Skip to content
2000
Volume 26, Issue 17
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Objectives

Combining immune checkpoint inhibitors and antiangiogenic agents offers a promising strategy to counteract the cooperative promotion of solid tumor growth by immune checkpoints and intratumoral angiogenesis.

Methods

We investigated the potential of thalidomide (THD) and anti-PD-1 antibody (PD-1 mAb) in suppressing tumor growth, enhancing immunity, and inhibiting angiogenesis.

Results

THD exhibited regulatory effects on PD-1 in CD4+ T cells and PD-L1 in cancer cells, along with tumor growth inhibition in A549 and Lewis lung carcinoma (LLC) cell lines. Combined with PD-1 mAb, THD increased intracellular IL-2 and IFN-γ expression in CD4+ T cells, enhanced granzyme (Gzm-B) expression in peripheral blood mononuclear cells (PBMCs), and reduced TNF-α expression in CD4+ T cells. In C57BL/6 mice, THD plus PD-1 mAb decreased LLC-derived lung tumor weight and volume, boosted CD8+ T cell infiltration in tumors, and reduced CD34+ intratumoral microvessel density.

Conclusion

This study highlights THD’s role in modifying the tumor microenvironment to enhance PD-1 mAb efficacy, proposing a clinically feasible approach for improving PD-1 mAb treatment outcomes.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010319495241218114812
2025-01-03
2026-02-22
Loading full text...

Full text loading...

