Skip to content
2000
image of Strengthening Effect of Thalidomide Combined with an Anti-PD1 Antibody on Enhancing Immunity for Lung Cancer Therapy

Abstract

Objective

Combining immune checkpoint inhibitors and antiangiogenic agents offers a promising strategy to counteract the cooperative promotion of solid tumor growth by immune checkpoints and intratumoral angiogenesis.

Methods

We investigated the potential of thalidomide (THD) and anti-PD-1 antibody (PD-1 mAb) in suppressing tumor growth, enhancing immunity, and inhibiting angiogenesis.

Results

THD exhibited regulatory effects on PD-1 in CD4+ T cells and PD-L1 in cancer cells, along with tumor growth inhibition in A549 and Lewis lung carcinoma (LLC) cell lines. Combined with PD-1 mAb, THD increased intracellular IL-2 and IFN-γ expression in CD4+ T cells, enhanced granzyme (Gzm-B) expression in peripheral blood mononuclear cells (PBMCs), and reduced TNF-α expression in CD4+ T cells. In C57BL/6 mice, THD plus PD-1 mAb decreased LLC-derived lung tumor weight and volume, boosted CD8+ T cell infiltration in tumors, and reduced CD34+ intratumoral microvessel density.

Conclusion

This study highlights THD’s role in modifying the tumor microenvironment to enhance PD-1 mAb efficacy, proposing a clinically feasible approach for improving PD-1 mAb treatment outcomes.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010319495241218114812
2025-01-03
2025-03-26
Loading full text...

Full text loading...

References

  1. Novello S. Barlesi F. Califano R. Cufer T. Ekman S. Levra M.G. Kerr K. Popat S. Reck M. Senan S. Simo G.V. Vansteenkiste J. Peters S. Metastatic non-small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2016 27 Suppl. 5 v1 v27 10.1093/annonc/mdw326 27664245
    [Google Scholar]
  2. Houda I. Dickhoff C. Groot U.C.A. Reguart N. Provencio M. Levy A. Dziadziuszko R. Pompili C. Maio D.M. Thomas M. Brunelli A. Popat S. Senan S. Bahce I. New systemic treatment paradigms in resectable non-small cell lung cancer and variations in patient access across Europe. Lancet Reg. Health Eur. 2024 38 100840 10.1016/j.lanepe.2024.100840 38476748
    [Google Scholar]
  3. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  4. McLaughlin J. Berkman J. Nana-Sinkam P. Targeted therapies in non-small cell lung cancer: Present and future. Fac. Rev. 2023 12 22 10.12703/r/12‑22 37675274
    [Google Scholar]
  5. de Jong D. Das J.P. Ma H. Valiplackal P.J. Prendergast C. Roa T. Braumuller B. Deng A. Dercle L. Yeh R. Salvatore M.M. Capaccione K.M. Novel targets, novel treatments: The changing landscape of non-small cell lung cancer. Cancers 2023 15 10 2855 10.3390/cancers15102855 37345192
    [Google Scholar]
  6. O’Brien M. Ares P.L. Marreaud S. Dafni U. Oselin K. Havel L. Esteban E. Isla D. Marti M.A. Faehling M. Tsuboi M. Lee J.S. Nakagawa K. Yang J. Samkari A. Keller S.M. Mauer M. Jha N. Stahel R. Besse B. Peters S. Pembrolizumab versus placebo as adjuvant therapy for completely resected stage IB–IIIA non-small-cell lung cancer (PEARLS/KEYNOTE-091): An interim analysis of a randomised, triple-blind, phase 3 trial. Lancet Oncol. 2022 23 10 1274 1286 10.1016/S1470‑2045(22)00518‑6 36108662
