Skip to content
2000
image of The Exosome and its Application in Skin Wound Healing: A Systematic Review on In vitro Studies

Abstract

Background

Wound healing is a complex procedure frequently delayed in patients with underlying chronic conditions. Despite essential advances in tissue engineering and regenerative medicine, wound healing remains challenging, warranting novel methods for promoting wound healing. It has been demonstrated that exosomes are one of the main secretory products of different cell types, such as Mesenchymal Stem Cells (MSCs), for regulating various biological processes, including wound healing. Henceforth, understanding these exosome effects might assist in improving wound management and highlight a novel therapeutic model for cell-free therapies with reduced side effects for repairing wounds.

Methods

This systematic review involved conducting research electronically on scholarly scientific databases, including PubMed, Science Direct, and Scopus. Eligibility checks were performed based on predefined selection criteria. Finally, thirty-nine studies were considered.

Results

Exosomes have been indicated to use multitargeted pathways to improve wound healing by modulating numerous dysregulated signaling cascades involved in cell proliferation, cell cycle regulation, metastasis, apoptosis, and angiogenesis.

Conclusion

The outcome of this review might guide pre-clinical and clinical studies on the role of exosomes in skin wound healing.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010323495241016085000
2025-01-06
2025-03-26
Loading full text...

Full text loading...

References

  1. van den Broek L.J. Limandjaja G.C. Niessen F.B. Gibbs S. Human hypertrophic and keloid scar models: Principles, limitations and future challenges from a tissue engineering perspective. Exp. Dermatol. 2014 23 6 382 386 10.1111/exd.12419 24750541
    [Google Scholar]
  2. Rani S. Ritter T. The exosome‐A naturally secreted nanoparticle and its application to wound healing. Adv. Mater. 2016 28 27 5542 5552 10.1002/adma.201504009 26678528
    [Google Scholar]
  3. Yamaguchi Y. Yoshikawa K. Cutaneous wound healing: An update. J. Dermatol. 2001 28 10 521 534 10.1111/j.1346‑8138.2001.tb00025.x 11732719
    [Google Scholar]
  4. Phinney D.G. Pittenger M.F. Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells 2017 35 4 851 858 10.1002/stem.2575 28294454
    [Google Scholar]
  5. Fernando M.R. Jiang C. Krzyzanowski G.D. Ryan W.L. New evidence that a large proportion of human blood plasma cell-free DNA is localized in exosomes. PLoS One 2017 12 8 e0183915 10.1371/journal.pone.0183915 28850588
    [Google Scholar]
  6. Kishore R. Khan M. More than tiny sacks: Stem cell exosomes as a cell-free modality for cardiac repair. Circ. Res. 2016 118 2 330 343 10.1161/CIRCRESAHA.115.307654 26838317
    [Google Scholar]
  7. Golchin A. Hosseinzadeh S. Ardeshirylajimi A. The exosomes released from different cell types and their effects in wound healing. J. Cell. Biochem. 2018 119 7 5043 5052 10.1002/jcb.26706 29377240
    [Google Scholar]
  8. Yin K. Wang S. Zhao R.C. Exosomes from mesenchymal stem/stromal cells: A new therapeutic paradigm. Biomark. Res. 2019 7 1 8 10.1186/s40364‑019‑0159‑x 30992990