References

  1. NovelloS. BarlesiF. CalifanoR. CuferT. EkmanS. LevraM.G. KerrK. PopatS. ReckM. SenanS. SimoG.V. VansteenkisteJ. PetersS. Metastatic non-small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up.Ann. Oncol.201627Suppl. 5v1v2710.1093/annonc/mdw32627664245
    [Google Scholar]
  2. HoudaI. DickhoffC. GrootU.C.A. ReguartN. ProvencioM. LevyA. DziadziuszkoR. PompiliC. MaioD.M. ThomasM. BrunelliA. PopatS. SenanS. BahceI. New systemic treatment paradigms in resectable non-small cell lung cancer and variations in patient access across Europe.Lancet Reg. Health Eur.20243810084010.1016/j.lanepe.2024.10084038476748
    [Google Scholar]
  3. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  4. McLaughlinJ. BerkmanJ. Nana-SinkamP. Targeted therapies in non-small cell lung cancer: Present and future.Fac. Rev.2023122210.12703/r/12‑2237675274
    [Google Scholar]
  5. de JongD. DasJ.P. MaH. ValiplackalP.J. PrendergastC. RoaT. BraumullerB. DengA. DercleL. YehR. SalvatoreM.M. CapaccioneK.M. Novel targets, novel treatments: The changing landscape of non-small cell lung cancer.Cancers20231510285510.3390/cancers1510285537345192
    [Google Scholar]
  6. O’BrienM. AresP.L. MarreaudS. DafniU. OselinK. HavelL. EstebanE. IslaD. MartiM.A. FaehlingM. TsuboiM. LeeJ.S. NakagawaK. YangJ. SamkariA. KellerS.M. MauerM. JhaN. StahelR. BesseB. PetersS. Pembrolizumab versus placebo as adjuvant therapy for completely resected stage IB–IIIA non-small-cell lung cancer (PEARLS/KEYNOTE-091): An interim analysis of a randomised, triple-blind, phase 3 trial.Lancet Oncol.202223101274128610.1016/S1470‑2045(22)00518‑636108662
    [Google Scholar]
  7. FordeP.M. SpicerJ. LuS. ProvencioM. MitsudomiT. AwadM.M. FelipE. BroderickS.R. BrahmerJ.R. SwansonS.J. KerrK. WangC. CiuleanuT.E. SaylorsG.B. TanakaF. ItoH. ChenK.N. LibermanM. VokesE.E. TaubeJ.M. DorangeC. CaiJ. FioreJ. JarkowskiA. BalliD. SausenM. PandyaD. CalvetC.Y. GirardN. Neoadjuvant nivolumab plus chemotherapy in resectable lung cancer.N. Engl. J. Med.2022386211973198510.1056/NEJMoa220217035403841
    [Google Scholar]
  8. FelipE. AltorkiN. ZhouC. CsősziT. VynnychenkoI. GoloborodkoO. LuftA. AkopovA. MartiM.A. KenmotsuH. ChenY.M. ChellaA. SugawaraS. VoongD. WuF. YiJ. DengY. McClelandM. BennettE. GitlitzB. WakeleeH. Adjuvant atezolizumab after adjuvant chemotherapy in resected stage IB–IIIA non-small-cell lung cancer (IMpower010): A randomised, multicentre, open-label, phase 3 trial.Lancet2021398103081344135710.1016/S0140‑6736(21)02098‑534555333
    [Google Scholar]
  9. ChuX. NiuL. XiaoG. PengH. DengF. LiuZ. WuH. YangL. TanZ. LiZ. ZhouR. The long-term and short-term efficacy of immunotherapy in non-small cell lung cancer patients with brain metastases: A systematic review and meta-analysis.Front. Immunol.20221387548810.3389/fimmu.2022.87548835693805
    [Google Scholar]
  10. XuY. WangQ. XieJ. ChenM. LiuH. ZhanP. LvT. SongY. The predictive value of clinical and molecular characteristics or immunotherapy in non-small cell lung cancer: A meta-analysis of randomized controlled trials.Front. Oncol.20211173221410.3389/fonc.2021.73221434557415
    [Google Scholar]
  11. SicilianoM.A. CaridàG. CilibertoD. d’ApolitoM. PelaiaC. CaraccioloD. RiilloC. CorrealeP. GalvanoA. RussoA. BarbieriV. TassoneP. TagliaferriP. Efficacy and safety of first-line checkpoint inhibitors-based treatments for non-oncogene-addicted non-small-cell lung cancer: A systematic review and meta-analysis.ESMO Open20227310046510.1016/j.esmoop.2022.10046535427835