    [Google Scholar]
  7. Forde P.M. Spicer J. Lu S. Provencio M. Mitsudomi T. Awad M.M. Felip E. Broderick S.R. Brahmer J.R. Swanson S.J. Kerr K. Wang C. Ciuleanu T.E. Saylors G.B. Tanaka F. Ito H. Chen K.N. Liberman M. Vokes E.E. Taube J.M. Dorange C. Cai J. Fiore J. Jarkowski A. Balli D. Sausen M. Pandya D. Calvet C.Y. Girard N. Neoadjuvant nivolumab plus chemotherapy in resectable lung cancer. N. Engl. J. Med. 2022 386 21 1973 1985 10.1056/NEJMoa2202170 35403841
    [Google Scholar]
  8. Felip E. Altorki N. Zhou C. Csőszi T. Vynnychenko I. Goloborodko O. Luft A. Akopov A. Marti M.A. Kenmotsu H. Chen Y.M. Chella A. Sugawara S. Voong D. Wu F. Yi J. Deng Y. McCleland M. Bennett E. Gitlitz B. Wakelee H. Adjuvant atezolizumab after adjuvant chemotherapy in resected stage IB–IIIA non-small-cell lung cancer (IMpower010): A randomised, multicentre, open-label, phase 3 trial. Lancet 2021 398 10308 1344 1357 10.1016/S0140‑6736(21)02098‑5 34555333
    [Google Scholar]
  9. Chu X. Niu L. Xiao G. Peng H. Deng F. Liu Z. Wu H. Yang L. Tan Z. Li Z. Zhou R. The long-term and short-term efficacy of immunotherapy in non-small cell lung cancer patients with brain metastases: A systematic review and meta-analysis. Front. Immunol. 2022 13 875488 10.3389/fimmu.2022.875488 35693805
    [Google Scholar]
  10. Xu Y. Wang Q. Xie J. Chen M. Liu H. Zhan P. Lv T. Song Y. The predictive value of clinical and molecular characteristics or immunotherapy in non-small cell lung cancer: A meta-analysis of randomized controlled trials. Front. Oncol. 2021 11 732214 10.3389/fonc.2021.732214 34557415
    [Google Scholar]
  11. Siciliano M.A. Caridà G. Ciliberto D. d’Apolito M. Pelaia C. Caracciolo D. Riillo C. Correale P. Galvano A. Russo A. Barbieri V. Tassone P. Tagliaferri P. Efficacy and safety of first-line checkpoint inhibitors-based treatments for non-oncogene-addicted non-small-cell lung cancer: A systematic review and meta-analysis. ESMO Open 2022 7 3 100465 10.1016/j.esmoop.2022.100465 35427835
    [Google Scholar]
  12. Schachter J. Ribas A. Long G.V. Arance A. Grob J.J. Mortier L. Daud A. Carlino M.S. McNeil C. Lotem M. Larkin J. Lorigan P. Neyns B. Blank C. Petrella T.M. Hamid O. Zhou H. Ebbinghaus S. Ibrahim N. Robert C. Pembrolizumab versus ipilimumab for advanced melanoma: Final overall survival results of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006). Lancet 2017 390 10105 1853 1862 10.1016/S0140‑6736(17)31601‑X 28822576
    [Google Scholar]
  13. Gettinger S.N. Horn L. Gandhi L. Spigel D.R. Antonia S.J. Rizvi N.A. Powderly J.D. Heist R.S. Carvajal R.D. Jackman D.M. Sequist L.V. Smith D.C. Leming P. Carbone D.P. Schenck P.M.C. Topalian S.L. Hodi F.S. Sosman J.A. Sznol M. McDermott D.F. Pardoll D.M. Sankar V. Ahlers C.M. Salvati M. Wigginton J.M. Hellmann M.D. Kollia G.D. Gupta A.K. Brahmer J.R. Overall survival and long-term safety of nivolumab (anti–programmed death 1 antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non–small-cell lung cancer. J. Clin. Oncol. 2015 33 18 2004 2012 10.1200/JCO.2014.58.3708 25897158