    [Google Scholar]
  9. Subra C. Laulagnier K. Perret B. Record M. Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. Biochimie 2007 89 2 205 212 10.1016/j.biochi.2006.10.014 17157973
    [Google Scholar]
  10. Théry C. Zitvogel L. Amigorena S. Exosomes: Composition, biogenesis and function. Nat. Rev. Immunol. 2002 2 8 569 579 10.1038/nri855 12154376
    [Google Scholar]
  11. Heijnen H.F.G. Schiel A.E. Fijnheer R. Geuze H.J. Sixma J.J. Activated platelets release two types of membrane vesicles: Microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and α-granules. Blood 1999 94 11 3791 3799 10.1182/blood.V94.11.3791 10572093
    [Google Scholar]
  12. Trajkovic K. Hsu C. Chiantia S. Rajendran L. Wenzel D. Wieland F. Schwille P. Brugger B. Simons M. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 2008 319 1244 1247
    [Google Scholar]
  13. Théry C. Ostrowski M. Segura E. Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol. 2009 9 8 581 593 10.1038/nri2567 19498381
    [Google Scholar]
  14. Yáñez-Mó M. Siljander P.R.M. Andreu Z. Bedina Zavec A. Borràs F.E. Buzas E.I. Buzas K. Casal E. Cappello F. Carvalho J. Colás E. Cordeiro-da Silva A. Fais S. Falcon-Perez J.M. Ghobrial I.M. Giebel B. Gimona M. Graner M. Gursel I. Gursel M. Heegaard N.H.H. Hendrix A. Kierulf P. Kokubun K. Kosanovic M. Kralj-Iglic V. Krämer-Albers E.M. Laitinen S. Lässer C. Lener T. Ligeti E. Linē A. Lipps G. Llorente A. Lötvall J. Manček-Keber M. Marcilla A. Mittelbrunn M. Nazarenko I. Nolte-’t Hoen E.N.M. Nyman T.A. O’Driscoll L. Olivan M. Oliveira C. Pállinger É. del Portillo H.A. Reventós J. Rigau M. Rohde E. Sammar M. Sánchez-Madrid F. Santarém N. Schallmoser K. Stampe Ostenfeld M. Stoorvogel W. Stukelj R. Van der Grein S.G. Helena Vasconcelos M. Wauben M.H.M. De Wever O. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 2015 4 1 27066 10.3402/jev.v4.27066 25979354
    [Google Scholar]
  15. Kalra H. Drummen G. Mathivanan S. Focus on extracellular vesicles: Introducing the next small big thing. Int. J. Mol. Sci. 2016 17 2 170 10.3390/ijms17020170 26861301
    [Google Scholar]
  16. Sadallah S. Eken C. Schifferli J.A. Ectosomes as modulators of inflammation and immunity. Clin. Exp. Immunol. 2010 163 1 26 32 10.1111/j.1365‑2249.2010.04271.x 21039423
    [Google Scholar]
  17. Wysoczynski M. Ratajczak M.Z. Lung cancer secreted microvesicles: Underappreciated modulators of microenvironment in expanding tumors. Int. J. Cancer 2009 125 7 1595 1603 10.1002/ijc.24479 19462451
    [Google Scholar]
  18. Baj-Krzyworzeka M. Szatanek R. Węglarczyk K. Baran J. Zembala M. Tumour-derived microvesicles modulate biological activity of human monocytes. Immunol. Lett. 2007 113 2 76 82 10.1016/j.imlet.2007.07.014 17825925
    [Google Scholar]
  19. van Niel G. Porto-Carreiro I. Simoes S. Raposo G. Exosomes: A common pathway for a specialized function. J. Biochem. 2006 140 1 13 21 10.1093/jb/mvj128 16877764
    [Google Scholar]
