Skip to content
2000
image of Mechanisms of Bioactive Lipids to Modulate Master Regulators of Lipid Homeostasis and Inflammation in Metabolic Syndrome

Abstract

Metabolic Syndrome (MetS) refers to the co-occurrence of a constellation of metabolic diseases in the same individual, such as abdominal/visceral obesity, insulin resistance or diabetes, alterations in the lipid profile (dyslipidemias), and/or hypertension, which promotes the development of other cardiometabolic and hepatic diseases. Dyslipidemia and metabolic dysfunction-associated steatotic liver disease (MASLD), previously termed nonalcoholic fatty liver disease (NAFLD), are common MetS pathologies closely related to lipid metabolism. Alterations in the metabolism of proteins, carbohydrates, and lipids, caused by an excessive intake of nutrients and abnormal accumulation of body fat, which promotes chronic low-grade inflammation, are pivotal aspects of MetS development. To avoid damage caused by lipid overaccumulation, the transcription factors responsible for regulating lipid homeostasis and inflammation (named in this work master regulators) must modify their regular activity however, the high adiposity established for long periods causes the appearance of insulin resistance (the MetS triggering factor most widely accepted in the literature). Fortunately, scientific evidence suggests that the abnormal activity of these regulators can be conveniently modulated by distinct species of bioactive lipids, among which unsaturated fatty acids stand out, offering new alternatives for treating MetS. Therefore, this work aims to provide a general overview of scientific evidence that supports the mechanisms of action and the effective modulation by bioactive lipids of some master lipid-metabolism-and-inflammation regulators in diverse aspects of MetS

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010340506241014112341
2024-10-25
2024-11-23
Loading full text...

Full text loading...

References

  1. Rodríguez-Cruz M. Serna D.S. Nutrigenomics of ω-3 fatty acids: Regulators of the master transcription factors. Nutrition 2017 41 90 96 10.1016/j.nut.2017.04.012 28760435
    [Google Scholar]
  2. Eberlé D. Hegarty B. Bossard P. Ferré P. Foufelle F. SREBP transcription factors: Master regulators of lipid homeostasis. Biochimie 2004 86 11 839 848 10.1016/j.biochi.2004.09.018 15589694
    [Google Scholar]
  3. Shimano H. Sato R. SREBP-regulated lipid metabolism: Convergent physiology — divergent pathophysiology. Nat. Rev. Endocrinol. 2017 13 12 710 730 10.1038/nrendo.2017.91 28849786
    [Google Scholar]
  4. Zhao C. Dahlman-Wright K. Liver X receptor in cholesterol metabolism. J. Endocrinol. 2010 204 3 233 240 10.1677/JOE‑09‑0271 19837721
    [Google Scholar]
  5. Bonet M.L. Ribot J. Palou A. Lipid metabolism in mammalian tissues and its control by retinoic acid. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2012 1821 1 177 189 10.1016/j.bbalip.2011.06.001 21669299
    [Google Scholar]
  6. Petersen M.C. Shulman G.I. Mechanisms of insulin action and insulin resistance. Physiol. Rev. 2018 98 4 2133 2223 10.1152/physrev.00063.2017 30067154
    [Google Scholar]
  7. Unger R.H. Clark G.O. Scherer P.E. Orci L. Lipid homeostasis, lipotoxicity and the metabolic syndrome. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2010 1801 3 209 214 10.1016/j.bbalip.2009.10.006 19948243
    [Google Scholar]
  8. Han L. Shen W.J. Bittner S. Kraemer F.B. Azhar S. PPARs: Regulators of metabolism and as therapeutic targets in cardiovascular disease. Part II: PPAR-β/δ and PPAR-γ. Future Cardiol. 2017 13 3 279 296 10.2217/fca‑2017‑0019 28581362
    [Google Scholar]
  9. Wang B. Tontonoz P. Liver X receptors in lipid signalling and membrane homeostasis. Nat. Rev. Endocrinol. 2018 14 8 452 463 10.1038/s41574‑018‑0037‑x 29904174
    [Google Scholar]
  10. Musso G. Cassader M. Paschetta E. Gambino R. Bioactive lipid species and metabolic pathways in progression and resolution of nonalcoholic steatohepatitis. Gastroenterology 2018 155 2 282 302.e8 10.1053/j.gastro.2018.06.031 29906416
    [Google Scholar]
  11. Duszka K. Oresic M. Le May C. König J. Wahli W. PPARγ modulates long chain fatty acid processing in the intestinal epithelium. Int. J. Mol. Sci. 2017 18 12 2559 10.3390/ijms18122559 29182565
    [Google Scholar]
  12. Betters J.L. Yu L. NPC1L1 and cholesterol transport. FEBS Lett. 2010 584 13 2740 2747 10.1016/j.febslet.2010.03.030 20307540
    [Google Scholar]
  13. Ge L. Wang J. Qi W. Miao H.H. Cao J. Qu Y.X. Li B.L. Song B.L. The cholesterol absorption inhibitor ezetimibe acts by blocking the sterol-induced internalization of NPC1L1. Cell Metab. 2008 7 6 508 519 10.1016/j.cmet.2008.04.001 18522832