    [Google Scholar]
  14. De Velasco G. Je Y. Bossé D. Awad M.M. Ott P.A. Moreira R.B. Schutz F. Bellmunt J. Sonpavde G.P. Hodi F.S. Choueiri T.K. Comprehensive meta-analysis of key immune-related adverse events from CTLA-4 and PD-1/PD-L1 inhibitors in cancer patients. Cancer Immunol. Res. 2017 5 4 312 318 10.1158/2326‑6066.CIR‑16‑0237 28246107
    [Google Scholar]
  15. Li C.L. Song Y. Combination strategies of immunotherapy in non-small cell lung cancer: Facts and challenges. Chin. Med. J. 2021 134 16 1908 1919 10.1097/CM9.0000000000001610 34343148
    [Google Scholar]
  16. Langer C.J. Gadgeel S.M. Borghaei H. Papadimitrakopoulou V.A. Patnaik A. Powell S.F. Gentzler R.D. Martins R.G. Stevenson J.P. Jalal S.I. Panwalkar A. Yang J.C.H. Gubens M. Sequist L.V. Awad M.M. Fiore J. Ge Y. Raftopoulos H. Gandhi L. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: A randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol. 2016 17 11 1497 1508 10.1016/S1470‑2045(16)30498‑3 27745820
    [Google Scholar]
  17. Shaverdian N. Lisberg A.E. Bornazyan K. Veruttipong D. Goldman J.W. Formenti S.C. Garon E.B. Lee P. Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: A secondary analysis of the KEYNOTE-001 phase 1 trial. Lancet Oncol. 2017 18 7 895 903 10.1016/S1470‑2045(17)30380‑7 28551359
    [Google Scholar]
  18. Ciciola P. Cascetta P. Bianco C. Formisano L. Bianco R. Combining immune checkpoint inhibitors with anti-angiogenic agents. J. Clin. Med. 2020 9 3 675 10.3390/jcm9030675 32138216
    [Google Scholar]
  19. Chen S. Mo W. Jiang W. Zhou S. Gan H. Yu Q. The benefit and risk of PD-1/PD-L1 inhibitors plus anti-angiogenic agents as second or later-line treatment for patients with advanced non-small-cell lung cancer: A systematic review and single-arm meta-analysis of prospective clinical trials. Front. Immunol. 2023 14 1218258 10.3389/fimmu.2023.1218258 37614237
    [Google Scholar]
  20. Yi M. Zheng X. Niu M. Zhu S. Ge H. Wu K. Combination strategies with PD-1/PD-L1 blockade: Current advances and future directions. Mol. Cancer 2022 21 1 28 10.1186/s12943‑021‑01489‑2 35062949
    [Google Scholar]
  21. Shortt J. Hsu A.K. Johnstone R.W. Thalidomide-analogue biology: Immunological, molecular and epigenetic targets in cancer therapy. Oncogene 2013 32 36 4191 4202 10.1038/onc.2012.599 23318436
    [Google Scholar]
  22. Eatmann A.I. Hamouda E. Hamouda H. Farouk H.K. Jobran A.W.M. Omar A.A. Madeeh A.K. Al-dardery N.M. Elnoamany S. Elnasser A.E.G. Koraiem A.M. Ahmed A.A. Abouzid M. Łada K.M. Potential use of thalidomide in glioblastoma treatment: An updated brief overview. Metabolites 2023 13 4 543 10.3390/metabo13040543 37110201
    [Google Scholar]
  23. Weth F.R. Hoggarth G.B. Weth A.F. Paterson E. White M.P.J. Tan S.T. Peng L. Gray C. Unlocking hidden potential: Advancements, approaches, and obstacles in repurposing drugs for cancer therapy. Br. J. Cancer 2024 130 5 703 715 10.1038/s41416‑023‑02502‑9 38012383
