. Sci.20212861596161110.1007/s43032‑021‑00503‑8
    [Google Scholar]
  17. MiyazakiK. MaruyamaT. Partial regeneration and reconstruction of the rat uterus through recellularization of a decellularized uterine matrix.Biomaterials201435318791880010.1016/j.biomaterials.2014.06.05225043501
    [Google Scholar]
  18. CarliniA.S. AdamiakL. GianneschiN.C. Biosynthetic polymers as functional materials.Macromolecules201649124379439410.1021/acs.macromol.6b0043927375299
    [Google Scholar]
  19. RahmanM. HasanM.R. Synthetic biopolymers.In: Functional Biopolymers.ChamSpringer201914310.1007/978‑3‑319‑95990‑0_1
    [Google Scholar]
  20. JonkmanM.F. KauerF.M. NieuwenhuisP. MolenaarI. Segmental uterine horn replacement in the rat using a biodegradable microporous synthetic tube.Artif. Organs198610647548010.1111/j.1525‑1594.1986.tb02607.x3800704
    [Google Scholar]
  21. YoungR.C. SchumannR. ZhangP. Three-dimensional culture of human uterine smooth muscle myocytes on a resorbable scaffolding.Tissue Eng.20039345145910.1089/10763270332206663312857413
    [Google Scholar]
  22. CookC.D. HillA.S. GuoM. StockdaleL. PappsJ.P. IsaacsonK.B. LauffenburgerD.A. GriffithL.G. Local remodeling of synthetic extracellular matrix microenvironments by co-cultured endometrial epithelial and stromal cells enables long-term dynamic physiological function.Integr. Biol.20179427128910.1039/c6ib00245e28317948
    [Google Scholar]
  23. AswathyS.H. NarendrakumarU. ManjubalaI. Commercial hydrogels for biomedical applications.Heliyon202064e0371910.1016/j.heliyon.2020.e0371932280802
    [Google Scholar]
  24. ArslanA. ÇakmakS. CengizA. GümüşderelioğluM. Poly(butylene adipate-co-terephthalate) scaffolds: Processing, structural characteristics and cellular responses.J. Biomater. Sci. Polym. Ed.201627181841185910.1080/09205063.2016.123994527724793
    [Google Scholar]
  25. XuH.L. XuJ. ShenB.X. ZhangS.S. JinB.H. ZhuQ.Y. ZhuGe, D.L.; Wu, X.Q.; Xiao, J.; Zhao, Y.Z. Dual regulations of thermosensitive heparin–poloxamer hydrogel using ε-polylysine: Bioadhesivity and controlled kgf release for enhancing wound healing of endometrial injury.ACS Appl. Mater. Interfaces2017935295802959410.1021/acsami.7b1021128809108
    [Google Scholar]
  26. XiaoB. YangW. LeiD. HuangJ. YinY. ZhuY. YouZ. WangF. SunS. PGS scaffolds promote the in vivo survival and directional differentiation of bone marrow mesenchymal stem cells restoring the morphology and function of wounded rat uterus.Adv. Healthc. Mater.201985180145510.1002/adhm.20180145530734535
    [Google Scholar]
  27. KoH.F. SfeirC. KumtaP.N. Novel synthesis strategies for natural polymer and composite biomaterials as potential scaffolds for tissue engineering.Philos. Trans A Math Phys Eng. Sci.2010368191719811997
    [Google Scholar]
  28. YanL.P. WangY.J. RenL. WuG. CaridadeS.G. FanJ.B. Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications.J. Biomed. Mater. Res. A201095A2465475
    [Google Scholar]
  29. ParkD.W. ChoiD.S. RyuH.S. KwonH.C. JooH. MinC.K. A well-defined in vitro three-dimensional culture of human endometrium and its applicability to endometrial cancer invasion.Cancer Lett.2003195218519210.1016/S0304‑3835(03)00131‑912767527
    [Google Scholar]