    [Google Scholar]
  14. Luo J. Yang H. Song B.L. Mechanisms and regulation of cholesterol homeostasis. Nat. Rev. Mol. Cell Biol. 2020 21 4 225 245 10.1038/s41580‑019‑0190‑7 31848472
    [Google Scholar]
  15. Jia L. Betters J.L. Yu L. Niemann-pick C1-like 1 (NPC1L1) protein in intestinal and hepatic cholesterol transport. Annu. Rev. Physiol. 2011 73 1 239 259 10.1146/annurev‑physiol‑012110‑142233 20809793
    [Google Scholar]
  16. Li X. Xin Y. Mo Y. Marozik P. He T. Guo H. The bioavailability and biological activities of phytosterols as modulators of cholesterol metabolism. Molecules 2022 27 2 523 10.3390/molecules27020523 35056839
    [Google Scholar]
  17. Llaverias G. Alegret M. Inhibidores de la acil coenzima A:Colesterol aciltransferasa (ACAT): Mecanismos y perspectivas terapéuticas. Clin. Investig. Arterioscler. 2004 16 6 250 261 10.1016/S0214‑9168(04)79002‑6
    [Google Scholar]
  18. Yu XH Zheng XL Tang CK Peroxisome proliferator-activated receptor α in lipid metabolism and atherosclerosis. Adv Clin Chem 2015 71 2015 171 203 10.1016/bs.acc.2015.06.005
    [Google Scholar]
  19. Smet E.D. Mensink R.P. Plat J. Effects of plant sterols and stanols on intestinal cholesterol metabolism: Suggested mechanisms from past to present. Mol. Nutr. Food Res. 2012 56 7 1058 1072 10.1002/mnfr.201100722 22623436
    [Google Scholar]
  20. Qiao Y.N. Zou Y.L. Guo S.D. Low-density lipoprotein particles in atherosclerosis. Front. Physiol. 2022 13 931931 10.3389/fphys.2022.931931 36111155
    [Google Scholar]
  21. Ouimet M. Barrett T.J. Fisher E.A. HDL and reverse cholesterol transport: Basic mechanisms and their roles in vascular health and disease. Circ. Res. 2019 124 10 1505 1518 10.1161/CIRCRESAHA.119.312617 31071007
    [Google Scholar]
  22. Berberich A.J. Hegele R.A. A modern approach to dyslipidemia. Endocr. Rev. 2022 43 4 611 653 10.1210/endrev/bnab037 34676866
    [Google Scholar]
  23. Liu Y. Colby J.K. Zuo X. Jaoude J. Wei D. Shureiqi I. The role of ppar-δ in metabolism, inflammation, and cancer: Many characters of a critical transcription factor. Int. J. Mol. Sci. 2018 19 11 3339 10.3390/ijms19113339 30373124
    [Google Scholar]
  24. Kim H.S. Hwang Y.C. Koo S.H. Park K.S. Lee M.S. Kim K.W. Lee M.K. PPAR-γ activation increases insulin secretion through the up-regulation of the free fatty acid receptor GPR40 in pancreatic β-cells. PLoS One 2013 8 1 e50128 10.1371/journal.pone.0050128 23372643
    [Google Scholar]
  25. DeBose-Boyd R.A. Ye J. SREBPs in lipid metabolism, insulin signaling, and beyond. Trends Biochem. Sci. 2018 43 5 358 368 10.1016/j.tibs.2018.01.005 29500098
    [Google Scholar]
  26. Raghow R. Yellaturu C. Deng X. Park E.A. Elam M.B. SREBPs: the crossroads of physiological and pathological lipid homeostasis. Trends Endocrinol. Metab. 2008 19 2 65 73 10.1016/j.tem.2007.10.009 18291668
    [Google Scholar]
  27. Das M. v G. Zarei M. Harohally N.V. Kumar G S. Modulation of obesity associated metabolic dysfunction by novel lipophilic fraction obtained from agaricus bisporus. Life Sci. 2022 305 120779 10.1016/j.lfs.2022.120779 35798070
    [Google Scholar]
  28. Galle M. Kladniew B.R. Castro M.A. Villegas S.M. Lacunza E. Polo M. de Bravo M.G. Crespo R. Modulation by geraniol of gene expression involved in lipid metabolism leading to a reduction of serum-cholesterol and triglyceride levels. Phytomedicine 2015 22 7-8 696 704 10.1016/j.phymed.2015.04.005 26141755
    [Google Scholar]
  29. Kojta I. Chacińska M. Błachnio-Zabielska A. Obesity, bioactive lipids, and adipose tissue inflammation in insulin resistance. Nutrients 2020 12 5 1305 10.3390/nu12051305 32375231
    [Google Scholar]
  30. Oda E. Metabolic syndrome: Its history, mechanisms, and limitations. Acta Diabetol. 2012 49 2 89 95 10.1007/s00592‑011‑0309‑6 21720880
    [Google Scholar]
  31. Baker R.G. Hayden M.S. Ghosh S. NF-κB, inflammation, and metabolic disease. Cell Metab. 2011 13 1 11 22 10.1016/j.cmet.2010.12.008 21195345
    [Google Scholar]
  32. Adeva-Andany M.M. Pérez-Felpete N. Fernández-Fernández C. Donapetry-García C. Pazos-García C. Liver glucose metabolism in humans. Biosci. Rep. 2016 36 6 e00416 10.1042/BSR20160385 27707936
    [Google Scholar]
  33. Petersen M.C. Vatner D.F. Shulman G.I. Regulation of hepatic glucose metabolism in health and disease. Nat. Rev. Endocrinol. 2017 13 10 572 587 10.1038/nrendo.2017.80 28731034
    [Google Scholar]
  34. de Castro G.S. Calder P.C. Non-alcoholic fatty liver disease and its treatment with n-3 polyunsaturated fatty acids. Clin. Nutr. 2018 37 1 37 55 10.1016/j.clnu.2017.01.006 28139281
    [Google Scholar]
  35. Ji X. Shi S. Liu B. Shan M. Tang D. Zhang W. Zhang Y. Zhang L. Zhang H. Lu C. Wang Y. Bioactive compounds from herbal medicines to manage dyslipidemia. Biomed. Pharmacother. 2019 118 109338 10.1016/j.biopha.2019.109338 31545238