  20. Lötvall J. Hill A.F. Hochberg F. Buzás E.I. Di Vizio D. Gardiner C. Gho Y.S. Kurochkin I.V. Mathivanan S. Quesenberry P. Sahoo S. Tahara H. Wauben M.H. Witwer K.W. Théry C. Minimal experimental requirements for definition of extracellular vesicles and their functions: A position statement from the International Society for Extracellular Vesicles. J. Extracell. Vesicles 2014 3 1 26913 10.3402/jev.v3.26913 25536934
    [Google Scholar]
  21. Kalluri R. LeBleu V.S. The biology, function, and biomedical applications of exosomes. Science 2020 367 1244 eaau6977
    [Google Scholar]
  22. Hanahan D. Weinberg R.A. Hallmarks of cancer: The next generation. Cell 2011 144 5 646 674 10.1016/j.cell.2011.02.013 21376230
    [Google Scholar]
  23. Stefanius K. Servage K. de Souza Santos M. Gray H.F. Toombs J.E. Chimalapati S. Kim M.S. Malladi V.S. Brekken R. Orth K. Human pancreatic cancer cell exosomes, but not human normal cell exosomes, act as an initiator in cell transformation. eLife 2019 8 e40226 10.7554/eLife.40226 31134894
    [Google Scholar]
  24. Melo S.A. Sugimoto H. O’Connell J.T. Kato N. Villanueva A. Vidal A. Qiu L. Vitkin E. Perelman L.T. Melo C.A. Lucci A. Ivan C. Calin G.A. Kalluri R. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell 2014 26 5 707 721 10.1016/j.ccell.2014.09.005 25446899
    [Google Scholar]
  25. Abd Elmageed Z.Y. Yang Y. Thomas R. Ranjan M. Mondal D. Moroz K. Fang Z. Rezk B.M. Moparty K. Sikka S.C. Sartor O. Abdel-Mageed A.B. Neoplastic reprogramming of patient-derived adipose stem cells by prostate cancer cell-associated exosomes. Stem Cells 2014 32 4 983 997 10.1002/stem.1619 24715691
    [Google Scholar]
  26. Guay C. Regazzi R. Exosomes as new players in metabolic organ cross‐talk. Diabetes Obes. Metab. 2017 19 S1 Suppl. 1 137 146 10.1111/dom.13027 28880477
    [Google Scholar]
  27. Srikanthan S. Li W. Silverstein R.L. McIntyre T.M. Exosome poly‐ubiquitin inhibits platelet activation, downregulates CD36 and inhibits pro‐atherothombotic cellular functions. J. Thromb. Haemost. 2014 12 11 1906 1917 10.1111/jth.12712 25163645
    [Google Scholar]
  28. Budnik V. Ruiz-Cañada C. Wendler F. Extracellular vesicles round off communication in the nervous system. Nat. Rev. Neurosci. 2016 17 3 160 172 10.1038/nrn.2015.29 26891626
    [Google Scholar]
  29. Levy E. Exosomes in the diseased brain: First insights from in vivo studies. Front. Neurosci. 2017 11 142 10.3389/fnins.2017.00142 28386213
    [Google Scholar]
  30. Montecalvo A. Larregina A.T. Shufesky W.J. Beer Stolz D. Sullivan M.L.G. Karlsson J.M. Baty C.J. Gibson G.A. Erdos G. Wang Z. Milosevic J. Tkacheva O.A. Divito S.J. Jordan R. Lyons-Weiler J. Watkins S.C. Morelli A.E. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 2012 119 3 756 766 10.1182/blood‑2011‑02‑338004 22031862
    [Google Scholar]
  31. Ding G. Zhou L. Qian Y. Fu M. Chen J. Chen J. Xiang J. Wu Z. Jiang G. Cao L. Pancreatic cancer-derived exosomes transfer miRNAs to dendritic cells and inhibit RFXAP expression via miR-212-3p. Oncotarget 2015 6 30 29877 29888 10.18632/oncotarget.4924 26337469
    [Google Scholar]
  32. Capello M. Vykoukal J.V. Katayama H. Bantis L.E. Wang H. Kundnani D.L. Aguilar-Bonavides C. Aguilar M. Tripathi S.C. Dhillon D.S. Momin A.A. Peters H. Katz M.H. Alvarez H. Bernard V. Ferri-Borgogno S. Brand R. Adler D.G. Firpo M.A. Mulvihill S.J. Molldrem J.J. Feng Z. Taguchi A. Maitra A. Hanash S.M. Exosomes harbor B cell targets in pancreatic adenocarcinoma and exert decoy function against complement-mediated cytotoxicity. Nat. Commun. 2019 10 1 254 10.1038/s41467‑018‑08109‑6 30651550