    [Google Scholar]
  12. SchachterJ. RibasA. LongG.V. AranceA. GrobJ.J. MortierL. DaudA. CarlinoM.S. McNeilC. LotemM. LarkinJ. LoriganP. NeynsB. BlankC. PetrellaT.M. HamidO. ZhouH. EbbinghausS. IbrahimN. RobertC. Pembrolizumab versus ipilimumab for advanced melanoma: Final overall survival results of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006).Lancet2017390101051853186210.1016/S0140‑6736(17)31601‑X28822576
    [Google Scholar]
  13. GettingerS.N. HornL. GandhiL. SpigelD.R. AntoniaS.J. RizviN.A. PowderlyJ.D. HeistR.S. CarvajalR.D. JackmanD.M. SequistL.V. SmithD.C. LemingP. CarboneD.P. SchenckP.M.C. TopalianS.L. HodiF.S. SosmanJ.A. SznolM. McDermottD.F. PardollD.M. SankarV. AhlersC.M. SalvatiM. WiggintonJ.M. HellmannM.D. KolliaG.D. GuptaA.K. BrahmerJ.R. Overall survival and long-term safety of nivolumab (anti–programmed death 1 antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non–small-cell lung cancer.J. Clin. Oncol.201533182004201210.1200/JCO.2014.58.370825897158
    [Google Scholar]
  14. De VelascoG. JeY. BosséD. AwadM.M. OttP.A. MoreiraR.B. SchutzF. BellmuntJ. SonpavdeG.P. HodiF.S. ChoueiriT.K. Comprehensive meta-analysis of key immune-related adverse events from CTLA-4 and PD-1/PD-L1 inhibitors in cancer patients.Cancer Immunol. Res.20175431231810.1158/2326‑6066.CIR‑16‑023728246107
    [Google Scholar]
  15. LiC.L. SongY. Combination strategies of immunotherapy in non-small cell lung cancer: Facts and challenges.Chin. Med. J.2021134161908191910.1097/CM9.000000000000161034343148
    [Google Scholar]
  16. LangerC.J. GadgeelS.M. BorghaeiH. PapadimitrakopoulouV.A. PatnaikA. PowellS.F. GentzlerR.D. MartinsR.G. StevensonJ.P. JalalS.I. PanwalkarA. YangJ.C.H. GubensM. SequistL.V. AwadM.M. FioreJ. GeY. RaftopoulosH. GandhiL. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: A randomised, phase 2 cohort of the open-label KEYNOTE-021 study.Lancet Oncol.201617111497150810.1016/S1470‑2045(16)30498‑327745820
    [Google Scholar]
  17. ShaverdianN. LisbergA.E. BornazyanK. VeruttipongD. GoldmanJ.W. FormentiS.C. GaronE.B. LeeP. Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: A secondary analysis of the KEYNOTE-001 phase 1 trial.Lancet Oncol.201718789590310.1016/S1470‑2045(17)30380‑728551359
    [Google Scholar]
  18. CiciolaP. CascettaP. BiancoC. FormisanoL. BiancoR. Combining immune checkpoint inhibitors with anti-angiogenic agents.J. Clin. Med.20209367510.3390/jcm903067532138216
    [Google Scholar]
  19. ChenS. MoW. JiangW. ZhouS. GanH. YuQ. The benefit and risk of PD-1/PD-L1 inhibitors plus anti-angiogenic agents as second or later-line treatment for patients with advanced non-small-cell lung cancer: A systematic review and single-arm meta-analysis of prospective clinical trials.Front. Immunol.202314121825810.3389/fimmu.2023.121825837614237
    [Google Scholar]
  20. YiM. ZhengX. NiuM. ZhuS. GeH. WuK. Combination strategies with PD-1/PD-L1 blockade: Current advances and future directions.Mol. Cancer20222112810.1186/s12943‑021‑01489‑235062949
    [Google Scholar]
  21. ShorttJ. HsuA.K. JohnstoneR.W. Thalidomide-analogue biology: Immunological, molecular and epigenetic targets in cancer therapy.Oncogene201332364191420210.1038/onc.2012.59923318436
    [Google Scholar]