    [Google Scholar]
  36. Tan N.S. Vázquez-Carrera M. Montagner A. Sng M.K. Guillou H. Wahli W. Transcriptional control of physiological and pathological processes by the nuclear receptor PPARβ/δ. Prog. Lipid Res. 2016 64 98 122 10.1016/j.plipres.2016.09.001 27665713
    [Google Scholar]
  37. Maliha S. Guo G.L. Farnesoid X receptor and fibroblast growth factor 15/19 as pharmacological targets. Liver Res. 2021 5 3 142 150 10.1016/j.livres.2021.02.002
    [Google Scholar]
  38. Armstrong L.E. Guo G.L. Role of FXR in liver inflammation during nonalcoholic steatohepatitis. Curr. Pharmacol. Rep. 2017 3 2 92 100 10.1007/s40495‑017‑0085‑2 28983452
    [Google Scholar]
  39. Khalid Q Bailey I Patel VB The Effect of Bile Acids and Farnesoid X Receptor Agonists on Pathophysiology and Treatment. Liver Res Open J. 2015 1 32 40
    [Google Scholar]
  40. Nagao K. Yanagita T. Medium-chain fatty acids: Functional lipids for the prevention and treatment of the metabolic syndrome. Pharmacol. Res. 2010 61 3 208 212 10.1016/j.phrs.2009.11.007 19931617
    [Google Scholar]
  41. Im S.S. Osborne T.F. Liver x receptors in atherosclerosis and inflammation. Circ. Res. 2011 108 8 996 1001 10.1161/CIRCRESAHA.110.226878 21493922
    [Google Scholar]
  42. Kanigur Sultuybek G. Soydas T. Yenmis G. NF ‐κB as the mediator of metformin’s effect on ageing and ageing‐related diseases. Clin. Exp. Pharmacol. Physiol. 2019 46 5 413 422 10.1111/1440‑1681.13073 30754072
    [Google Scholar]
  43. Lambert S.A. Jolma A. Campitelli L.F. Das P.K. Yin Y. Albu M. Chen X. Taipale J. Hughes T.R. Weirauch M.T. The human transcription factors. Cell 2018 172 4 650 665 10.1016/j.cell.2018.01.029 29425488
    [Google Scholar]
  44. Wang Y. Nakajima T. Gonzalez F.J. Tanaka N. PPARs as metabolic regulators in the liver: Lessons from liver-specific PPAR-null mice. Int. J. Mol. Sci. 2020 21 6 2061 10.3390/ijms21062061 32192216
    [Google Scholar]
  45. Han L. Shen W.J. Bittner S. Kraemer F.B. Azhar S. PPARs: Regulators of metabolism and as therapeutic targets in cardiovascular disease. Part I: PPAR-α. Future Cardiol. 2017 13 3 259 278 10.2217/fca‑2016‑0059 28581332
    [Google Scholar]
  46. Capece D. Verzella D. Flati I. Arboretto P. Cornice J. Franzoso G. NF-κB: Blending metabolism, immunity, and inflammation. Trends Immunol. 2022 43 9 757 775 10.1016/j.it.2022.07.004 35965153
    [Google Scholar]
  47. Liu T. Zhang L. Joo D. Sun S.C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017 ••• 2
    [Google Scholar]
  48. Mitchell JP Carmody RJ NF-κB and the transcriptional control of inflammation. Int Rev Cell Mol Biol 2018 335 41 84
    [Google Scholar]
  49. Calder P.C. Functional roles of fatty acids and their effects on human health. JPEN J. Parenter. Enteral Nutr. 2015 39 1S Suppl. 18S 32S 10.1177/0148607115595980 26177664
    [Google Scholar]
  50. Watanabe M. Uesugi M. Small-molecule inhibitors of SREBP activation – potential for new treatment of metabolic disorders. MedChemComm 2013 4 11 1422 1433 10.1039/c3md00177f
    [Google Scholar]
  51. Bengoechea-Alonso M.T. Ericsson J. SREBP in signal transduction: Cholesterol metabolism and beyond. Curr. Opin. Cell Biol. 2007 19 2 215 222 10.1016/j.ceb.2007.02.004 17303406
    [Google Scholar]
  52. Chu K. Miyazaki M. Man W.C. Ntambi J.M. Stearoyl-Coenzyme A. Stearoyl-coenzyme A desaturase 1 deficiency protects against hypertriglyceridemia and increases plasma high-density lipoprotein cholesterol induced by liver X receptor activation. Mol. Cell. Biol. 2006 26 18 6786 6798 10.1128/MCB.00077‑06 16943421
    [Google Scholar]
  53. Sato R. Sterol metabolism and SREBP activation. Arch. Biochem. Biophys. 2010 501 2 177 181 10.1016/j.abb.2010.06.004 20541520
    [Google Scholar]
  54. Rustan A.C. Drevon C.A. Fatty acids: Structures and properties. Wiley John Wiley & Sons, Ltd 2005 29198 Wiley
    [Google Scholar]
  55. Priore P. Siculella L. Gnoni G.V. Extra virgin olive oil phenols down-regulate lipid synthesis in primary-cultured rat-hepatocytes. J. Nutr. Biochem. 2014 25 7 683 691 10.1016/j.jnutbio.2014.01.009 24742469
    [Google Scholar]
  56. Cao K. Xu J. Zou X. Li Y. Chen C. Zheng A. Li H. Li H. Szeto I.M.Y. Shi Y. Long J. Liu J. Feng Z. Hydroxytyrosol prevents diet-induced metabolic syndrome and attenuates mitochondrial abnormalities in obese mice. Free Radic. Biol. Med. 2014 67 396 407 10.1016/j.freeradbiomed.2013.11.029 24316371
    [Google Scholar]
  57. Perdomo L. Beneit N. Otero Y.F. Escribano Ó. Díaz-Castroverde S. Gómez-Hernández A. Benito M. Protective role of oleic acid against cardiovascular insulin resistance and in the early and late cellular atherosclerotic process. Cardiovasc. Diabetol. 2015 14 1 75 10.1186/s12933‑015‑0237‑9 26055507