  30. WangH. BoccaS. AndersonS. YuL. RhaviB.S. HorcajadasJ. OehningerS. Sex steroids regulate epithelial-stromal cell cross talk and trophoblast attachment invasion in a three-dimensional human endometrial culture system.Tissue Eng. Part C Methods201319967668710.1089/ten.tec.2012.061623320930
    [Google Scholar]
  31. AzamiM. SamadikuchaksaraeiA. PoursamarS.A. Synthesis and characterization of a laminated hydroxyapatite/gelatin nanocomposite scaffold with controlled pore structure for bone tissue engineering.Int. J. Artif. Organs2010332869510.1177/03913988100330020420306435
    [Google Scholar]
  32. SantosoE.G. YoshidaK. HirotaY. AizawaM. YoshinoO. KishidaA. Application of detergents or high hydrostatic pressure as decellularization processes in uterine tissues and their subsequent effects on in vivo uterine regeneration in murine models.PLoS One201497e10320110.1371/journal.pone.0103201
    [Google Scholar]
  33. ChanB.P. LeongK.W. Scaffolding in tissue engineering: General approaches and tissue-specific considerations.Eur. Spine J.200817S4Suppl. 446747910.1007/s00586‑008‑0745‑319005702
    [Google Scholar]
  34. GargusE.S. RogersH.B. McKinnonK.E. EdmondsM.E. WoodruffT.K. Engineered reproductive tissues.Nat. Biomed. Eng.20204438139310.1038/s41551‑020‑0525‑x32251392
    [Google Scholar]
  35. BillietT. VandenhauteM. SchelfhoutJ. Van VlierbergheS. DubruelP. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering.Biomaterials201233266020604110.1016/j.biomaterials.2012.04.05022681979
    [Google Scholar]
  36. TamadonA. ParkK.H. KimY.Y. KangB.C. KuS.Y. Efficient biomaterials for tissue engineering of female reproductive organs.Tissue Eng. Regen. Med.201613544745410.1007/s13770‑016‑9107‑030603426
    [Google Scholar]
  37. ZambutoS.G. ClancyK.B.H. HarleyB.A.C. A gelatin hydrogel to study endometrial angiogenesis and trophoblast invasion.Interface Focus2019952019001610.1098/rsfs.2019.001631485309
    [Google Scholar]
  38. MurphyA.R. WiwatpanitT. LuZ. DavaadelgerB. KimJ.J. Generation of multicellular human primary endometrial organoids.J. Vis. Exp.20192019152
    [Google Scholar]
  39. LiW-X. LiangG-T. YanW. ZhangQ. WangW. ZhouX-M. LiuD-Y. Artificial uterus on a microfluidic chip.Chin. J. Anal. Chem.201341446747210.1016/S1872‑2040(13)60639‑8
    [Google Scholar]
  40. PaulK. DarziS. McPheeG. Del BorgoM.P. WerkmeisterJ.A. GargettC.E. MukherjeeS. 3D bioprinted endometrial stem cells on melt electrospun poly ε-caprolactone mesh for pelvic floor application promote anti-inflammatory responses in mice.Acta Biomater.20199716217610.1016/j.actbio.2019.08.00331386931
    [Google Scholar]
  41. HiraokaT. HirotaY. Saito-FujitaT. MatsuoM. EgashiraM. MatsumotoL. HaraguchiH. DeyS.K. FurukawaK.S. FujiiT. OsugaY. STAT3 accelerates uterine epithelial regeneration in a mouse model of decellularized uterine matrix transplantation.JCI Insight2016188759110.1172/jci.insight.8759127358915
    [Google Scholar]
  42. CampoH. García-DomínguezX. López-MartínezS. FausA. Vicente AntónJ.S. Marco-JiménezF. CervellóI. Tissue-specific decellularized endometrial substratum mimicking different physiological conditions influences in vitro embryo development in a rabbit model.Acta Biomater.20198912613810.1016/j.actbio.2019.03.00430849561
    [Google Scholar]