    [Google Scholar]
  33. Xiao S. Xiao C. Miao Y. Wang J. Chen R. Fan Z. Hu Z. Human acellular amniotic membrane incorporating exosomes from adipose-derived mesenchymal stem cells promotes diabetic wound healing. Stem Cell Res. Ther. 2021 12 1 255 10.1186/s13287‑021‑02333‑6 33926555
    [Google Scholar]
  34. Han X. Wu P. Li L. Sahal H.M. Ji C. Zhang J. Wang Y. Wang Q. Qian H. Shi H. Xu W. Exosomes derived from autologous dermal fibroblasts promote diabetic cutaneous wound healing through the Akt/β-catenin pathway. Cell Cycle 2021 20 5-6 616 629 10.1080/15384101.2021.1894813 33685347
    [Google Scholar]
  35. Hettich B.F. Ben-Yehuda Greenwald M. Werner S. Leroux J.C. Exosomes for wound healing: Purification optimization and identification of bioactive components. Adv. Sci. (Weinh.) 2020 7 23 2002596 10.1002/advs.202002596 33304765
    [Google Scholar]
  36. Li X. Wang Y. Shi L. Li B. Li J. Wei Z. Lv H. Wu L. Zhang H. Yang B. Xu X. Jiang J. Magnetic targeting enhances the cutaneous wound healing effects of human mesenchymal stem cell-derived iron oxide exosomes. J. Nanobiotechnology 2020 18 1 113 10.1186/s12951‑020‑00670‑x 32799868
    [Google Scholar]
  37. Mi B. Chen L. Xiong Y. Yan C. Xue H. Panayi A.C. Liu J. Hu L. Hu Y. Cao F. Sun Y. Zhou W. Liu G. Saliva exosomes-derived UBE2O mRNA promotes angiogenesis in cutaneous wounds by targeting SMAD6. J. Nanobiotechnology 2020 18 1 68 10.1186/s12951‑020‑00624‑3 32375794
    [Google Scholar]
  38. Şahin F. Koçak P. Güneş M.Y. Özkan İ. Yıldırım E. Kala E.Y. In vitro wound healing activity of wheat-derived nanovesicles. Appl. Biochem. Biotechnol. 2019 188 2 381 394 10.1007/s12010‑018‑2913‑1 30474796
    [Google Scholar]
  39. Sung D.K. Chang Y.S. Sung S.I. Ahn S.Y. Park W.S. Thrombin preconditioning of extracellular vesicles derived from mesenchymal stem cells accelerates cutaneous wound healing by boosting their biogenesis and enriching cargo content. J. Clin. Med. 2019 8 4 533 10.3390/jcm8040533 31003433
    [Google Scholar]
  40. Ding J. Wang X. Chen B. Zhang J. Xu J. Exosomes derived from human bone marrow mesenchymal stem cells stimulated by deferoxamine accelerate cutaneous wound healing by promoting angiogenesis. Biomed. Res. Int. 2019 2019 9742765 10.1155/2019/9742765
    [Google Scholar]
  41. Shabbir A. Cox A. Rodriguez-Menocal L. Salgado M. Badiavas E.V. Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro. Stem Cells Dev. 2015 24 14 1635 1647 10.1089/scd.2014.0316 25867197
    [Google Scholar]
  42. Zhang J. Guan J. Niu X. Hu G. Guo S. Li Q. Xie Z. Zhang C. Wang Y. Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. J. Transl. Med. 2015 13 1 49 10.1186/s12967‑015‑0417‑0 25638205
    [Google Scholar]
  43. Zhang X.F. Wang T. Wang Z.X. Huang K.P. Zhang Y.W. Wang G.L. Zhang H.J. Chen Z.H. Wang C.Y. Zhang J.X. Wang H. Hypoxic ucMSC-secreted exosomal miR-125b promotes endothelial cell survival and migration during wound healing by targeting TP53INP1. Mol. Ther. Nucleic Acids 2021 26 347 359 10.1016/j.omtn.2021.07.014 34513314