    [Google Scholar]
  58. Wiciński M. Erdmann J. Nowacka A. Kuźmiński O. Michalak K. Janowski K. Ohla J. Biernaciak A. Szambelan M. Zabrzyński J. Natural phytochemicals as SIRT activators—focus on potential biochemical mechanisms. Nutrients 2023 15 16 3578 10.3390/nu15163578 37630770
    [Google Scholar]
  59. Jump D.B. Dietary polyunsaturated fatty acids and regulation of gene transcription. Annu Rev Nutr. 2002 Vol. 14 83 98
    [Google Scholar]
  60. Backes J. Anzalone D. Hilleman D. Catini J. The clinical relevance of omega-3 fatty acids in the management of hypertriglyceridemia. Lipids Health Dis. 2016 15 1 118 10.1186/s12944‑016‑0286‑4 27444154
    [Google Scholar]
  61. Rodríguez-Cruz M. Tovar A.R. del Prado M. Torres N. Molecular mechanisms of action and health benefits of polyunsaturated fatty acids. Rev. Invest. Clin. 2005 57 3 457 472 16187707
    [Google Scholar]
  62. Peng A. Liu S. Fang L. Zhu Z. Zhou Y. Yue S. Ma Z. Liu X. Xue S. Qiu Y. Qi R. Inonotus obliquus and its bioactive compounds alleviate non-alcoholic fatty liver disease via regulating FXR/SHP/SREBP-1c axis. Eur. J. Pharmacol. 2022 921 174841 10.1016/j.ejphar.2022.174841 35278405
    [Google Scholar]
  63. Tang J.J. Li J.G. Qi W. Qiu W.W. Li P.S. Li B.L. Song B.L. Inhibition of SREBP by a small molecule, betulin, improves hyperlipidemia and insulin resistance and reduces atherosclerotic plaques. Cell Metab. 2011 13 1 44 56 10.1016/j.cmet.2010.12.004 21195348
    [Google Scholar]
  64. Hu X.Q. Wang Y.M. Wang J.F. Xue Y. Li Z.J. Nagao K. Yanagita T. Xue C.H. Dietary saponins of sea cucumber alleviate orotic acid-induced fatty liver in rats via PPARα and SREBP-1c signaling. Lipids Health Dis. 2010 9 1 25 10.1186/1476‑511X‑9‑25 20211032
    [Google Scholar]
  65. Tak P.P. Firestein G.S. NF-κB: a key role in inflammatory diseases. J. Clin. Invest. 2001 107 1 7 11 10.1172/JCI11830 11134171
    [Google Scholar]
  66. Pomerantz J.L. Baltimore D. Two Pathways to NF-κB. Mol. Cell 2002 10 4 693 695 10.1016/S1097‑2765(02)00697‑4 12419209
    [Google Scholar]
  67. Yu XH Zheng XL Tang CK Nuclear factor-κb activation as a pathological mechanism of lipid metabolism and atherosclerosis. Adv Clin Chem 2015 70 1 30 10.1016/bs.acc.2015.03.004
    [Google Scholar]
  68. Hayden M.S. Ghosh S. NF-κB in immunobiology. Cell Res. 2011 21 2 223 244 10.1038/cr.2011.13 21243012
    [Google Scholar]
  69. Albensi B.C. What is nuclear factor kappa B (NF-κB) doing in and to the mitochondrion? Front. Cell Dev. Biol. 2019 7 154 10.3389/fcell.2019.00154 31448275
    [Google Scholar]
  70. Lingappan K. NF-κB in oxidative stress. Curr. Opin. Toxicol. 2018 7 81 86 10.1016/j.cotox.2017.11.002 29862377
    [Google Scholar]
  71. Christian F. Smith E. Carmody R. The regulation of NF-кB Subunits by Phosphorylation. Cells 2016 5 1 12 10.3390/cells5010012 26999213
    [Google Scholar]
  72. Yu H. Lin L. Zhang Z. Zhang H. Hu H. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct. Target. Ther. 2020 5 1 209 10.1038/s41392‑020‑00312‑6
    [Google Scholar]
  73. Zhang H. Sun S.C. NF-KB in inflammation and renal diseases. Cell Biosci. 2015 ••• 5
    [Google Scholar]
  74. Iskender H. Yenice G. Terim Kapakin K.A. Dokumacioglu E. Sevim C. Hayirli A. Altun S. Effects of high fructose diet on lipid metabolism and the hepatic NF-κB/SIRT-1 pathway. Biotech. Histochem. 2022 97 1 30 38 10.1080/10520295.2021.1890214 33629622
    [Google Scholar]
  75. Kapoor B. Kapoor D. Gautam S. Singh R. Bhardwaj S. Dietary polyunsaturated fatty acids (PUFAs): Uses and potential health benefits. Curr. Nutr. Rep. 2021 10 3 232 242 10.1007/s13668‑021‑00363‑3 34255301
    [Google Scholar]
  76. Pinazo-Duran M.D. Boscá-Gomar L. [Anti-inflammatory properties of polyunsaturated fatty acid omega 3. Indications in ophthalmology] Arch. Soc. Esp. Oftalmol. 2012 87 7 203 205 10.1016/j.oftal.2012.04.003 22732118
    [Google Scholar]
  77. Draper E. Reynolds C.M. Canavan M. Mills K.H. Loscher C.E. Roche H.M. Omega-3 fatty acids attenuate dendritic cell function via NF-κB independent of PPARγ. J. Nutr. Biochem. 2011 22 8 784 790 10.1016/j.jnutbio.2010.06.009 21111596
    [Google Scholar]
  78. Saini R.K. Keum Y.S. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance — A review. Life Sci. 2018 203 255 267 10.1016/j.lfs.2018.04.049 29715470
    [Google Scholar]
  79. Zhang X. Xue C. Xu Q. Zhang Y. Li H. Li F. Liu Y. Guo C. Caprylic acid suppresses inflammation via TLR4/NF-κB signaling and improves atherosclerosis in ApoE-deficient mice. Nutr. Metab. (Lond.) 2019 16 1 40 10.1186/s12986‑019‑0359‑2
    [Google Scholar]