  43. YaoQ. ZhengY.W. LinH.L. LanQ.H. HuangZ.W. WangL.F. ChenR. XiaoJ. KouL. XuH.L. ZhaoY.Z. Exploiting crosslinked decellularized matrix to achieve uterus regeneration and construction.Artif. Cells Nanomed. Biotechnol.202048121822910.1080/21691401.2019.169982831851840
    [Google Scholar]
  44. López-MartínezS. Rodríguez-EgurenA. de Miguel-GómezL. Francés-HerreroE. FausA. DíazA. PellicerA. FerreroH. CervellóI. Bioengineered endometrial hydrogels with growth factors promote tissue regeneration and restore fertility in murine models.Acta Biomater.202113511312510.1016/j.actbio.2021.08.02534428563
    [Google Scholar]
  45. YoungR.C. GolomanG. Allo- and xeno-reassembly of human and rat myometrium from cells and scaffolds.Tissue Eng. Part A20131919-202112211910.1089/ten.tea.2012.054923560472
    [Google Scholar]
  46. NovoselE.C. KleinhansC. KlugerP.J. Vascularization is the key challenge in tissue engineering.Adv. Drug Deliv. Rev.2011634-530031110.1016/j.addr.2011.03.00421396416
    [Google Scholar]
  47. RouwkemaJ. KhademhosseiniA. Vascularization and angiogenesis in tissue engineering: Beyond creating static networks.Trends Biotechnol.201634973374510.1016/j.tibtech.2016.03.00227032730
    [Google Scholar]
  48. KooS. SantoniS.M. GaoB.Z. GrigoropoulosC.P. MaZ. Laser-assisted biofabrication in tissue engineering and regenerative medicine.J. Mater. Res.2017321128142[Internet10.1557/jmr.2016.452
    [Google Scholar]
  49. LovettM. LeeK. EdwardsA. KaplanD.L. Vascularization strategies for tissue engineering.Tissue Eng. Part B Rev.202415335310.1089/ten.teb.2009.0085
    [Google Scholar]
  50. JoshiV.S. LeiN.Y. WalthersC.M. WuB. DunnJ.C.Y. Macro-porosity enhances vascularization of electrospun scaffolds.J. Surg. Res.2013183118
    [Google Scholar]
  51. Flores-RojasG.G. Gómez-LazaroB. López-SaucedoF. Vera-GrazianoR. BucioE. MendizábalE. Electrospun scaffolds for tissue engineering: A review.Macromol20233524553
    [Google Scholar]
  52. BaranovskiiD. DemnerJ. NürnbergerS. LyundupA. RedlH. HilpertM. PigeotS. KrasheninnikovM. KrasilnikovaO. KlabukovI. ParshinV. MartinI. LardinoisD. BarberoA. Engineering of tracheal grafts based on recellularization of laser-engraved human airway cartilage substrates.Cartilage202213110.1177/1947603522107595135189712
    [Google Scholar]
  53. DasS. Gordián-VélezW.J. LedeburH.C. MourkiotiF. RompolasP. ChenH.I. Innervation: The missing link for biofabricated tissues and organs.NPJ Regen. Med.202051119
    [Google Scholar]
  54. WestphalJ.A. BryanA.E. KrutkoM. EsfandiariL. SchutteS.C. HarrisG.M. Innervation of an ultrasound-mediated pvdf-trfe scaffold for skin-tissue engineering.Biomimetics2023912
    [Google Scholar]
  55. DasS. BrowneK.D. LaimoF.A. MaggioreJ.C. KaisaierH. AguilarC.A. Pre-innervated tissue engineered muscle promotes a pro-regenerative microenvironment following volumetric muscle loss.bioRxiv201984012410.1101/840124
    [Google Scholar]
  56. MengX. IchimT.E. ZhongJ. RogersA. YinZ. JacksonJ. WangH. GeW. BoginV. ChanK.W. ThébaudB. RiordanN.H. Endometrial regenerative cells: A novel stem cell population.J. Transl. Med.2007515710.1186/1479‑5876‑5‑5718005405
    [Google Scholar]