  22. EatmannA.I. HamoudaE. HamoudaH. FaroukH.K. JobranA.W.M. OmarA.A. MadeehA.K. Al-darderyN.M. ElnoamanyS. ElnasserA.E.G. KoraiemA.M. AhmedA.A. AbouzidM. ŁadaK.M. Potential use of thalidomide in glioblastoma treatment: An updated brief overview.Metabolites202313454310.3390/metabo1304054337110201
    [Google Scholar]
  23. WethF.R. HoggarthG.B. WethA.F. PatersonE. WhiteM.P.J. TanS.T. PengL. GrayC. Unlocking hidden potential: Advancements, approaches, and obstacles in repurposing drugs for cancer therapy.Br. J. Cancer2024130570371510.1038/s41416‑023‑02502‑938012383
    [Google Scholar]
  24. DispenzieriA. POEMS Syndrome: 2019 Update on diagnosis, risk‐stratification, and management.Am. J. Hematol.201994781282710.1002/ajh.2549531012139
    [Google Scholar]
  25. ChaudhryV. Thalidomide-induced neuropathy.Neurology2002591218721875
    [Google Scholar]
  26. YamanakaS. MuraiH. SaitoD. AbeG. TokunagaE. IwasakiT. TakahashiH. TakedaH. SuzukiT. ShibataN. TamuraK. SawasakiT. Thalidomide and its metabolite 5‐hydroxythalidomide induce teratogenicity via the cereblon neosubstrate PLZF.EMBO J.2021404e10537510.15252/embj.202010537533470442
    [Google Scholar]
  27. HootnickD.R. LevinsohnE.M. RandallP.A. PackardD.S.Jr Vascular dysgenesis associated with skeletal dysplasia of the lower limb.J. Bone Joint Surg. Am.19806271123112910.2106/00004623‑198062070‑000097430198
    [Google Scholar]
  28. ZhangX. LuoH. Effects of thalidomide on growth and VEGF-A expression in SW480 colon cancer cells.Oncol. Lett.20181533313332029435073
    [Google Scholar]
  29. YangY. ZhangW.G. HeA.L. YangH.Y. WangY. TianW. Regulatory effect of thalidomide on the expression of costimulatory molecules in patients with multiple myeloma.Nan Fang Yi Ke Da Xue Xue Bao2009291224702472, 247620034904
    [Google Scholar]
  30. TianJ. SongT. WangH. WangW. ZhangZ. YanR. Thalidomide alleviates bone cancer pain by down-regulating expressions of NF-κB and GFAP in spinal astrocytes in a mouse model.Int. J. Neurosci.2019129989690310.1080/00207454.2019.158668730806135
    [Google Scholar]
  31. LinY.C. ShunC.T. WuM.S. ChenC.C. A novel anticancer effect of thalidomide: Inhibition of intercellular adhesion molecule-1-mediated cell invasion and metastasis through suppression of nuclear factor-kappaB.Clin. Cancer Res.200612237165717310.1158/1078‑0432.CCR‑06‑139317145842
    [Google Scholar]
  32. FringsK. GruberS. KuessP. KleiterM. DörrW. Modulation of radiation-induced oral mucositis by thalidomide.Strahlenther. Onkol.2016192856156810.1007/s00066‑016‑0989‑527282278
    [Google Scholar]
  33. DomingoS. SoléC. MolinéT. FerrerB. Ordi-RosJ. HernándezC.J. Efficacy of thalidomide in discoid lupus erythematosus: Insights into the molecular mechanisms.Dermatology2020236546747610.1159/00050867232659758
    [Google Scholar]
  34. TeoS.K. ResztakK.E. SchefflerM.A. KookK.A. ZeldisJ.B. StirlingD.I. ThomasS.D. Thalidomide in the treatment of leprosy.Microbes Infect.20024111193120210.1016/S1286‑4579(02)01645‑312361920
    [Google Scholar]
  35. NomanA.S. KoideN. HassanF. I-E-Khuda I Dagvadorj J. Tumurkhuu G. Islam S. Naiki Y. Yoshida T. Yokochi T. Thalidomide inhibits lipopolysaccharide-induced tumor necrosis factor-alpha production via down-regulation of MyD88 expression.Innate Immun.2009151334110.1177/175342590809931719201823
    [Google Scholar]
  36. FujiwaraY. SunY. TorphyR.J. HeJ. YanagaK. EdilB.H. SchulickR.D. ZhuY. Pomalidomide inhibits PD-L1 induction to promote antitumor immunity.Cancer Res.201878236655666510.1158/0008‑5472.CAN‑18‑178130315115