    [Google Scholar]
  24. Dispenzieri A. POEMS Syndrome: 2019 Update on diagnosis, risk‐stratification, and management. Am. J. Hematol. 2019 94 7 812 827 10.1002/ajh.25495 31012139
    [Google Scholar]
  25. Chaudhry V. Thalidomide-induced neuropathy. Neurology 2002 59 12 1872 5
    [Google Scholar]
  26. Yamanaka S. Murai H. Saito D. Abe G. Tokunaga E. Iwasaki T. Takahashi H. Takeda H. Suzuki T. Shibata N. Tamura K. Sawasaki T. Thalidomide and its metabolite 5‐hydroxythalidomide induce teratogenicity via the cereblon neosubstrate PLZF. EMBO J. 2021 40 4 e105375 10.15252/embj.2020105375 33470442
    [Google Scholar]
  27. Hootnick D.R. Levinsohn E.M. Randall P.A. Packard D.S. Jr Vascular dysgenesis associated with skeletal dysplasia of the lower limb. J. Bone Joint Surg. Am. 1980 62 7 1123 1129 10.2106/00004623‑198062070‑00009 7430198
    [Google Scholar]
  28. Zhang X. Luo H. Effects of thalidomide on growth and VEGF-A expression in SW480 colon cancer cells. Oncol. Lett. 2018 15 3 3313 3320 29435073
    [Google Scholar]
  29. Yang Y. Zhang W.G. He A.L. Yang H.Y. Wang Y. Tian W. Regulatory effect of thalidomide on the expression of costimulatory molecules in patients with multiple myeloma. Nan Fang Yi Ke Da Xue Xue Bao 2009 29 12 2470 2472, 2476 20034904
    [Google Scholar]
  30. Tian J. Song T. Wang H. Wang W. Zhang Z. Yan R. Thalidomide alleviates bone cancer pain by down-regulating expressions of NF-κB and GFAP in spinal astrocytes in a mouse model. Int. J. Neurosci. 2019 129 9 896 903 10.1080/00207454.2019.1586687 30806135
    [Google Scholar]
  31. Lin Y.C. Shun C.T. Wu M.S. Chen C.C. A novel anticancer effect of thalidomide: Inhibition of intercellular adhesion molecule-1-mediated cell invasion and metastasis through suppression of nuclear factor-kappaB. Clin. Cancer Res. 2006 12 23 7165 7173 10.1158/1078‑0432.CCR‑06‑1393 17145842
    [Google Scholar]
  32. Frings K. Gruber S. Kuess P. Kleiter M. Dörr W. Modulation of radiation-induced oral mucositis by thalidomide. Strahlenther. Onkol. 2016 192 8 561 568 10.1007/s00066‑016‑0989‑5 27282278
    [Google Scholar]
  33. Domingo S. Solé C. Moliné T. Ferrer B. Ordi-Ros J. Hernández C.J. Efficacy of thalidomide in discoid lupus erythematosus: Insights into the molecular mechanisms. Dermatology 2020 236 5 467 476 10.1159/000508672 32659758
    [Google Scholar]
  34. Teo S.K. Resztak K.E. Scheffler M.A. Kook K.A. Zeldis J.B. Stirling D.I. Thomas S.D. Thalidomide in the treatment of leprosy. Microbes Infect. 2002 4 11 1193 1202 10.1016/S1286‑4579(02)01645‑3 12361920
    [Google Scholar]
  35. Noman A.S. Koide N. Hassan F. I-E-Khuda I. Dagvadorj J. Tumurkhuu G. Islam S. Naiki Y. Yoshida T. Yokochi T. Thalidomide inhibits lipopolysaccharide-induced tumor necrosis factor-alpha production via down-regulation of MyD88 expression. Innate Immun. 2009 15 1 33 41 10.1177/1753425908099317 19201823
    [Google Scholar]
