Skip to content
2000
Volume 26, Issue 17
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Background

Wound healing is a complex procedure frequently delayed in patients with underlying chronic conditions. Despite essential advances in tissue engineering and regenerative medicine, wound healing remains challenging, warranting novel methods for promoting wound healing. It has been demonstrated that exosomes are one of the main secretory products of different cell types, such as Mesenchymal Stem Cells (MSCs), for regulating various biological processes, including wound healing. Henceforth, understanding these exosome effects might assist in improving wound management and highlight a novel therapeutic model for cell-free therapies with reduced side effects for repairing wounds.

Methods

This systematic review involved conducting research electronically on scholarly scientific databases, including PubMed, Science Direct, and Scopus. Eligibility checks were performed based on predefined selection criteria. Finally, thirty-nine studies were considered.

Results

Exosomes have been indicated to use multitargeted pathways to improve wound healing by modulating numerous dysregulated signaling cascades involved in cell proliferation, cell cycle regulation, metastasis, apoptosis, and angiogenesis.

Conclusion

The outcome of this review might guide pre-clinical and clinical studies on the role of exosomes in skin wound healing.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010323495241016085000
2025-01-06
2026-02-20
Loading full text...

Full text loading...

References

  1. van den BroekL.J. LimandjajaG.C. NiessenF.B. GibbsS. Human hypertrophic and keloid scar models: Principles, limitations and future challenges from a tissue engineering perspective.Exp. Dermatol.201423638238610.1111/exd.1241924750541
    [Google Scholar]
  2. RaniS. RitterT. The exosome‐A naturally secreted nanoparticle and its application to wound healing.Adv. Mater.201628275542555210.1002/adma.20150400926678528
    [Google Scholar]
  3. YamaguchiY. YoshikawaK. Cutaneous wound healing: An update.J. Dermatol.2001281052153410.1111/j.1346‑8138.2001.tb00025.x11732719
    [Google Scholar]
  4. PhinneyD.G. PittengerM.F. Concise review: MSC-derived exosomes for cell-free therapy.Stem Cells201735485185810.1002/stem.257528294454
    [Google Scholar]
  5. FernandoM.R. JiangC. KrzyzanowskiG.D. RyanW.L. New evidence that a large proportion of human blood plasma cell-free DNA is localized in exosomes.PLoS One2017128e018391510.1371/journal.pone.018391528850588
    [Google Scholar]
  6. KishoreR. KhanM. More than tiny sacks: Stem cell exosomes as a cell-free modality for cardiac repair.Circ. Res.2016118233034310.1161/CIRCRESAHA.115.30765426838317
    [Google Scholar]
  7. GolchinA. HosseinzadehS. ArdeshirylajimiA. The exosomes released from different cell types and their effects in wound healing.J. Cell. Biochem.201811975043505210.1002/jcb.2670629377240
    [Google Scholar]
  8. YinK. WangS. ZhaoR.C. Exosomes from mesenchymal stem/stromal cells: A new therapeutic paradigm.Biomark. Res.201971810.1186/s40364‑019‑0159‑x30992990
    [Google Scholar]
  9. SubraC. LaulagnierK. PerretB. RecordM. Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies.Biochimie200789220521210.1016/j.biochi.2006.10.01417157973
    [Google Scholar]
  10. ThéryC. ZitvogelL. AmigorenaS. Exosomes: Composition, biogenesis and function.Nat. Rev. Immunol.20022856957910.1038/nri85512154376
    [Google Scholar]