    [Google Scholar]
  37. VergaraT.R.C. SamerS. OliveiraS.J.R. GironL.B. ArifM.S. FreitasS.M.L. ChermanL.A. TreitsmanM.S. ChebaboA. SucupiraM.C.A. Da-CruzA.M. DiazR.S. Thalidomide is associated with increased T cell activation and inflammation in antiretroviral-naive HIV-infected individuals in a randomised clinical trial of efficacy and safety.EBioMedicine201723596710.1016/j.ebiom.2017.08.00728822719
    [Google Scholar]
  38. SłabickiM. SperlingA.S. Repurposing the repurposed: Thalidomide analogs as immune stimulants to overcome T cell exhaustion.Cell Chem. Biol.20222981245124710.1016/j.chembiol.2022.07.00435985276
    [Google Scholar]
  39. HaslettP.A.J. CorralL.G. AlbertM. KaplanG. Thalidomide costimulates primary human T lymphocytes, preferentially inducing proliferation, cytokine production, and cytotoxic responses in the CD8+ subset.J. Exp. Med.1998187111885189210.1084/jem.187.11.18859607928
    [Google Scholar]
  40. LeBlancR. HideshimaT. CatleyL.P. ShringarpureR. BurgerR. MitsiadesN. MitsiadesC. CheemaP. ChauhanD. RichardsonP.G. AndersonK.C. MunshiN.C. Immunomodulatory drug costimulates T cells via the B7-CD28 pathway.Blood200410351787179010.1182/blood‑2003‑02‑036114512311
    [Google Scholar]
  41. GörgünG. SamurM.K. CowensK.B. PaulaS. BianchiG. AndersonJ.E. WhiteR.E. SinghA. OhguchiH. SuzukiR. KikuchiS. HaradaT. HideshimaT. TaiY.T. LaubachJ.P. RajeN. MagrangeasF. MinvielleS. LoiseauA.H. MunshiN.C. DorfmanD.M. RichardsonP.G. AndersonK.C. Lenalidomide enhances immune checkpoint blockade-induced immune response in multiple myeloma.Clin. Cancer Res.201521204607461810.1158/1078‑0432.CCR‑15‑020025979485
    [Google Scholar]
  42. WangX. ShenY. MengLv L. Zhang X. Yang J. Wang F. Yang J. Thalidomide suppresses breast cancer tumor growth by inhibiting tumor-associated macrophage accumulation in breast tumor-bearing mice.Eur. J. Pharm. Sci.202015110530210.1016/j.ejps.2020.10530232407871
    [Google Scholar]
  43. LeeH.S. KwonH.S. ParkD.E. WooY.D. KimH.Y. KimH.R. ChoS.H. MinK.U. KangH.R. ChangY.S. Thalidomide inhibits alternative activation of macrophages in vivo and in vitro: A potential mechanism of anti-asthmatic effect of thalidomide.PLoS One2015104e012309410.1371/journal.pone.012309425905462
    [Google Scholar]
  44. LiaoH. LiY. ZhangX. ZhaoX. ZhengD. ShenD. LiR. Protective effects of thalidomide on high-glucose-induced podocyte injury through in vitro modulation of macrophage M1/M2 differentiation.J. Immunol. Res.2020202011410.1155/2020/826359832908940
    [Google Scholar]
  45. CharanJ. KanthariaN.D. How to calculate sample size in animal studies?J. Pharmacol. Pharmacother.20134430330610.4103/0976‑500X.11972624250214
    [Google Scholar]
  46. AnichiniA. PerottiV.E. SgambelluriF. MortariniR. Immune escape mechanisms in non small cell lung cancer.Cancers20201212360510.3390/cancers1212360533276569
    [Google Scholar]
  47. TianY. ZhaiX. HanA. ZhuH. YuJ. Potential immune escape mechanisms underlying the distinct clinical outcome of immune checkpoint blockades in small cell lung cancer.J. Hematol. Oncol.20191216710.1186/s13045‑019‑0753‑231253167
    [Google Scholar]
  48. KafkovaR.L. MierzwickaJ.M. ChakrabortyP. JakubecP. FischerO. SkardaJ. MalyP. RaskaM. NSCLC: From tumorigenesis, immune checkpoint misuse to current and future targeted therapy.Front. Immunol.202415134208610.3389/fimmu.2024.134208638384472
    [Google Scholar]