  36. Fujiwara Y. Sun Y. Torphy R.J. He J. Yanaga K. Edil B.H. Schulick R.D. Zhu Y. Pomalidomide inhibits PD-L1 induction to promote antitumor immunity. Cancer Res. 2018 78 23 6655 6665 10.1158/0008‑5472.CAN‑18‑1781 30315115
    [Google Scholar]
  37. Vergara T.R.C. Samer S. Oliveira S.J.R. Giron L.B. Arif M.S. Freitas S.M.L. Cherman L.A. Treitsman M.S. Chebabo A. Sucupira M.C.A. Da-Cruz A.M. Diaz R.S. Thalidomide is associated with increased T cell activation and inflammation in antiretroviral-naive HIV-infected individuals in a randomised clinical trial of efficacy and safety. EBioMedicine 2017 23 59 67 10.1016/j.ebiom.2017.08.007 28822719
    [Google Scholar]
  38. Słabicki M. Sperling A.S. Repurposing the repurposed: Thalidomide analogs as immune stimulants to overcome T cell exhaustion. Cell Chem. Biol. 2022 29 8 1245 1247 10.1016/j.chembiol.2022.07.004 35985276
    [Google Scholar]
  39. Haslett P.A.J. Corral L.G. Albert M. Kaplan G. Thalidomide costimulates primary human T lymphocytes, preferentially inducing proliferation, cytokine production, and cytotoxic responses in the CD8+ subset. J. Exp. Med. 1998 187 11 1885 1892 10.1084/jem.187.11.1885 9607928
    [Google Scholar]
  40. LeBlanc R. Hideshima T. Catley L.P. Shringarpure R. Burger R. Mitsiades N. Mitsiades C. Cheema P. Chauhan D. Richardson P.G. Anderson K.C. Munshi N.C. Immunomodulatory drug costimulates T cells via the B7-CD28 pathway. Blood 2004 103 5 1787 1790 10.1182/blood‑2003‑02‑0361 14512311
    [Google Scholar]
  41. Görgün G. Samur M.K. Cowens K.B. Paula S. Bianchi G. Anderson J.E. White R.E. Singh A. Ohguchi H. Suzuki R. Kikuchi S. Harada T. Hideshima T. Tai Y.T. Laubach J.P. Raje N. Magrangeas F. Minvielle S. Loiseau A.H. Munshi N.C. Dorfman D.M. Richardson P.G. Anderson K.C. Lenalidomide enhances immune checkpoint blockade-induced immune response in multiple myeloma. Clin. Cancer Res. 2015 21 20 4607 4618 10.1158/1078‑0432.CCR‑15‑0200 25979485
    [Google Scholar]
  42. Wang X. Shen Y. MengLv L. Zhang X. Yang J. Wang F. Yang J. Thalidomide suppresses breast cancer tumor growth by inhibiting tumor-associated macrophage accumulation in breast tumor-bearing mice. Eur. J. Pharm. Sci. 2020 151 105302 10.1016/j.ejps.2020.105302 32407871
    [Google Scholar]
  43. Lee H.S. Kwon H.S. Park D.E. Woo Y.D. Kim H.Y. Kim H.R. Cho S.H. Min K.U. Kang H.R. Chang Y.S. Thalidomide inhibits alternative activation of macrophages in vivo and in vitro: A potential mechanism of anti-asthmatic effect of thalidomide. PLoS One 2015 10 4 e0123094 10.1371/journal.pone.0123094 25905462
    [Google Scholar]
  44. Liao H. Li Y. Zhang X. Zhao X. Zheng D. Shen D. Li R. Protective effects of thalidomide on high-glucose-induced podocyte injury through in vitro modulation of macrophage M1/M2 differentiation. J. Immunol. Res. 2020 2020 1 14 10.1155/2020/8263598 32908940
    [Google Scholar]
  45. Charan J. Kantharia N.D. How to calculate sample size in animal studies? J. Pharmacol. Pharmacother. 2013 4 4 303 306 10.4103/0976‑500X.119726 24250214
    [Google Scholar]