  80. Ni Y. Nagashimada M. Zhuge F. Zhan L. Nagata N. Tsutsui A. Nakanuma Y. Kaneko S. Ota T. Astaxanthin prevents and reverses diet-induced insulin resistance and steatohepatitis in mice: A comparison with vitamin E. Sci. Rep. 2015 5 1 17192 10.1038/srep17192 26603489
    [Google Scholar]
  81. Jayaraman S. Devarajan N. Rajagopal P. Babu S. Ganesan S.K. Veeraraghavan V.P. Palanisamy C.P. Cui B. Periyasamy V. Chandrasekar K. β-sitosterol circumvents obesity induced inflammation and insulin resistance by down-regulating IKKβ/NF-κB and JNK signaling pathway in adipocytes of type 2 diabetic rats. Molecules 2021 26 7 2101 10.3390/molecules26072101 33917607
    [Google Scholar]
  82. Rühl R. Landrier J.F. Dietary regulation of adiponectin by direct and indirect lipid activators of nuclear hormone receptors. Mol. Nutr. Food Res. 2016 60 1 175 184 10.1002/mnfr.201500619 26610729
    [Google Scholar]
  83. Wang Y. Park N.Y. Jang Y. Ma A. Jiang Q. Vitamin E γ-Tocotrienol inhibits cytokine-stimulated nf-κb activation by induction of anti-inflammatory a20 via stress adaptive response due to modulation of sphingolipids. J. Immunol. 2015 195 1 126 133 10.4049/jimmunol.1403149 26002975
    [Google Scholar]
  84. Shirakura Y. Takayanagi K. Mukai K. Tanabe H. Inoue M. β-cryptoxanthin suppresses the adipogenesis of 3T3-L1 cells via RAR activation. J. Nutr. Sci. Vitaminol. (Tokyo) 2011 57 6 426 431 10.3177/jnsv.57.426 22472285
    [Google Scholar]
  85. Matsumoto A. Mizukami H. Mizuno S. Umegaki K. Nishikawa J. Shudo K. Kagechika H. Inoue M. β-Cryptoxanthin, a novel natural RAR ligand, induces ATP-binding cassette transporters in macrophages. Biochem. Pharmacol. 2007 74 2 256 264 10.1016/j.bcp.2007.04.014 17521617
    [Google Scholar]
  86. Zapata-Gonzalez F. Rueda F. Petriz J. Domingo P. Villarroya F. Diaz-Delfin J. de Madariaga M.A. Domingo J.C. Human dendritic cell activities are modulated by the omega-3 fatty acid, docosahexaenoic acid, mainly through PPARγ:RXR heterodimers: comparison with other polyunsaturated fatty acids. J. Leukoc. Biol. 2008 84 4 1172 1182 10.1189/jlb.1007688 18632990
    [Google Scholar]
  87. Mannino G. Iovino P. Lauria A. Genova T. Asteggiano A. Notarbartolo M. Porcu A. Serio G. Chinigò G. Occhipinti A. Capuzzo A. Medana C. Munaron L. Gentile C. Bioactive triterpenes of protium heptaphyllum gum resin extract display cholesterol-lowering potential. Int. J. Mol. Sci. 2021 22 5 2664 10.3390/ijms22052664 33800828
    [Google Scholar]
  88. Machado M. Costa E.M. Silva S. Rodriguez-Alcalá L.M. Gomes A.M. Pintado M. Pomegranate oil’s potential as an anti-obesity ingredient. Molecules 2022 27 15 4958 10.3390/molecules27154958 35956908
    [Google Scholar]
  89. Yu J. Yu B. Jiang H. Chen D. Conjugated linoleic acid induces hepatic expression of fibroblast growth factor 21 through PPAR-α. Br. J. Nutr. 2012 107 4 461 465 10.1017/S0007114511003205 21767451
    [Google Scholar]
  90. Song S. Attia R.R. Connaughton S. Niesen M.I. Ness G.C. Elam M.B. Hori R.T. Cook G.A. Park E.A. Peroxisome proliferator activated receptor α (PPARα) and PPAR gamma coactivator (PGC-1α) induce carnitine palmitoyltransferase IA (CPT-1A) via independent gene elements. Mol. Cell. Endocrinol. 2010 325 1-2 54 63 10.1016/j.mce.2010.05.019 20638986
    [Google Scholar]
  91. Kim Y. Park Y. Conjugated linoleic acid (CLA) stimulates mitochondrial biogenesis signaling by the upregulation of PPARγ coactivator 1α (PGC-1α) in C2C12 cells. Lipids 2015 50 4 329 338 10.1007/s11745‑015‑4000‑5 25720738
    [Google Scholar]
  92. den Besten G. Bleeker A. Gerding A. van Eunen K. Havinga R. van Dijk T.H. Oosterveer M.H. Jonker J.W. Groen A.K. Reijngoud D.J. Bakker B.M. Short-chain fatty acids protect against high-fat diet-induced obesity via a pparg-dependent switch from lipogenesis to fat oxidation. Diabetes 2015 64 7 2398 2408 10.2337/db14‑1213 25695945
    [Google Scholar]
  93. Yenuganti V.R. Ravinder R. Singh D. Conjugated linoleic acids attenuate LPS-induced pro-inflammatory gene expression by inhibiting the NF-κB translocation through PPARγ in buffalo granulosa cells. Am. J. Reprod. Immunol. 2014 72 3 296 304 10.1111/aji.12261 24798202
    [Google Scholar]
  94. Ramiah SK Meng GY Sheau Wei T Swee Keong Y Ebrahimi M Dietary conjugated linoleic acid supplementation leads to downregulation of ppar transcription in broiler chickens and reduction of adipocyte cellularity. PPAR Res 2014 2014 137652 10.1155/2014/137652
    [Google Scholar]
  95. Zou J. Feng D. Lycopene reduces cholesterol absorption through the downregulation of Niemann‐Pick C1‐like 1 in Caco‐2 cells. Mol. Nutr. Food Res. 2015 59 11 2225 2230 10.1002/mnfr.201500221 26264562
    [Google Scholar]