  57. DominiciM. Le BlancK. MuellerI. Slaper-CortenbachI. MariniF.C. KrauseD.S. DeansR.J. KeatingA. ProckopD.J. HorwitzE.M. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement.Cytotherapy20068431531710.1080/1465324060085590516923606
    [Google Scholar]
  58. Sanchez-MataA. Gonzalez-MuñozE. Understanding menstrual blood-derived stromal/stem cells: Definition and properties. Are we rushing into their therapeutic applications?iScience2021241210350110.1016/j.isci.2021.10350134917895
    [Google Scholar]
  59. GargettC.E. NguyenH.P.T. YeL. Endometrial regeneration and endometrial stem/progenitor cells.Rev. Endocr. Metab. Disord.201213423525110.1007/s11154‑012‑9221‑922847235
    [Google Scholar]
  60. AbouelnagaH. El-KhateebD. MoemenY. El-FertA. ElgazzarM. KhalilA. Characterization of mesenchymal stem cells isolated from Wharton’s jelly of the human umbilical cord.Egyptian Liver Journal2022121210.1186/s43066‑021‑00165‑w
    [Google Scholar]
  61. YeL. SwingenC. ZhangJ. Induced pluripotent stem cells and their potential for basic and clinical sciences.Curr. Cardiol. Rev.20139163
    [Google Scholar]
  62. HuJ. SongK. ZhangJ. ZhangY. TanB.Z. Effects of menstrual blood derived stem cells on endometrial injury repair.Mol. Med. Rep.201919281382030569163
    [Google Scholar]
  63. SkliutėG. BaušytėR. BorutinskaitėV. ValiulienėG. KaupinisA. ValiusM. Menstrual blood-derived endometrial stem cells’ impact for the treatment perspective of female infertility.Int. J. Mol. Sci.202122136774
    [Google Scholar]
  64. LinJ. XiangD. ZhangJ. AllicksonJ. XiangC. Plasticity of human menstrual blood stem cells derived from the endometrium.J. Zhejiang Univ. Sci. B201112537238010.1631/jzus.B110001521528491
    [Google Scholar]
  65. HuX. DaiZ. PanR. ZhangY. LiuL. WangY. ChenX. YaoD. HongM. LiuC. Long-term transplantation human menstrual blood mesenchymal stem cell loaded collagen scaffolds repair endometrium histological injury.Reprod. Toxicol.2022109536010.1016/j.reprotox.2022.03.00135288324
    [Google Scholar]
  66. ArezooN. MohammadH. MalihezamanM. Tissue engineering of mouse uterus using menstrual blood stem cells (MenSCs) and decellularized uterine scaffold.Stem Cell Res. Ther.202112147510.1186/s13287‑021‑02543‑y34425893
    [Google Scholar]
  67. ChenL. LiL. MoQ. ZhangX. ChenC. WuY. ZengX. DengK. LiuN. ZhuP. LiuM. XiaoY. An injectable gelatin/sericin hydrogel loaded with human umbilical cord mesenchymal stem cells for the treatment of uterine injury.Bioeng. Transl. Med.202381e1032810.1002/btm2.1032836684066
    [Google Scholar]
  68. ChenF. GongY. JiangN. XiaoJ. WangY. ChenL. SuiL. Transplantation of bFGF-transfected bone mesenchymal stem cells on collagen scaffolds promotes the regeneration of injured rat endometrium.Am. J. Transl. Res.20221496712672536247308
    [Google Scholar]
  69. XinL. LinX. PanY. ZhengX. ShiL. ZhangY. MaL. GaoC. ZhangS. A collagen scaffold loaded with human umbilical cord-derived mesenchymal stem cells facilitates endometrial regeneration and restores fertility.Acta Biomater.20199216017110.1016/j.actbio.2019.05.01231075515
    [Google Scholar]
  70. HuQ. XieN. LiaoK. HuangJ. YangQ. ZhouY. LiuY. DengK. An injectable thermosensitive Pluronic F127/hyaluronic acid hydrogel loaded with human umbilical cord mesenchymal stem cells and asiaticoside microspheres for uterine scar repair.Int. J. Biol. Macromol.20222199610810.1016/j.ijbiomac.2022.07.16135902020