  11. HeijnenH.F.G. SchielA.E. FijnheerR. GeuzeH.J. SixmaJ.J. Activated platelets release two types of membrane vesicles: Microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and α-granules.Blood199994113791379910.1182/blood.V94.11.379110572093
    [Google Scholar]
  12. TrajkovicK. HsuC. ChiantiaS. RajendranL. WenzelD. WielandF. SchwilleP. BruggerB. SimonsM. Ceramide triggers budding of exosome vesicles into multivesicular endosomes.Science200831912441247
    [Google Scholar]
  13. ThéryC. OstrowskiM. SeguraE. Membrane vesicles as conveyors of immune responses.Nat. Rev. Immunol.20099858159310.1038/nri256719498381
    [Google Scholar]
  14. Yáñez-MóM. SiljanderP.R.M. AndreuZ. Bedina ZavecA. BorràsF.E. BuzasE.I. BuzasK. CasalE. CappelloF. CarvalhoJ. ColásE. Cordeiro-da SilvaA. FaisS. Falcon-PerezJ.M. GhobrialI.M. GiebelB. GimonaM. GranerM. GurselI. GurselM. HeegaardN.H.H. HendrixA. KierulfP. KokubunK. KosanovicM. Kralj-IglicV. Krämer-AlbersE.M. LaitinenS. LässerC. LenerT. LigetiE. LinēA. LippsG. LlorenteA. LötvallJ. Manček-KeberM. MarcillaA. MittelbrunnM. NazarenkoI. Nolte-’t HoenE.N.M. NymanT.A. O’DriscollL. OlivanM. OliveiraC. PállingerÉ. del PortilloH.A. ReventósJ. RigauM. RohdeE. SammarM. Sánchez-MadridF. SantarémN. SchallmoserK. Stampe OstenfeldM. StoorvogelW. StukeljR. Van der GreinS.G. Helena VasconcelosM. WaubenM.H.M. De WeverO. Biological properties of extracellular vesicles and their physiological functions.J. Extracell. Vesicles2015412706610.3402/jev.v4.2706625979354
    [Google Scholar]
  15. KalraH. DrummenG. MathivananS. Focus on extracellular vesicles: Introducing the next small big thing.Int. J. Mol. Sci.201617217010.3390/ijms1702017026861301
    [Google Scholar]
  16. SadallahS. EkenC. SchifferliJ.A. Ectosomes as modulators of inflammation and immunity.Clin. Exp. Immunol.20101631263210.1111/j.1365‑2249.2010.04271.x21039423
    [Google Scholar]
  17. WysoczynskiM. RatajczakM.Z. Lung cancer secreted microvesicles: Underappreciated modulators of microenvironment in expanding tumors.Int. J. Cancer200912571595160310.1002/ijc.2447919462451
    [Google Scholar]
  18. Baj-KrzyworzekaM. SzatanekR. WęglarczykK. BaranJ. ZembalaM. Tumour-derived microvesicles modulate biological activity of human monocytes.Immunol. Lett.20071132768210.1016/j.imlet.2007.07.01417825925
    [Google Scholar]
  19. van NielG. Porto-CarreiroI. SimoesS. RaposoG. Exosomes: A common pathway for a specialized function.J. Biochem.20061401132110.1093/jb/mvj12816877764
    [Google Scholar]
  20. LötvallJ. HillA.F. HochbergF. BuzásE.I. Di VizioD. GardinerC. GhoY.S. KurochkinI.V. MathivananS. QuesenberryP. SahooS. TaharaH. WaubenM.H. WitwerK.W. ThéryC. Minimal experimental requirements for definition of extracellular vesicles and their functions: A position statement from the International Society for Extracellular Vesicles.J. Extracell. Vesicles2014312691310.3402/jev.v3.2691325536934
    [Google Scholar]
  21. KalluriR. LeBleuV.S. The biology, function, and biomedical applications of exosomes.Science20203671244-eaau6977
    [Google Scholar]
  22. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell2011144564667410.1016/j.cell.2011.02.01321376230
    [Google Scholar]
  23. StefaniusK. ServageK. de Souza SantosM. GrayH.F. ToombsJ.E. ChimalapatiS. KimM.S. MalladiV.S. BrekkenR. OrthK. Human pancreatic cancer cell exosomes, but not human normal cell exosomes, act as an initiator in cell transformation.eLife20198e4022610.7554/eLife.4022631134894
    [Google Scholar]
  24. MeloS.A. SugimotoH. O’ConnellJ.T. KatoN. VillanuevaA. VidalA. QiuL. VitkinE. PerelmanL.T. MeloC.A. LucciA. IvanC. CalinG.A. KalluriR. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis.Cancer Cell201426570772110.1016/j.ccell.2014.09.00525446899