    [Google Scholar]
  44. Zhang Y. Pan Y. Liu Y. Li X. Tang L. Duan M. Li J. Zhang G. Exosomes derived from human umbilical cord blood mesenchymal stem cells stimulate regenerative wound healing via transforming growth factor-β receptor inhibition. Stem Cell Res. Ther. 2021 12 1 434 10.1186/s13287‑021‑02517‑0 34344478
    [Google Scholar]
  45. Parvanian S. Yan F. Su D. Coelho-Rato L.S. Venu A.P. Yang P. Zou X. Jiu Y. Chen H. Eriksson J.E. Cheng F. Exosomal vimentin from adipocyte progenitors accelerates wound healing. Cytoskeleton (Hoboken) 2020 77 10 399 413 10.1002/cm.21634 32978896
    [Google Scholar]
  46. Jiang T. Wang Z. Sun J. Human bone marrow mesenchymal stem cell-derived exosomes stimulate cutaneous wound healing mediates through TGF-β/Smad signaling pathway. Stem Cell Res. Ther. 2020 11 1 198 10.1186/s13287‑020‑01723‑6 32448395
    [Google Scholar]
  47. Zhang W. Bai X. Zhao B. Li Y. Zhang Y. Li Z. Wang X. Luo L. Han F. Zhang J. Han S. Cai W. Su L. Tao K. Shi J. Hu D. Cell-free therapy based on adipose tissue stem cell-derived exosomes promotes wound healing via the PI3K/Akt signaling pathway. Exp. Cell Res. 2018 370 2 333 342 10.1016/j.yexcr.2018.06.035 29964051
    [Google Scholar]
  48. Bakhtyar N. Jeschke M.G. Herer E. Sheikholeslam M. Amini-Nik S. Exosomes from acellular Wharton’s jelly of the human umbilical cord promotes skin wound healing. Stem Cell Res. Ther. 2018 9 1 193 10.1186/s13287‑018‑0921‑2 30005703
    [Google Scholar]
  49. Kim Y.J. Yoo S. Park H.H. Lim H.J. Kim Y.L. Lee S. Seo K.W. Kang K.S. Exosomes derived from human umbilical cord blood mesenchymal stem cells stimulates rejuvenation of human skin. Biochem. Biophys. Res. Commun. 2017 493 2 1102 1108 10.1016/j.bbrc.2017.09.056 28919421
    [Google Scholar]
  50. Xu Y. Lin Z. He L. Qu Y. Ouyang L. Han Y. Xu C. Duan D. Platelet-rich plasma-derived exosomal USP15 Promotes cutaneous wound healing via deubiquitinating EIF4A1. Oxid Med Cell Longev 2021 2021 99674809 10.1155/2021/9674809
    [Google Scholar]
  51. Cheng S. Xi Z. Chen G. Liu K. Ma R. Zhou C. Extracellular vesicle‐carried microRNA‐27b derived from mesenchymal stem cells accelerates cutaneous wound healing via E3 ubiquitin ligase ITCH. J. Cell. Mol. Med. 2020 24 19 11254 11271 10.1111/jcmm.15692 32845084
    [Google Scholar]
  52. Zhao D. Yu Z. Li Y. Wang Y. Li Q. Han D. GelMA combined with sustained release of HUVECs derived exosomes for promoting cutaneous wound healing and facilitating skin regeneration. J. Mol. Histol. 2020 51 3 251 263 10.1007/s10735‑020‑09877‑6 32388839
    [Google Scholar]
  53. Zhao G. Liu F. Liu Z. Zuo K. Wang B. Zhang Y. Han X. Lian A. Wang Y. Liu M. Zou F. Li P. Liu X. Jin M. Liu J.Y. MSC-derived exosomes attenuate cell death through suppressing AIF nucleus translocation and enhance cutaneous wound healing. Stem Cell Res. Ther. 2020 11 1 174 10.1186/s13287‑020‑01616‑8 32393338
    [Google Scholar]
  54. Lv Q. Deng J. Chen Y. Wang Y. Liu B. Liu J. Engineered human adipose stem-cell-derived exosomes loaded with miR-21-5p to promote diabetic cutaneous wound healing. Mol. Pharm. 2020 17 5 1723 1733 10.1021/acs.molpharmaceut.0c00177 32233440