    [Google Scholar]
  71. YangH. WuS. FengR. HuangJ. LiuL. LiuF. ChenY. Vitamin C plus hydrogel facilitates bone marrow stromal cell-mediated endometrium regeneration in rats.Stem Cell Res. Ther.20178126710.1186/s13287‑017‑0718‑829157289
    [Google Scholar]
  72. HuangJ. ZhangW. YuJ. GouY. LiuN. WangT. SunC. WuB. LiC. ChenX. MaoY. ZhangY. WangJ. Human amniotic mesenchymal stem cells combined with PPCNg facilitate injured endometrial regeneration.Stem Cell Res. Ther.20221311710.1186/s13287‑021‑02682‑235022063
    [Google Scholar]
  73. FengM. HuS. QinW. TangY. GuoR. HanL. Bioprinting of a blue light-cross-linked biodegradable hydrogel encapsulating amniotic mesenchymal stem cells for intrauterine adhesion prevention.ACS Omega2021636230672307510.1021/acsomega.1c02117
    [Google Scholar]
  74. HeW. JuD. GuY. LuY. GeM. WuQ. DongC. Human menstrual blood-derived stem cells combined with a new 3D bioprinted composite scaffold for spinal cord injury treatment.Med. Hypotheses202215911075510.1016/j.mehy.2021.110755
    [Google Scholar]
  75. RahimiM. Mohseni-KouchesfehaniH. ZarnaniA.H. MobiniS. NikooS. KazemnejadS. Evaluation of menstrual blood stem cells seeded in biocompatible Bombyx mori silk fibroin scaffold for cardiac tissue engineering.J. Biomater. Appl.201429219920810.1177/0885328213519835
    [Google Scholar]
  76. UlrichD. MuralitharanR. GargettC.E. Toward the use of endometrial and menstrual blood mesenchymal stem cells for cell-based therapies.Expert Opin. Biol. Ther.201313101387140010.1517/14712598.2013.826187
    [Google Scholar]
  77. KongY. ShaoY. RenC. YangG. Endometrial stem/progenitor cells and their roles in immunity, clinical application, and endometriosis.Stem Cell Res. Ther.2021121116
    [Google Scholar]
  78. SuK. EdwardsS.L. TanK.S. WhiteJ.F. KandelS. RamshawJ.A.M. GargettC.E. WerkmeisterJ.A. Induction of endometrial mesenchymal stem cells into tissue-forming cells suitable for fascial repair.Acta Biomater.201410125012502010.1016/j.actbio.2014.08.03125194931
    [Google Scholar]
  79. PaulK. DarziS. Del BorgoM.P. CousinsF.L. WerkmeisterJ.A. GargettC.E. MukherjeeS. Vaginal delivery of tissue engineered endometrial mesenchymal stem/stromal cells in an aloe vera-alginate hydrogel alleviates maternal simulated birth injury.Appl. Mater. Today20212210089010.1016/j.apmt.2020.100890
    [Google Scholar]
  80. LaughlinM.J. BarkerJ. BambachB. KocO.N. RizzieriD.A. WagnerJ.E. GersonS.L. LazarusH.M. CairoM. StevensC.E. RubinsteinP. KurtzbergJ. Hematopoietic engraftment and survival in adult recipients of umbilical-cord blood from unrelated donors.N. Engl. J. Med.2001344241815182210.1056/NEJM20010614344240211407342
    [Google Scholar]
  81. WeissM.L. TroyerD.L. Stem cells in the umbilical cord.Stem Cell Rev.20062215516210.1007/s12015‑006‑0022‑y17237554
    [Google Scholar]
  82. DingD.C. ChangY.H. ShyuW.C. LinS.Z. Human umbilical cord mesenchymal stem cells: A new era for stem cell therapy.Cell Transplant.201524333934710.3727/096368915X68684125622293
    [Google Scholar]
  83. ShiQ. GaoJ. JiangY. SunB. LuW. SuM. XuY. YangX. ZhangY. Differentiation of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells into endometrial cells.Stem Cell Res. Ther.20178124610.1186/s13287‑017‑0700‑529096715