  49. MengL. WuH. WuJ. DingP. HeJ. SangM. LiuL. Mechanisms of immune checkpoint inhibitors: Insights into the regulation of circular RNAS involved in cancer hallmarks.Cell Death Dis.2024151310.1038/s41419‑023‑06389‑538177102
    [Google Scholar]
  50. XiaY. WangW.C. ShenW.H. XuK. HuY.Y. HanG.H. LiuY.B. Thalidomide suppresses angiogenesis and immune evasion via lncRNA FGD5-AS1/miR-454–3p/ZEB1 axis-mediated VEGFA expression and PD-1/PD-L1 checkpoint in NSCLC.Chem. Biol. Interact.202134910965210.1016/j.cbi.2021.10965234520751
    [Google Scholar]
  51. LiZ. DingX.J. QiaoX. LiuX.M. QiaoX. XieC.Z. LiuR.P. XuJ.Y. Thalidomide-based Pt(IV) prodrugs designed to exert synergistic effect of immunomodulation and chemotherapy.J. Inorg. Biochem.202223211184210.1016/j.jinorgbio.2022.11184235472743
    [Google Scholar]
  52. TouchaeiZ.A. VahidiS. MicroRNAs as regulators of immune checkpoints in cancer immunotherapy: Targeting PD-1/PD-L1 and CTLA-4 pathways.Cancer Cell Int.202424110210.1186/s12935‑024‑03293‑638462628
    [Google Scholar]
  53. JiangT. ZhouC. RenS. Role of IL-2 in cancer immunotherapy.OncoImmunology201656e116346210.1080/2162402X.2016.116346227471638
    [Google Scholar]
  54. JorgovanovicD. SongM. WangL. ZhangY. Roles of IFN-γ in tumor progression and regression: A review.Biomark. Res.2020814910.1186/s40364‑020‑00228‑x33005420
    [Google Scholar]
  55. GongK. GuoG. BeckleyN. ZhangY. YangX. SharmaM. HabibA.A. Tumor necrosis factor in lung cancer: Complex roles in biology and resistance to treatment.Neoplasia202123218919610.1016/j.neo.2020.12.00633373873
    [Google Scholar]
  56. ZuazoM. ArasanzH. HinojalF.G. GrandaG.M.J. GatoM. BocanegraA. MartínezM. HernándezB. TeijeiraL. MorillaI. LecumberriM.J. LascoitiF.A. VeraR. KochanG. EscorsD. Functional systemic CD 4 immunity is required for clinical responses to PD ‐L1/PD ‐1 blockade therapy.EMBO Mol. Med.2019117e1029310.15252/emmm.20191029331273938
    [Google Scholar]
  57. ZuazoM. ArasanzH. BocanegraA. FernandezG. ChocarroL. VeraR. KochanG. EscorsD. Systemic CD4 immunity as a key contributor to PD-L1/PD-1 blockade immunotherapy efficacy.Front. Immunol.20201158690710.3389/fimmu.2020.58690733329566
    [Google Scholar]
  58. ChenL. NiX. ZhangH. WuM. LiuJ. XuS. YangL. FuS. WuJ. Preparation, characterization, in vitro and in vivo anti-tumor effect of thalidomide nanoparticles on lung cancer.Int. J. Nanomedicine2018132463247610.2147/IJN.S15932729719394
    [Google Scholar]
  59. DeCiccoK.L. TanakaT. AndreolaF. De LucaL.M. The effect of thalidomide on non-small cell lung cancer (NSCLC) cell lines: Possible involvement in the PPAR pathway.Carcinogenesis200425101805181210.1093/carcin/bgh21015205358
    [Google Scholar]
  60. ChenC. YuG. XiaoW. XingM. NiJ. WanR. HuG. Thalidomide inhibits proliferation and epithelial mesenchymal transition by modulating CD133 expression in pancreatic cancer cells.Oncol. Lett.20171468206821210.3892/ol.2017.721329344263
    [Google Scholar]
  61. ZhangZ.L. LiuZ.S. SunQ. Effects of thalidomide on angiogenesis and tumor growth and metastasis of human hepatocellular carcinoma in nude mice.World J. Gastroenterol.200511221622010.3748/wjg.v11.i2.21615633219
    [Google Scholar]
  62. LichtJ.D. ShorttJ. JohnstoneR. From anecdote to targeted therapy: The curious case of thalidomide in multiple myeloma.Cancer Cell201425191110.1016/j.ccr.2013.12.01924434206
    [Google Scholar]