    [Google Scholar]
  25. Abd ElmageedZ.Y. YangY. ThomasR. RanjanM. MondalD. MorozK. FangZ. RezkB.M. MopartyK. SikkaS.C. SartorO. Abdel-MageedA.B. Neoplastic reprogramming of patient-derived adipose stem cells by prostate cancer cell-associated exosomes.Stem Cells201432498399710.1002/stem.161924715691
    [Google Scholar]
  26. GuayC. RegazziR. Exosomes as new players in metabolic organ cross-talk.Diabetes Obes. Metab.201719S1Suppl. 113714610.1111/dom.1302728880477
    [Google Scholar]
  27. SrikanthanS. LiW. SilversteinR.L. McIntyreT.M. Exosome poly-ubiquitin inhibits platelet activation, downregulates CD36 and inhibits pro-atherothombotic cellular functions.J. Thromb. Haemost.201412111906191710.1111/jth.1271225163645
    [Google Scholar]
  28. BudnikV. Ruiz-CañadaC. WendlerF. Extracellular vesicles round off communication in the nervous system.Nat. Rev. Neurosci.201617316017210.1038/nrn.2015.2926891626
    [Google Scholar]
  29. LevyE. Exosomes in the diseased brain: First insights from in vivo studies.Front. Neurosci.20171114210.3389/fnins.2017.0014228386213
    [Google Scholar]
  30. MontecalvoA. LarreginaA.T. ShufeskyW.J. Beer StolzD. SullivanM.L.G. KarlssonJ.M. BatyC.J. GibsonG.A. ErdosG. WangZ. MilosevicJ. TkachevaO.A. DivitoS.J. JordanR. Lyons-WeilerJ. WatkinsS.C. MorelliA.E. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes.Blood2012119375676610.1182/blood‑2011‑02‑33800422031862
    [Google Scholar]
  31. DingG. ZhouL. QianY. FuM. ChenJ. ChenJ. XiangJ. WuZ. JiangG. CaoL. Pancreatic cancer-derived exosomes transfer miRNAs to dendritic cells and inhibit RFXAP expression via miR-212-3p.Oncotarget2015630298772988810.18632/oncotarget.492426337469
    [Google Scholar]
  32. CapelloM. VykoukalJ.V. KatayamaH. BantisL.E. WangH. KundnaniD.L. Aguilar-BonavidesC. AguilarM. TripathiS.C. DhillonD.S. MominA.A. PetersH. KatzM.H. AlvarezH. BernardV. Ferri-BorgognoS. BrandR. AdlerD.G. FirpoM.A. MulvihillS.J. MolldremJ.J. FengZ. TaguchiA. MaitraA. HanashS.M. Exosomes harbor B cell targets in pancreatic adenocarcinoma and exert decoy function against complement-mediated cytotoxicity.Nat. Commun.201910125410.1038/s41467‑018‑08109‑630651550
    [Google Scholar]
  33. XiaoS. XiaoC. MiaoY. WangJ. ChenR. FanZ. HuZ. Human acellular amniotic membrane incorporating exosomes from adipose-derived mesenchymal stem cells promotes diabetic wound healing.Stem Cell Res. Ther.202112125510.1186/s13287‑021‑02333‑633926555
    [Google Scholar]
  34. HanX. WuP. LiL. SahalH.M. JiC. ZhangJ. WangY. WangQ. QianH. ShiH. XuW. Exosomes derived from autologous dermal fibroblasts promote diabetic cutaneous wound healing through the Akt/β-catenin pathway.Cell Cycle2021205-661662910.1080/15384101.2021.189481333685347
    [Google Scholar]
  35. HettichB.F. Ben-Yehuda GreenwaldM. WernerS. LerouxJ.C. Exosomes for wound healing: Purification optimization and identification of bioactive components.Adv. Sci. (Weinh.)2020723200259610.1002/advs.20200259633304765
    [Google Scholar]
  36. LiX. WangY. ShiL. LiB. LiJ. WeiZ. LvH. WuL. ZhangH. YangB. XuX. JiangJ. Magnetic targeting enhances the cutaneous wound healing effects of human mesenchymal stem cell-derived iron oxide exosomes.J. Nanobiotechnology202018111310.1186/s12951‑020‑00670‑x32799868
    [Google Scholar]
  37. MiB. ChenL. XiongY. YanC. XueH. PanayiA.C. LiuJ. HuL. HuY. CaoF. SunY. ZhouW. LiuG. Saliva exosomes-derived UBE2O mRNA promotes angiogenesis in cutaneous wounds by targeting SMAD6.J. Nanobiotechnology20201816810.1186/s12951‑020‑00624‑332375794