    [Google Scholar]
  84. TakahashiK. TanabeK. OhnukiM. NaritaM. IchisakaT. TomodaK. YamanakaS. Induction of pluripotent stem cells from adult human fibroblasts by defined factors.Cell2007131586187210.1016/j.cell.2007.11.01918035408
    [Google Scholar]
  85. AasenT. RayaA. BarreroM.J. GarretaE. ConsiglioA. GonzalezF. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes.Nat. Biotechnol.2008261112761284
    [Google Scholar]
  86. KimY. RimY.A. YiH. ParkN. ParkS.H. JuJ.H. The generation of human induced pluripotent stem cells from blood cells: An efficient protocol using serial plating of reprogrammed cells by centrifugation.Stem Cells Int.201620161329459
    [Google Scholar]
  87. KimH.K. ChoS. ChoiY.S. LeeB.S. KimS. KimH.O. ParkJ.H. Human endometrium derived induced pluripotent stem cells are amenable to directed erythroid differentiation.Tissue Eng. Regen. Med.202320693995010.1007/s13770‑023‑00554‑937452918
    [Google Scholar]
  88. CheungV.C. PengC.Y. MarinićM. SakabeN.J. AneasI. LynchV.J. OberC. NobregaM.A. KesslerJ.A. Pluripotent stem cell-derived endometrial stromal fibroblasts in a cyclic, hormone-responsive, coculture model of human decidua.Cell Rep.202135710913810.1016/j.celrep.2021.10913834010658
    [Google Scholar]
  89. MiyazakiK. DysonM.T. CoonV.J.S. FurukawaY. YilmazB.D. MaruyamaT. Generation of progesterone-responsive endometrial stromal fibroblasts from human induced pluripotent stem cells: Role of the WNT/CTNNB1 pathway.Stem Cell Reports20181151136
    [Google Scholar]
  90. LarondaM.M. BurdetteJ.E. KimJ.J. WoodruffT.K. Recreating the female reproductive tract in vitro using iPSC technology in a linked microfluidics environment.Stem Cell Res. Ther.20134S1Suppl. 1S1310.1186/scrt37424565375
    [Google Scholar]
  91. JiW. HouB. LinW. WangL. ZhengW. LiW. ZhengJ. WenX. HeP. 3D Bioprinting a human iPSC-derived MSC-loaded scaffold for repair of the uterine endometrium.Acta Biomater.202011626828410.1016/j.actbio.2020.09.01232911103
    [Google Scholar]
  92. PadmaA.M. CarrièreL. Krokström KarlssonF. SehicE. BandsteinS. TiemannT.T. Towards a bioengineered uterus: Bioactive sheep uterus scaffolds are effectively recellularized by enzymatic preconditioning.NPJ Regen. Med.202161111
    [Google Scholar]
  93. WangJ. QinW. ZhongY. HuH. YangJ. HuangH. HuangN. LiuS. LiJ. ZhengL. QinA. LuZ. Injectable collagen hydrogel combines human umbilical cord mesenchymal stem cells to promote endometrial regeneration in rats with thin endometrium.Int. J. Biol. Macromol.2024254Pt 112759110.1016/j.ijbiomac.2023.12759137884246
    [Google Scholar]
  94. MagalhaesR.S. WilliamsJ.K. YooK.W. YooJ.J. AtalaA. A tissue-engineered uterus supports live births in rabbits.Nat. Biotechnol.202038111280128710.1038/s41587‑020‑0547‑7
    [Google Scholar]
  95. CamposF. Bonhome-EspinosaA.B. García-MartínezL. DuránJ.D.G. López-LópezM.T. AlaminosM. Sánchez-QuevedoM.C. CarrielV. Ex vivo characterization of a novel tissue-like cross-linked fibrin-agarose hydrogel for tissue engineering applications.Biomed. Mater.201611505500410.1088/1748‑6041/11/5/05500427680194
    [Google Scholar]