  96. Xu J. Wang Y.M. Feng T.Y. Zhang B. Sugawara T. Xue C.H. Isolation and anti-fatty liver activity of a novel cerebroside from the sea cucumber acaudina molpadioides. Biosci. Biotechnol. Biochem. 2011 75 8 1466 1471 10.1271/bbb.110126 21821952
    [Google Scholar]
  97. Zheng J. Li Z. Manabe Y. Kim M. Goto T. Kawada T. Sugawara T. Siphonaxanthin, a carotenoid from green algae, inhibits lipogenesis in hepatocytes via the suppression of liver X receptor α activity. Lipids 2018 53 1 41 52 10.1002/lipd.12002 29446839
    [Google Scholar]
  98. Zhao A. Yu J. Lew J.L. Huang L. Wright S.D. Cui J. Polyunsaturated fatty acids are FXR ligands and differentially regulate expression of FXR targets. DNA Cell Biol. 2004 23 8 519 526 10.1089/1044549041562267 15307955
    [Google Scholar]
  99. Elvira-Torales L.I. Navarro-González I. González-Barrio R. Martín-Pozuelo G. Doménech G. Seva J. García-Alonso J. Periago-Castón M.J. Tomato juice supplementation influences the gene expression related to steatosis in rats. Nutrients 2018 10 9 1215 10.3390/nu10091215 30200543
    [Google Scholar]
  100. Deng R. Yang D. Radke A. Yang J. Yan B. The hypolipidemic agent guggulsterone regulates the expression of human bile salt export pump: dominance of transactivation over farsenoid X receptor-mediated antagonism. J. Pharmacol. Exp. Ther. 2007 320 3 1153 1162 10.1124/jpet.106.113837 17135343
    [Google Scholar]
  101. Owsley E. Chiang J.Y.L. Guggulsterone antagonizes farnesoid X receptor induction of bile salt export pump but activates pregnane X receptor to inhibit cholesterol 7α-hydroxylase gene. Biochem. Biophys. Res. Commun. 2003 304 1 191 195 10.1016/S0006‑291X(03)00551‑5 12705905
    [Google Scholar]
  102. Liu W. Wong C. Oleanolic acid is a selective farnesoid X receptor modulator. Phytother. Res. 2010 24 3 369 373 10.1002/ptr.2948 19653193
    [Google Scholar]
  103. Oosterveer M.H. Grefhorst A. Groen A.K. Kuipers F. The liver X receptor: Control of cellular lipid homeostasis and beyond. Prog. Lipid Res. 2010 49 4 343 352 10.1016/j.plipres.2010.03.002 20363253
    [Google Scholar]
  104. Hollman D.A.A. Milona A. van Erpecum K.J. van Mil S.W.C. Anti-inflammatory and metabolic actions of FXR: Insights into molecular mechanisms. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2012 1821 11 1443 1452 10.1016/j.bbalip.2012.07.004 22820415
    [Google Scholar]
  105. Li B Cai SY Boyer JL The role of the retinoid receptor, RAR/RXR heterodimer, in liver physiology. Biochim Biophys Acta Mol Basis Dis 2021 1867 5 166085
    [Google Scholar]
  106. Krężel W. Rühl R. de Lera A.R. Alternative retinoid X receptor (RXR) ligands. Mol. Cell. Endocrinol. 2019 491 110436 10.1016/j.mce.2019.04.016 31026478
    [Google Scholar]
  107. Nguyen P. Leray V. Diez M. Serisier S. Bloc’h J.L. Siliart B. Dumon H. Liver lipid metabolism. J. Anim. Physiol. Anim. Nutr. (Berl.) 2008 92 3 272 283 10.1111/j.1439‑0396.2007.00752.x 18477307
    [Google Scholar]
  108. Chen G. The interactions of insulin and vitamin a signaling systems for the regulation of hepatic glucose and lipid metabolism. Cells 2021 10 8 2160 10.3390/cells10082160 34440929
    [Google Scholar]
  109. Klör H.U. Weizel A. Augustin M. Diepgen T.L. Elsner P. Homey B. Kapp A. Ruzicka T. Luger T. The impact of oral vitamin A derivatives on lipid metabolism – What recommendations can be derived for dealing with this issue in the daily dermatological practice? J. Dtsch. Dermatol. Ges. 2011 9 8 600 606 10.1111/j.1610‑0387.2011.07637.x 21392258
    [Google Scholar]
  110. Jump D.B. Lytle K.A. Depner C.M. Tripathy S. Omega-3 polyunsaturated fatty acids as a treatment strategy for nonalcoholic fatty liver disease. Pharmacol. Ther. 2018 181 108 125 10.1016/j.pharmthera.2017.07.007 28723414
    [Google Scholar]
  111. Remmerie A. Scott C.L. Macrophages and lipid metabolism. Cell. Immunol. 2018 330 27 42 10.1016/j.cellimm.2018.01.020 29429624
    [Google Scholar]
  112. Moise A.R. Alvarez S. Domínguez M. Alvarez R. Golczak M. Lobo G.P. von Lintig J. de Lera A.R. Palczewski K. Activation of retinoic acid receptors by dihydroretinoids. Mol. Pharmacol. 2009 76 6 1228 1237 10.1124/mol.109.060038 19770350
    [Google Scholar]
  113. Bougarne N. Weyers B. Desmet S.J. Deckers J. Ray D.W. Staels B. De Bosscher K. Molecular actions of PPARα in lipid metabolism and inflammation. Endocr. Rev. 2018 39 5 760 802 10.1210/er.2018‑00064 30020428
    [Google Scholar]
  114. Dubois V. Eeckhoute J. Lefebvre P. Staels B. Distinct but complementary contributions of PPAR isotypes to energy homeostasis. J. Clin. Invest. 2017 127 4 1202 1214 10.1172/JCI88894 28368286
    [Google Scholar]
  115. Montaigne D. Butruille L. Staels B. PPAR control of metabolism and cardiovascular functions. Nat. Rev. Cardiol. 2021 18 12 809 823 10.1038/s41569‑021‑00569‑6 34127848