    [Google Scholar]
  38. ŞahinF. KoçakP. GüneşM.Y. Özkanİ. YıldırımE. KalaE.Y. In vitro wound healing activity of wheat-derived nanovesicles.Appl. Biochem. Biotechnol.2019188238139410.1007/s12010‑018‑2913‑130474796
    [Google Scholar]
  39. SungD.K. ChangY.S. SungS.I. AhnS.Y. ParkW.S. Thrombin preconditioning of extracellular vesicles derived from mesenchymal stem cells accelerates cutaneous wound healing by boosting their biogenesis and enriching cargo content.J. Clin. Med.20198453310.3390/jcm804053331003433
    [Google Scholar]
  40. DingJ. WangX. ChenB. ZhangJ. XuJ. Exosomes derived from human bone marrow mesenchymal stem cells stimulated by deferoxamine accelerate cutaneous wound healing by promoting angiogenesis.BioMed Res. Int.20192019974276510.1155/2019/9742765
    [Google Scholar]
  41. ShabbirA. CoxA. Rodriguez-MenocalL. SalgadoM. BadiavasE.V. Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro.Stem Cells Dev.201524141635164710.1089/scd.2014.031625867197
    [Google Scholar]
  42. ZhangJ. GuanJ. NiuX. HuG. GuoS. LiQ. XieZ. ZhangC. WangY. Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis.J. Transl. Med.20151314910.1186/s12967‑015‑0417‑025638205
    [Google Scholar]
  43. ZhangX.F. WangT. WangZ.X. HuangK.P. ZhangY.W. WangG.L. ZhangH.J. ChenZ.H. WangC.Y. ZhangJ.X. WangH. Hypoxic ucMSC-secreted exosomal miR-125b promotes endothelial cell survival and migration during wound healing by targeting TP53INP1.Mol. Ther. Nucleic Acids20212634735910.1016/j.omtn.2021.07.01434513314
    [Google Scholar]
  44. ZhangY. PanY. LiuY. LiX. TangL. DuanM. LiJ. ZhangG. Exosomes derived from human umbilical cord blood mesenchymal stem cells stimulate regenerative wound healing via transforming growth factor-β receptor inhibition.Stem Cell Res. Ther.202112143410.1186/s13287‑021‑02517‑034344478
    [Google Scholar]
  45. ParvanianS. YanF. SuD. Coelho-RatoL.S. VenuA.P. YangP. ZouX. JiuY. ChenH. ErikssonJ.E. ChengF. Exosomal vimentin from adipocyte progenitors accelerates wound healing.Cytoskeleton (Hoboken)2020771039941310.1002/cm.2163432978896
    [Google Scholar]
  46. JiangT. WangZ. SunJ. Human bone marrow mesenchymal stem cell-derived exosomes stimulate cutaneous wound healing mediates through TGF-β/Smad signaling pathway.Stem Cell Res. Ther.202011119810.1186/s13287‑020‑01723‑632448395
    [Google Scholar]
  47. ZhangW. BaiX. ZhaoB. LiY. ZhangY. LiZ. WangX. LuoL. HanF. ZhangJ. HanS. CaiW. SuL. TaoK. ShiJ. HuD. Cell-free therapy based on adipose tissue stem cell-derived exosomes promotes wound healing via the PI3K/Akt signaling pathway.Exp. Cell Res.2018370233334210.1016/j.yexcr.2018.06.03529964051
    [Google Scholar]
  48. BakhtyarN. JeschkeM.G. HererE. SheikholeslamM. Amini-NikS. Exosomes from acellular Wharton’s jelly of the human umbilical cord promotes skin wound healing.Stem Cell Res. Ther.20189119310.1186/s13287‑018‑0921‑230005703
    [Google Scholar]
  49. KimY.J. YooS. ParkH.H. LimH.J. KimY.L. LeeS. SeoK.W. KangK.S. Exosomes derived from human umbilical cord blood mesenchymal stem cells stimulates rejuvenation of human skin.Biochem. Biophys. Res. Commun.201749321102110810.1016/j.bbrc.2017.09.05628919421
    [Google Scholar]
  50. XuY. LinZ. HeL. QuY. OuyangL. HanY. XuC. DuanD. Platelet-rich plasma-derived exosomal USP15 Promotes cutaneous wound healing via deubiquitinating EIF4A1.Oxid. Med. Cell. Longev.202120219967480910.1155/2021/9674809
    [Google Scholar]