  46. Anichini A. Perotti V.E. Sgambelluri F. Mortarini R. Immune escape mechanisms in non small cell lung cancer. Cancers 2020 12 12 3605 10.3390/cancers12123605 33276569
    [Google Scholar]
  47. Tian Y. Zhai X. Han A. Zhu H. Yu J. Potential immune escape mechanisms underlying the distinct clinical outcome of immune checkpoint blockades in small cell lung cancer. J. Hematol. Oncol. 2019 12 1 67 10.1186/s13045‑019‑0753‑2 31253167
    [Google Scholar]
  48. Kafkova R.L. Mierzwicka J.M. Chakraborty P. Jakubec P. Fischer O. Skarda J. Maly P. Raska M. NSCLC: From tumorigenesis, immune checkpoint misuse to current and future targeted therapy. Front. Immunol. 2024 15 1342086 10.3389/fimmu.2024.1342086 38384472
    [Google Scholar]
  49. Meng L. Wu H. Wu J. Ding P. He J. Sang M. Liu L. Mechanisms of immune checkpoint inhibitors: Insights into the regulation of circular RNAS involved in cancer hallmarks. Cell Death Dis. 2024 15 1 3 10.1038/s41419‑023‑06389‑5 38177102
    [Google Scholar]
  50. Xia Y. Wang W.C. Shen W.H. Xu K. Hu Y.Y. Han G.H. Liu Y.B. Thalidomide suppresses angiogenesis and immune evasion via lncRNA FGD5-AS1/miR-454–3p/ZEB1 axis-mediated VEGFA expression and PD-1/PD-L1 checkpoint in NSCLC. Chem. Biol. Interact. 2021 349 109652 10.1016/j.cbi.2021.109652 34520751
    [Google Scholar]
  51. Li Z. Ding X.J. Qiao X. Liu X.M. Qiao X. Xie C.Z. Liu R.P. Xu J.Y. Thalidomide-based Pt(IV) prodrugs designed to exert synergistic effect of immunomodulation and chemotherapy. J. Inorg. Biochem. 2022 232 111842 10.1016/j.jinorgbio.2022.111842 35472743
    [Google Scholar]
  52. Touchaei Z.A. Vahidi S. MicroRNAs as regulators of immune checkpoints in cancer immunotherapy: Targeting PD-1/PD-L1 and CTLA-4 pathways. Cancer Cell Int. 2024 24 1 102 10.1186/s12935‑024‑03293‑6 38462628
    [Google Scholar]
  53. Jiang T. Zhou C. Ren S. Role of IL-2 in cancer immunotherapy. OncoImmunology 2016 5 6 e1163462 10.1080/2162402X.2016.1163462 27471638
    [Google Scholar]
  54. Jorgovanovic D. Song M. Wang L. Zhang Y. Roles of IFN-γ in tumor progression and regression: A review. Biomark. Res. 2020 8 1 49 10.1186/s40364‑020‑00228‑x 33005420
    [Google Scholar]
  55. Gong K. Guo G. Beckley N. Zhang Y. Yang X. Sharma M. Habib A.A. Tumor necrosis factor in lung cancer: Complex roles in biology and resistance to treatment. Neoplasia 2021 23 2 189 196 10.1016/j.neo.2020.12.006 33373873
    [Google Scholar]
  56. Zuazo M. Arasanz H. Hinojal F.G. Granda G.M.J. Gato M. Bocanegra A. Martínez M. Hernández B. Teijeira L. Morilla I. Lecumberri M.J. Lascoiti F.A. Vera R. Kochan G. Escors D. Functional systemic CD 4 immunity is required for clinical responses to PD ‐L1/ PD ‐1 blockade therapy. EMBO Mol. Med. 2019 11 7 e10293 10.15252/emmm.201910293 31273938
    [Google Scholar]
  57. Zuazo M. Arasanz H. Bocanegra A. Fernandez G. Chocarro L. Vera R. Kochan G. Escors D. Systemic CD4 immunity as a key contributor to PD-L1/PD-1 blockade immunotherapy efficacy. Front. Immunol. 2020 11 586907 10.3389/fimmu.2020.586907 33329566
    [Google Scholar]