  96. GhiringhelliM. VerdileN. BreviniT.A.L. GandolfiF. 52 Decellularization of goat uterus as a promising 3-dimensional homing matrix of biological scaffold: A pilot study.Reprod. Fertil. Dev.201931115115210.1071/RDv31n1Ab52
    [Google Scholar]
  97. OlalekanS.A. BurdetteJ.E. GetsiosS. WoodruffT.K. KimJ.J. Development of a novel human recellularized endometrium that responds to a 28-day hormone treatment.Biol. Reprod.201796597198110.1093/biolre/iox03928449068
    [Google Scholar]
  98. BrännströmM. JohannessonL. Dahm-KählerP. EnskogA. MölneJ. KvarnströmN. Diaz-GarciaC. HanafyA. LundmarkC. MarcickiewiczJ. GäbelM. GrothK. AkouriR. EklindS. HolgerssonJ. TzakisA. OlaussonM. First clinical uterus transplantation trial: A six-month report.Fertil. Steril.201410151228123610.1016/j.fertnstert.2014.02.02424582522
    [Google Scholar]
  99. PuntambekarS. TelangM. KulkarniP. JadhavS. SatheR. WartyN. PuntambekarS. KadeS. PanseM. AgarkhedkarN. GandhiG. ManchekarM. ParekhH. ParikhK. DesaiR. MehtaM. ChitaleM. NandaS. Laparoscopic-assisted uterus retrieval from live organ donors for uterine transplant.J. Minim. Invasive Gynecol.201825457157210.1016/j.jmig.2017.11.00129133152
    [Google Scholar]
  100. PuntambekarS. TelangM. KulkarniP. PuntambekarS. JadhavS. PanseM. SatheR. AgarkhedkarN. WartyN. KadeS. ManchekarM. ParekhH. ParikhK. DesaiR. MehtaM. ChitaleM. KinholkarB. JanaJ.S. PareA. SadreA. KarnikS. ManeA. GandhiG. KanadeS. PhadkeU. Laparoscopic-assisted uterus retrieval from live organ donors for uterine transplant: our experience of two patients.J. Minim. Invasive Gynecol.201825462263110.1016/j.jmig.2018.01.00929366966
    [Google Scholar]
  101. KisuI. LiuY. ChenG. SongM.J. ChangC.Y.Y. KoonT.H. Current progress in uterus transplantation research in asia.J. Clin. Med.20198224510.3390/jcm8020245
    [Google Scholar]
  102. BrännströmM. JohannessonL. BokströmH. KvarnströmN. MölneJ. Dahm-KählerP. EnskogA. MilenkovicM. EkbergJ. Diaz-GarciaC. GäbelM. HanafyA. HagbergH. OlaussonM. NilssonL. Livebirth after uterus transplantation.Lancet2015385996860761610.1016/S0140‑6736(14)61728‑125301505
    [Google Scholar]
  103. TestaG. McKennaG.J. GunbyR.T.Jr AnthonyT. KoonE.C. WarrenA.M. PutmanJ.M. ZhangL. dePriscoG. MitchellJ.M. WallisK. KlintmalmG.B. OlaussonM. JohannessonL. First live birth after uterus transplantation in the United States.Am. J. Transplant.20181851270127410.1111/ajt.1473729575738
    [Google Scholar]
  104. EjzenbergD. AndrausW. Baratelli Carelli MendesL.R. DucattiL. SongA. TanigawaR. Rocha-SantosV. Macedo ArantesR. SoaresJ.M.Jr SerafiniP.C. Bertocco de Paiva HaddadL. Pulcinelli FranciscoR. Carneiro D’AlbuquerqueL.A. Chada BaracatE. Livebirth after uterus transplantation from a deceased donor in a recipient with uterine infertility.Lancet2018392101652697270410.1016/S0140‑6736(18)31766‑530527853
    [Google Scholar]
  105. O’DonovanL. Pushing the boundaries: Uterine transplantation and the limits of reproductive autonomy.Bioethics201832848949810.1111/bioe.1253130318618
    [Google Scholar]
  106. SzamatowiczM. Assisted reproductive technology in reproductive medicine — possibilities and limitations.Ginekol. Pol.2016871282082310.5603/GP.2016.009528098933
    [Google Scholar]