  51. ChengS. XiZ. ChenG. LiuK. MaR. ZhouC. Extracellular vesicle-carried microRNA-27b derived from mesenchymal stem cells accelerates cutaneous wound healing via E3 ubiquitin ligase ITCH.J. Cell. Mol. Med.20202419112541127110.1111/jcmm.1569232845084
    [Google Scholar]
  52. ZhaoD. YuZ. LiY. WangY. LiQ. HanD. GelMA combined with sustained release of HUVECs derived exosomes for promoting cutaneous wound healing and facilitating skin regeneration.J. Mol. Histol.202051325126310.1007/s10735‑020‑09877‑632388839
    [Google Scholar]
  53. ZhaoG. LiuF. LiuZ. ZuoK. WangB. ZhangY. HanX. LianA. WangY. LiuM. ZouF. LiP. LiuX. JinM. LiuJ.Y. MSC-derived exosomes attenuate cell death through suppressing AIF nucleus translocation and enhance cutaneous wound healing.Stem Cell Res. Ther.202011117410.1186/s13287‑020‑01616‑832393338
    [Google Scholar]
  54. LvQ. DengJ. ChenY. WangY. LiuB. LiuJ. Engineered human adipose stem-cell-derived exosomes loaded with miR-21-5p to promote diabetic cutaneous wound healing.Mol. Pharm.20201751723173310.1021/acs.molpharmaceut.0c0017732233440
    [Google Scholar]
  55. BelvedereR. PessolanoE. PortaA. ToscoA. ParenteL. PetrellaF. PerrettiM. PetrellaA. Mesoglycan induces the secretion of microvesicles by keratinocytes able to activate human fibroblasts and endothelial cells: A novel mechanism in skin wound healing.Eur. J. Pharmacol.202086917289410.1016/j.ejphar.2019.17289431883916
    [Google Scholar]
  56. YinH. ChenC.Y. LiuY.W. TanY.J. DengZ.L. YangF. HuangF.Y. WenC. RaoS.S. LuoM.J. HuX.K. LiuZ.Z. WangZ.X. CaoJ. LiuH.M. LiuJ.H. YueT. TangS.Y. XieH. Synechococcus elongatus PCC7942 secretes extracellular vesicles to accelerate cutaneous wound healing by promoting angiogenesis.Theranostics2019992678269310.7150/thno.3188431131061
    [Google Scholar]
  57. ZhangB. WangM. GongA. ZhangX. WuX. ZhuY. ShiH. WuL. ZhuW. QianH. XuW. HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing.Stem Cells20153372158216810.1002/stem.177124964196
    [Google Scholar]
  58. LuY. WenH. HuangJ. LiaoP. LiaoH. TuJ. ZengY. Extracellular vesicle-enclosed miR-486-5p mediates wound healing with adipose-derived stem cells by promoting angiogenesis.J. Cell. Mol. Med.202024179590960410.1111/jcmm.1538732666704
    [Google Scholar]
  59. HuY. RaoS.S. WangZ.X. CaoJ. TanY.J. LuoJ. LiH.M. ZhangW.S. ChenC.Y. XieH. Exosomes from human umbilical cord blood accelerate cutaneous wound healing through miR-21-3p-mediated promotion of angiogenesis and fibroblast function.Theranostics20188116918410.7150/thno.2123429290800
    [Google Scholar]
  60. ZhangJ. ChenC. HuB. NiuX. LiuX. ZhangG. ZhangC. LiQ. WangY. Exosomes derived from human endothelial progenitor cells accelerate cutaneous wound healing by promoting angiogenesis through Erk1/2 signaling.Int. J. Biol. Sci.201612121472148710.7150/ijbs.1551427994512
    [Google Scholar]
  61. LiX. JiangC. ZhaoJ. Human endothelial progenitor cells-derived exosomes accelerate cutaneous wound healing in diabetic rats by promoting endothelial function.J. Diabetes Complications201630698699210.1016/j.jdiacomp.2016.05.00927236748
    [Google Scholar]
  62. YanC. XvY. LinZ. EndoY. XueH. HuY. HuL. ChenL. CaoF. ZhouW. ZhangP. LiuG. Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Accelerate Diabetic Wound Healing via Ameliorating Oxidative Stress and Promoting Angiogenesis.Front. Bioeng. Biotechnol.20221082986810.3389/fbioe.2022.82986835174145
    [Google Scholar]
  63. PomattoM. GaiC. NegroF. CedrinoM. GrangeC. CeccottiE. TogliattoG. CollinoF. TapparoM. FiglioliniF. LopatinaT. BrizziM.F. CamussiG. Differential therapeutic effect of extracellular vesicles derived by bone marrow and adipose mesenchymal stem cells on wound healing of diabetic ulcers and correlation to their cargoes.Int. J. Mol. Sci.2021228385110.3390/ijms2208385133917759