    [Google Scholar]
  116. Christofides A. Konstantinidou E. Jani C. Boussiotis V.A. The role of peroxisome proliferator-activated receptors (PPAR) in immune responses. Metabolism 2021 114 154338 10.1016/j.metabol.2020.154338 32791172
    [Google Scholar]
  117. Agarwal S. Yadav A. Chaturvedi R.K. Peroxisome proliferator-activated receptors (PPARs) as therapeutic target in neurodegenerative disorders. Biochem. Biophys. Res. Commun. 2017 483 4 1166 1177 10.1016/j.bbrc.2016.08.043 27514452
    [Google Scholar]
  118. Pawlak M. Lefebvre P. Staels B. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J. Hepatol. 2015 62 3 720 733 10.1016/j.jhep.2014.10.039 25450203
    [Google Scholar]
  119. Zhou S. You H. Qiu S. Yu D. Bai Y. He J. Cao H. Che Q. Guo J. Su Z. A new perspective on NAFLD: Focusing on the crosstalk between peroxisome proliferator-activated receptor alpha (PPARα) and farnesoid X receptor (FXR). Biomed. Pharmacother. 2022 154 113577 10.1016/j.biopha.2022.113577
    [Google Scholar]
  120. He Y. Yang W. Gan L. Liu S. Ni Q. Bi Y. Han T. Liu Q. Chen H. Hu Y. Long Y. Yang L. Silencing HIF-1α aggravates non-alcoholic fatty liver disease in vitro through inhibiting PPAR-α/ANGPTL4 singling pathway. Gastroenterol. Hepatol. 2021 44 5 355 365 10.1016/j.gastrohep.2020.09.014 33272734
    [Google Scholar]
  121. Montagner A. Polizzi A. Fouché E. Ducheix S. Lippi Y. Lasserre F. Barquissau V. Régnier M. Lukowicz C. Benhamed F. Iroz A. Bertrand-Michel J. Al Saati T. Cano P. Mselli-Lakhal L. Mithieux G. Rajas F. Lagarrigue S. Pineau T. Loiseau N. Postic C. Langin D. Wahli W. Guillou H. Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD. Gut 2016 65 7 1202 1214 10.1136/gutjnl‑2015‑310798 26838599
    [Google Scholar]
  122. Gnoni G.V. Priore P. Geelen M.J.H. Siculella L. The mitochondrial citrate carrier: Metabolic role and regulation of its activity and expression. IUBMB Life 2009 61 10 987 994 10.1002/iub.249 19787704
    [Google Scholar]
  123. Kadayat T.M. Shrestha A. Jeon Y.H. An H. Kim J. Cho S.J. Chin J. Targeting peroxisome proliferator-activated receptor delta (PPARδ): A medicinal chemistry perspective. J. Med. Chem. 2020 63 18 10109 10134 10.1021/acs.jmedchem.9b01882 32539376
    [Google Scholar]
  124. Bays H.E. Schwartz S. Littlejohn T. III Kerzner B. Krauss R.M. Karpf D.B. Choi Y.J. Wang X. Naim S. Roberts B.K. MBX-8025, a novel peroxisome proliferator receptor-δ agonist: lipid and other metabolic effects in dyslipidemic overweight patients treated with and without atorvastatin. J. Clin. Endocrinol. Metab. 2011 96 9 2889 2897 10.1210/jc.2011‑1061 21752880
    [Google Scholar]
  125. Chinetti-Gbaguidi G. Staels B. PPARβ in macrophages and atherosclerosis. Biochimie 2017 136 59 64 10.1016/j.biochi.2016.12.008 28011212
    [Google Scholar]
  126. Lee H.J. Yeon J.E. Ko E.J. Yoon E.L. Suh S.J. Kang K. Kim H.R. Kang S.H. Yoo Y.J. Je J. Lee B.J. Kim J.H. Seo Y.S. Yim H.J. Byun K.S. Peroxisome proliferator-activated receptor-delta agonist ameliorated inflammasome activation in nonalcoholic fatty liver disease. World J. Gastroenterol. 2015 21 45 12787 12799 10.3748/wjg.v21.i45.12787 26668503
    [Google Scholar]
  127. Zarei M. Aguilar-Recarte D. Palomer X. Vázquez-Carrera M. Revealing the role of peroxisome proliferator-activated receptor β/δ in nonalcoholic fatty liver disease. Metabolism 2021 114 154342 10.1016/j.metabol.2020.154342 32810487
    [Google Scholar]
  128. Janani C. Ranjitha Kumari B.D. PPAR gamma gene – A review. Diabetes Metab. Syndr. 2015 9 1 46 50 10.1016/j.dsx.2014.09.015 25450819
    [Google Scholar]
  129. Yuan G. Chen X. Li D. Modulation of peroxisome proliferator-activated receptor gamma (PPAR γ) by conjugated fatty acid in obesity and inflammatory bowel disease. J. Agric. Food Chem. 2015 63 7 1883 1895 10.1021/jf505050c 25634802
    [Google Scholar]
  130. Yu J. Qiu Y. Yang J. Bian S. Chen G. Deng M. Kang H. Huang L. DNMT1-PPARγ pathway in macrophages regulates chronic inflammation and atherosclerosis development in mice. Sci. Rep. 2016 6 1 30053 10.1038/srep30053 27530451
    [Google Scholar]
  131. A R. Agrawal N. Kumar H. Nath V. Kumar V. Norbixin, an apocarotenoid derivative activates PPARγ in cardiometabolic syndrome: Validation by in silico and in vivo experimental assessment. Life Sci. 2018 209 69 77 10.1016/j.lfs.2018.08.001 30076922
    [Google Scholar]
  132. Buñay J. Fouache A. Trousson A. de Joussineau C. Bouchareb E. Zhu Z. Kocer A. Morel L. Baron S. Lobaccaro J.M.A. Screening for liver X receptor modulators: Where are we and for what use? Br. J. Pharmacol. 2021 178 16 3277 3293 10.1111/bph.15286 33080050
    [Google Scholar]