    [Google Scholar]
  55. Belvedere R. Pessolano E. Porta A. Tosco A. Parente L. Petrella F. Perretti M. Petrella A. Mesoglycan induces the secretion of microvesicles by keratinocytes able to activate human fibroblasts and endothelial cells: A novel mechanism in skin wound healing. Eur. J. Pharmacol. 2020 869 172894 10.1016/j.ejphar.2019.172894 31883916
    [Google Scholar]
  56. Yin H. Chen C.Y. Liu Y.W. Tan Y.J. Deng Z.L. Yang F. Huang F.Y. Wen C. Rao S.S. Luo M.J. Hu X.K. Liu Z.Z. Wang Z.X. Cao J. Liu H.M. Liu J.H. Yue T. Tang S.Y. Xie H. Synechococcus elongatus PCC7942 secretes extracellular vesicles to accelerate cutaneous wound healing by promoting angiogenesis. Theranostics 2019 9 9 2678 2693 10.7150/thno.31884 31131061
    [Google Scholar]
  57. Zhang B. Wang M. Gong A. Zhang X. Wu X. Zhu Y. Shi H. Wu L. Zhu W. Qian H. Xu W. HucMSC‐exosome mediated‐Wnt4 signaling is required for cutaneous wound healing. Stem Cells 2015 33 7 2158 2168 10.1002/stem.1771 24964196
    [Google Scholar]
  58. Lu Y. Wen H. Huang J. Liao P. Liao H. Tu J. Zeng Y. Extracellular vesicle‐enclosed miR‐486‐5p mediates wound healing with adipose‐derived stem cells by promoting angiogenesis. J. Cell. Mol. Med. 2020 24 17 9590 9604 10.1111/jcmm.15387 32666704
    [Google Scholar]
  59. Hu Y. Rao S.S. Wang Z.X. Cao J. Tan Y.J. Luo J. Li H.M. Zhang W.S. Chen C.Y. Xie H. Exosomes from human umbilical cord blood accelerate cutaneous wound healing through miR-21-3p-mediated promotion of angiogenesis and fibroblast function. Theranostics 2018 8 1 169 184 10.7150/thno.21234 29290800
    [Google Scholar]
  60. Zhang J. Chen C. Hu B. Niu X. Liu X. Zhang G. Zhang C. Li Q. Wang Y. Exosomes derived from human endothelial progenitor cells accelerate cutaneous wound healing by promoting angiogenesis through Erk1/2 signaling. Int. J. Biol. Sci. 2016 12 12 1472 1487 10.7150/ijbs.15514 27994512
    [Google Scholar]
  61. Li X. Jiang C. Zhao J. Human endothelial progenitor cells-derived exosomes accelerate cutaneous wound healing in diabetic rats by promoting endothelial function. J. Diabetes Complications 2016 30 6 986 992 10.1016/j.jdiacomp.2016.05.009 27236748
    [Google Scholar]
  62. Yan C. Xv Y. Lin Z. Endo Y. Xue H. Hu Y. Hu L. Chen L. Cao F. Zhou W. Zhang P. Liu G. Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Accelerate Diabetic Wound Healing via Ameliorating Oxidative Stress and Promoting Angiogenesis. Front. Bioeng. Biotechnol. 2022 10 829868 10.3389/fbioe.2022.829868 35174145
    [Google Scholar]
  63. Pomatto M. Gai C. Negro F. Cedrino M. Grange C. Ceccotti E. Togliatto G. Collino F. Tapparo M. Figliolini F. Lopatina T. Brizzi M.F. Camussi G. Differential therapeutic effect of extracellular vesicles derived by bone marrow and adipose mesenchymal stem cells on wound healing of diabetic ulcers and correlation to their cargoes. Int. J. Mol. Sci. 2021 22 8 3851 10.3390/ijms22083851 33917759
    [Google Scholar]
  64. Gao S. Chen T. Hao Y. Zhang F. Tang X. Wang D. Wei Z. Qi J. Exosomal miR-135a derived from human amnion mesenchymal stem cells promotes cutaneous wound healing in rats and fibroblast migration by directly inhibiting LATS2 expression. Stem Cell Res. Ther. 2020 11 1 56 10.1186/s13287‑020‑1570‑9 32054526