    [Google Scholar]
  64. GaoS. ChenT. HaoY. ZhangF. TangX. WangD. WeiZ. QiJ. Exosomal miR-135a derived from human amnion mesenchymal stem cells promotes cutaneous wound healing in rats and fibroblast migration by directly inhibiting LATS2 expression.Stem Cell Res. Ther.20201115610.1186/s13287‑020‑1570‑932054526
    [Google Scholar]
  65. KimH. WangS.Y. KwakG. YangY. KwonI.C. KimS.H. Exosome-guided phenotypic switch of M1 to M2 macrophages for cutaneous wound healing.Adv. Sci. (Weinh.)2019620190051310.1002/advs.20190051331637157
    [Google Scholar]
  66. LuM. PengL. MingX. WangX. CuiA. LiY. WangX. MengD. SunN. XiangM. ChenS. Enhanced wound healing promotion by immune response-free monkey autologous iPSCs and exosomes vs. their allogeneic counterparts.EBioMedicine20194244345710.1016/j.ebiom.2019.03.01130926422
    [Google Scholar]
  67. HeX. DongZ. CaoY. WangH. LiuS. LiaoL. JinY. YuanL. LiB. MSC-derived exosome promotes M2 polarization and enhances cutaneous wound healing.Stem Cells Int.20192019713270810.1155/2019/7132708
    [Google Scholar]
  68. KobayashiH. EbisawaK. KambeM. KasaiT. SugaH. NakamuraK. NaritaY. OgataA. KameiY. <Editors’ Choice> Effects of exosomes derived from the induced pluripotent stem cells on skin wound healing.Nagoya J. Med. Sci.201880214115329915432
    [Google Scholar]
  69. LiX. XieX. LianW. ShiR. HanS. ZhangH. LuL. LiM. Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model.Exp. Mol. Med.201850411410.1038/s12276‑018‑0058‑529651102
    [Google Scholar]
  70. FangS. XuC. ZhangY. XueC. YangC. BiH. QianX. WuM. JiK. ZhaoY. WangY. LiuH. XingX. Umbilical cord-derived mesenchymal stem cell-derived exosomal microRNAs suppress myofibroblast differentiation by inhibiting the transforming growth factor-β/SMAD2 pathway during wound healing.Stem Cells Transl. Med.20165101425143910.5966/sctm.2015‑036727388239
    [Google Scholar]
  71. TiD. HaoH. TongC. LiuJ. DongL. ZhengJ. ZhaoY. LiuH. FuX. HanW. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b.J. Transl. Med.201513130810.1186/s12967‑015‑0642‑626386558
    [Google Scholar]
  72. SorgH. TilkornD.J. HagerS. HauserJ. MirastschijskiU. Skin wound healing: An update on the current knowledge and concepts.Eur. Surg. Res.2017581-2819410.1159/00045491927974711
    [Google Scholar]
  73. TottoliE.M. DoratiR. GentaI. ChiesaE. PisaniS. ContiB. Skin wound healing process and new emerging technologies for skin wound care and regeneration.Pharmaceutics202012873510.3390/pharmaceutics1208073532764269
    [Google Scholar]
  74. AnY. LinS. TanX. ZhuS. NieF. ZhenY. GuL. ZhangC. WangB. WeiW. LiD. WuJ. Exosomes from adipose-derived stem cells and application to skin wound healing.Cell Prolif.2021543e1299310.1111/cpr.1299333458899
    [Google Scholar]
  75. QiuH. LiuS. WuK. ZhaoR. CaoL. WangH. Prospective application of exosomes derived from adipose-derived stem cells in skin wound healing: A review.J. Cosmet. Dermatol.202019357458110.1111/jocd.1321531755172
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010323495241016085000
Loading
/content/journals/cpb/10.2174/0113892010323495241016085000
Loading

Data & Media loading...

Supplements

PPRISMA checklist is available as supplementary material on the publisher’s website along with the published article.


  • Article Type:
    Review Article
Keyword(s): EVs; Exosomes; in vitro; MSCs; skin; wound healing
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test