  133. Gabbi C. Warner M. Gustafsson J.Å. Action mechanisms of Liver X Receptors. Biochem. Biophys. Res. Commun. 2014 446 3 647 650 10.1016/j.bbrc.2013.11.077 24300092
    [Google Scholar]
  134. Wang L. Schuster G.U. Hultenby K. Zhang Q. Andersson S. Gustafsson J.Å. Liver X receptors in the central nervous system: From lipid homeostasis to neuronal degeneration. Proc. Natl. Acad. Sci. USA 2002 99 21 13878 13883 10.1073/pnas.172510899 12368482
    [Google Scholar]
  135. Komati R. Spadoni D. Zheng S. Sridhar J. Riley K. Wang G. Ligands of therapeutic utility for the liver X Receptors. Molecules 2017 22 1 88 10.3390/molecules22010088 28067791
    [Google Scholar]
  136. Moschetta A. Nuclear receptors and cholesterol metabolism in the intestine. Atheroscler. Suppl. 2015 17 9 11 10.1016/S1567‑5688(15)50003‑2 25659870
    [Google Scholar]
  137. Lin C.Y. Gustafsson J.Å. Targeting liver X receptors in cancer therapeutics. Nat. Rev. Cancer 2015 15 4 216 224 10.1038/nrc3912 25786697
    [Google Scholar]
  138. Lee S.D. Tontonoz P. Liver X receptors at the intersection of lipid metabolism and atherogenesis. Atherosclerosis 2015 242 1 29 36 10.1016/j.atherosclerosis.2015.06.042 26164157
    [Google Scholar]
  139. Schulman I.G. Liver X receptors link lipid metabolism and inflammation. FEBS Lett. 2017 591 19 2978 2991 10.1002/1873‑3468.12702 28555747
    [Google Scholar]
  140. Hong C. Tontonoz P. Liver X receptors in lipid metabolism: Opportunities for drug discovery. Nat. Rev. Drug Discov. 2014 13 6 433 444 10.1038/nrd4280 24833295
    [Google Scholar]
  141. Uehara Y. Miura S. von Eckardstein A. Abe S. Fujii A. Matsuo Y. Rust S. Lorkowski S. Assmann G. Yamada T. Saku K. Unsaturated fatty acids suppress the expression of the ATP-binding cassette transporter G1 (ABCG1) and ABCA1 genes via an LXR/RXR responsive element. Atherosclerosis 2007 191 1 11 21 10.1016/j.atherosclerosis.2006.04.018 16730733
    [Google Scholar]
  142. Khotimchenko Y. Pharmacological potential of sea cucumbers. Int. J. Mol. Sci. 2018 19 5 1342 10.3390/ijms19051342 29724051
    [Google Scholar]
  143. Yao D.W. Luo J. He Q.Y. Xu H.F. Li J. Shi H.B. Wang H. Chen Z. Loor J.J. Liver X receptor α promotes the synthesis of monounsaturated fatty acids in goat mammary epithelial cells via the control of stearoyl-coenzyme A desaturase 1 in an SREBP-1-dependent manner. J. Dairy Sci. 2016 99 8 6391 6402 10.3168/jds.2016‑10990 27209141
    [Google Scholar]
  144. Calpe-Berdiel L. Escolà-Gil J.C. Blanco-Vaca F. New insights into the molecular actions of plant sterols and stanols in cholesterol metabolism. Atherosclerosis 2009 203 1 18 31 10.1016/j.atherosclerosis.2008.06.026 18692849
    [Google Scholar]
  145. Hiebl V. Ladurner A. Latkolik S. Dirsch V.M. Natural products as modulators of the nuclear receptors and metabolic sensors LXR, FXR and RXR. Biotechnol. Adv. 2018 36 6 1657 1698 10.1016/j.biotechadv.2018.03.003 29548878
    [Google Scholar]
  146. Tanaka N. Aoyama T. Kimura S. Gonzalez F.J. Targeting nuclear receptors for the treatment of fatty liver disease. Pharmacol. Ther. 2017 179 142 157 10.1016/j.pharmthera.2017.05.011 28546081
    [Google Scholar]
  147. Cave M.C. Clair H.B. Hardesty J.E. Falkner K.C. Feng W. Clark B.J. Sidey J. Shi H. Aqel B.A. McClain C.J. Prough R.A. Nuclear receptors and nonalcoholic fatty liver disease. Biochim. Biophys. Acta. Gene Regul. Mech. 2016 1859 9 1083 1099 10.1016/j.bbagrm.2016.03.002 26962021
    [Google Scholar]
  148. Wildenberg M.E. van den Brink G.R. FXR activation inhibits inflammation and preserves the intestinal barrier in IBD. Gut 2011 60 4 432 433 10.1136/gut.2010.233304 21270116
    [Google Scholar]
  149. Zhao Y. Ma D.X. Wang H.G. Li M.Z. Talukder M. Wang H.R. Li J.L. Lycopene prevents dehp-induced liver lipid metabolism disorder by inhibiting the HIF-1α-induced PPARα/PPARγ/FXR/LXR system. J. Agric. Food Chem. 2020 68 41 11468 11479 10.1021/acs.jafc.0c05077 32962341
    [Google Scholar]
  150. Xie Z. Jiang H. Liu W. Zhang X. Chen D. Sun S. Zhou C. Liu J. Bao S. Wang X. Zhang Y. Li J. Hu L. Li J. The triterpenoid sapogenin (2α-OH-Protopanoxadiol) ameliorates metabolic syndrome via the intestinal FXR/GLP-1 axis through gut microbiota remodelling. Cell Death Dis. 2020 11 9 770 10.1038/s41419‑020‑02974‑0
    [Google Scholar]
  151. Vasu S. Moffett R.C. McClenaghan N.H. Flatt P.R. Differential molecular and cellular responses of GLP-1 secreting L-cells and pancreatic alpha cells to glucotoxicity and lipotoxicity. Exp. Cell Res. 2015 336 1 100 108 10.1016/j.yexcr.2015.05.022 26027945
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010340506241014112341
Loading
/content/journals/cpb/10.2174/0113892010340506241014112341
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test