  107. JärvholmS. EnskogA. HammarlingC. Dahm-KählerP. BrännströmM. Uterus transplantation: Joys and frustrations of becoming a ‘complete’ woman—a qualitative study regarding self-image in the 5-year period after transplantation.Hum. Reprod.20203581855186310.1093/humrep/deaa14332619006
    [Google Scholar]
  108. CastellónL.A.R. AmadorM.I.G. GonzálezR.E.D. EduardoM.S.J. Díaz-GarcíaC. KvarnströmN. BränströmM. The history behind successful uterine transplantation in humans.JBRA Assist. Reprod.201721212613410.5935/1518‑0557.2017002828609280
    [Google Scholar]
  109. ÖzkanÖ. ÖzkanÖ. Dogan, NU Live birth from the world’s firstever successful uterus transplant and the following second case from Turkey: Technical aspects, surgical and obstetric outcomesReconstructive Transplantation2023339345
    [Google Scholar]
  110. BrännströmM. BelfortM.A. AyoubiJ.M. Uterus transplantation worldwide: Clinical activities and outcomes.Curr. Opin. Organ Transplant.202126661662610.1097/MOT.000000000000093634636769
    [Google Scholar]
  111. KisuI. MatsudaR. ShiraishiT. HayashiR. MatobaY. TamateM. BannoK. Graft failure after uterus transplantation in 16 recipients: A review.J. Clin. Med.2023125203210.3390/jcm1205203236902818
    [Google Scholar]
  112. AyoubiJ.M. CarbonnelM. RacowskyC. de ZieglerD. GargiuloA. KvarnströmN. Dahm-KählerP. BrännströmM. Evolving clinical challenges in uterus transplantation.Reprod. Biomed. Online202245594796010.1016/j.rbmo.2022.06.02035999148
    [Google Scholar]
  113. SehicE BrännströmM HellströmM Progress in preclinical research on uterus bioengineering that utilizes scaffolds derived from decellularized uterine tissue.Biomed Mater Devices20231110.1007/s44174‑022‑00036‑x,
    [Google Scholar]
  114. YuY. ZhangW. LiuX. WangH. ShenJ. XiaoH. MeiJ. ChaiY. WenG. Extracellular matrix scaffold-immune microenvironment modulates tissue regeneration.Compos., Part B Eng.202223010952410.1016/j.compositesb.2021.109524
    [Google Scholar]
  115. KlabukovI. AtiakshinD. KoganE. IgnatyukM. KrasheninnikovM. ZharkovN. YakimovaA. GrinevichV. PryanikovP. ParshinV. SosinD. KostinA.A. ShegayP. KaprinA.D. BaranovskiiD. Post-implantation inflammatory responses to xenogeneic tissue-engineered cartilage implanted in rabbit trachea: The role of cultured chondrocytes in the modification of inflammation.Int. J. Mol. Sci.202324231678310.3390/ijms24231678338069106
    [Google Scholar]
  116. Raya-RiveraA. EsquilianoD.R. YooJ.J. Lopez-BayghenE. SokerS. AtalaA. Tissue-engineered autologous urethras for patients who need reconstruction: An observational study.Lancet201137797721175118210.1016/S0140‑6736(10)62354‑921388673
    [Google Scholar]
  117. BlankR.D. Practical management of fracture risk among peri- and postmenopausal women.Fertil. Steril.2019112578279010.1016/j.fertnstert.2019.09.03831731932
    [Google Scholar]
  118. BrännströmM. Dahm-KählerP. KvarnströmN. AkouriR. RovaK. OlaussonM. GrothK. EkbergJ. EnskogA. SheikhiM. MölneJ. BokströmH. Live birth after robotic‐assisted live donor uterus transplantation.Acta Obstet. Gynecol. Scand.20209991222122910.1111/aogs.1385332196630
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010316780240807104149
Loading
/content/journals/cpb/10.2174/0113892010316780240807104149
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test