  63. ZhuJ. YangY. LiuS. XuH. WuY. ZhangG. WangY. WangY. LiuY. GuoQ. Anticancer effect of thalidomide in vitro on human osteosarcoma cells.Oncol. Rep.20163663545355110.3892/or.2016.515827748909
    [Google Scholar]
  64. ColucciM. MaioneF. BonitoM. PiscopoA. DigiannuarioA. PierettiS. New insights of dimethyl sulphoxide effects (DMSO) on experimental in vivo models of nociception and inflammation.Pharmacol. Res.200857641942510.1016/j.phrs.2008.04.00418508278
    [Google Scholar]
  65. VillagránG.M. PaulusL. LegerD.Y. TherrienB. LiagreB. Dimethyl sulfoxide: A bio-friendly or bio-hazard chemical? The effect of DMSO in human fibroblast-like synoviocytes.Molecules20222714447210.3390/molecules2714447235889344
    [Google Scholar]
  66. VelottiF. BarchettaI. CiminiF.A. CavalloM.G. Granzyme b in inflammatory diseases: Apoptosis, inflammation, extracellular matrix remodeling, epithelial-to-mesenchymal transition and fibrosis.Front. Immunol.20201158758110.3389/fimmu.2020.58758133262766
    [Google Scholar]
  67. DawoduD. SandS. NikolouliE. WerfelT. MommertS. The mRNA expression and secretion of granzyme B are up-regulated via the histamine H2 receptor in human CD4+ T cells.Inflamm. Res.20237281525153810.1007/s00011‑023‑01759‑337470818
    [Google Scholar]
  68. HiramatsuT. YoshizawaJ. MiyaguniK. SugiharaT. HaradaA. KajiS. UchidaG. KanamoriD. BabaY. AshizukaS. OhkiT. Thalidomide potentiates etoposide-induced apoptosis in murine neuroblastoma through suppression of NF-κB activation.Pediatr. Surg. Int.201834444345010.1007/s00383‑018‑4234‑429423589
    [Google Scholar]
  69. ZhangS. LiM. GuY. LiuZ. XuS. CuiY. SunB. Thalidomide influences growth and vasculogenic mimicry channel formation in melanoma.J. Exp. Clin. Cancer Res.20082716010.1186/1756‑9966‑27‑6018983651
    [Google Scholar]
  70. RüeggC. PetersS. Thalidomide in small cell lung cancer: Wrong drug or wrong disease?J. Natl. Cancer Inst.2009101151034103510.1093/jnci/djp20819608998
    [Google Scholar]
  71. RaskovH. OrhanA. ChristensenJ.P. GögenurI. Cytotoxic CD8+ T cells in cancer and cancer immunotherapy.Br. J. Cancer2021124235936710.1038/s41416‑020‑01048‑432929195
    [Google Scholar]
  72. KohC.H. LeeS. KwakM. KimB.S. ChungY. CD8 T-cell subsets: Heterogeneity, functions, and therapeutic potential.Exp. Mol. Med.202355112287229910.1038/s12276‑023‑01105‑x37907738
    [Google Scholar]
  73. WangX. ShenY. LiS. LvM. ZhangX. YangJ. WangF. YangJ. Importance of the interaction between immune cells and tumor vasculature mediated by thalidomide in cancer treatment (Review).Int. J. Mol. Med.20163841021102910.3892/ijmm.2016.272427599781
    [Google Scholar]
  74. DuW. HattoriY. HashiguchiA. KondohK. HozumiN. IkedaY. SakamotoM. HataJ. YamadaT. Tumor angiogenesis in the bone marrow of multiple myeloma patients and its alteration by thalidomide treatment.Pathol. Int.200454528529410.1111/j.1440‑1827.2004.01622.x15086832
    [Google Scholar]
  75. YangT. XiaoH. LiuX. WangZ. ZhangQ. WeiN. GuoX. Vascular normalization: A new window opened for cancer therapies.Front. Oncol.20211171983610.3389/fonc.2021.71983634476218
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010319495241218114812
Loading
/content/journals/cpb/10.2174/0113892010319495241218114812
Loading

Data & Media loading...

Supplements

Supplementary material, along with the published article, is available on the publisher's website.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test