    [Google Scholar]
  65. Kim H. Wang S.Y. Kwak G. Yang Y. Kwon I.C. Kim S.H. Exosome‐guided phenotypic switch of M1 to M2 macrophages for cutaneous wound healing. Adv. Sci. (Weinh.) 2019 6 20 1900513 10.1002/advs.201900513 31637157
    [Google Scholar]
  66. Lu M. Peng L. Ming X. Wang X. Cui A. Li Y. Wang X. Meng D. Sun N. Xiang M. Chen S. Enhanced wound healing promotion by immune response-free monkey autologous iPSCs and exosomes vs. their allogeneic counterparts. EBioMedicine 2019 42 443 457 10.1016/j.ebiom.2019.03.011 30926422
    [Google Scholar]
  67. He X. Dong Z. Cao Y. Wang H. Liu S. Liao L. Jin Y. Yuan L. Li B. MSC-derived exosome promotes M2 polarization and enhances cutaneous wound healing. Stem Cells Int. 2019 2019 7132708 10.1155/2019/7132708
    [Google Scholar]
  68. Kobayashi H. Ebisawa K. Kambe M. Kasai T. Suga H. Nakamura K. Narita Y. Ogata A. Kamei Y. <Editors’ Choice> Effects of exosomes derived from the induced pluripotent stem cells on skin wound healing. Nagoya J. Med. Sci. 2018 80 2 141 153 29915432
    [Google Scholar]
  69. Li X. Xie X. Lian W. Shi R. Han S. Zhang H. Lu L. Li M. Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model. Exp. Mol. Med. 2018 50 4 1 14 10.1038/s12276‑018‑0058‑5 29651102
    [Google Scholar]
  70. Fang S. Xu C. Zhang Y. Xue C. Yang C. Bi H. Qian X. Wu M. Ji K. Zhao Y. Wang Y. Liu H. Xing X. Umbilical cord-derived mesenchymal stem cell-derived exosomal microRNAs suppress myofibroblast differentiation by inhibiting the transforming growth factor-β/SMAD2 pathway during wound healing. Stem Cells Transl. Med. 2016 5 10 1425 1439 10.5966/sctm.2015‑0367 27388239
    [Google Scholar]
  71. Ti D. Hao H. Tong C. Liu J. Dong L. Zheng J. Zhao Y. Liu H. Fu X. Han W. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. J. Transl. Med. 2015 13 1 308 10.1186/s12967‑015‑0642‑6 26386558
    [Google Scholar]
  72. Sorg H. Tilkorn D.J. Hager S. Hauser J. Mirastschijski U. Skin wound healing: An update on the current knowledge and concepts. Eur. Surg. Res. 2017 58 1-2 81 94 10.1159/000454919 27974711
    [Google Scholar]
  73. Tottoli E.M. Dorati R. Genta I. Chiesa E. Pisani S. Conti B. Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics 2020 12 8 735 10.3390/pharmaceutics12080735 32764269
    [Google Scholar]
  74. An Y. Lin S. Tan X. Zhu S. Nie F. Zhen Y. Gu L. Zhang C. Wang B. Wei W. Li D. Wu J. Exosomes from adipose‐derived stem cells and application to skin wound healing. Cell Prolif. 2021 54 3 e12993 10.1111/cpr.12993 33458899
    [Google Scholar]
  75. Qiu H. Liu S. Wu K. Zhao R. Cao L. Wang H. Prospective application of exosomes derived from adipose‐derived stem cells in skin wound healing: A review. J. Cosmet. Dermatol. 2020 19 3 574 581 10.1111/jocd.13215 31755172
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010323495241016085000
Loading
/content/journals/cpb/10.2174/0113892010323495241016085000
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Review Article
Keywords: Skin ; Exosomes ; MSCs ; Wound healing ; EVs
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test