  58. Chen L. Ni X. Zhang H. Wu M. Liu J. Xu S. Yang L. Fu S. Wu J. Preparation, characterization, in vitro and in vivo anti-tumor effect of thalidomide nanoparticles on lung cancer. Int. J. Nanomedicine 2018 13 2463 2476 10.2147/IJN.S159327 29719394
    [Google Scholar]
  59. DeCicco K.L. Tanaka T. Andreola F. De Luca L.M. The effect of thalidomide on non-small cell lung cancer (NSCLC) cell lines: Possible involvement in the PPAR pathway. Carcinogenesis 2004 25 10 1805 1812 10.1093/carcin/bgh210 15205358
    [Google Scholar]
  60. Chen C. Yu G. Xiao W. Xing M. Ni J. Wan R. Hu G. Thalidomide inhibits proliferation and epithelial‑mesenchymal transition by modulating CD133 expression in pancreatic cancer cells. Oncol. Lett. 2017 14 6 8206 8212 10.3892/ol.2017.7213 29344263
    [Google Scholar]
  61. Zhang Z.L. Liu Z.S. Sun Q. Effects of thalidomide on angiogenesis and tumor growth and metastasis of human hepatocellular carcinoma in nude mice. World J. Gastroenterol. 2005 11 2 216 220 10.3748/wjg.v11.i2.216 15633219
    [Google Scholar]
  62. Licht J.D. Shortt J. Johnstone R. From anecdote to targeted therapy: The curious case of thalidomide in multiple myeloma. Cancer Cell 2014 25 1 9 11 10.1016/j.ccr.2013.12.019 24434206
    [Google Scholar]
  63. Zhu J. Yang Y. Liu S. Xu H. Wu Y. Zhang G. Wang Y. Wang Y. Liu Y. Guo Q. Anticancer effect of thalidomide in vitro on human osteosarcoma cells. Oncol. Rep. 2016 36 6 3545 3551 10.3892/or.2016.5158 27748909
    [Google Scholar]
  64. Colucci M. Maione F. Bonito M. Piscopo A. Digiannuario A. Pieretti S. New insights of dimethyl sulphoxide effects (DMSO) on experimental in vivo models of nociception and inflammation. Pharmacol. Res. 2008 57 6 419 425 10.1016/j.phrs.2008.04.004 18508278
    [Google Scholar]
  65. Villagrán G.M. Paulus L. Leger D.Y. Therrien B. Liagre B. Dimethyl sulfoxide: A bio-friendly or bio-hazard chemical? The effect of DMSO in human fibroblast-like synoviocytes. Molecules 2022 27 14 4472 10.3390/molecules27144472 35889344
    [Google Scholar]
  66. Velotti F. Barchetta I. Cimini F.A. Cavallo M.G. Granzyme b in inflammatory diseases: Apoptosis, inflammation, extracellular matrix remodeling, epithelial-to-mesenchymal transition and fibrosis. Front. Immunol. 2020 11 587581 10.3389/fimmu.2020.587581 33262766
    [Google Scholar]
  67. Dawodu D. Sand S. Nikolouli E. Werfel T. Mommert S. The mRNA expression and secretion of granzyme B are up-regulated via the histamine H2 receptor in human CD4+ T cells. Inflamm. Res. 2023 72 8 1525 1538 10.1007/s00011‑023‑01759‑3 37470818
    [Google Scholar]
  68. Hiramatsu T. Yoshizawa J. Miyaguni K. Sugihara T. Harada A. Kaji S. Uchida G. Kanamori D. Baba Y. Ashizuka S. Ohki T. Thalidomide potentiates etoposide-induced apoptosis in murine neuroblastoma through suppression of NF-κB activation. Pediatr. Surg. Int. 2018 34 4 443 450 10.1007/s00383‑018‑4234‑4 29423589
    [Google Scholar]
  69. Zhang S. Li M. Gu Y. Liu Z. Xu S. Cui Y. Sun B. Thalidomide influences growth and vasculogenic mimicry channel formation in melanoma. J. Exp. Clin. Cancer Res. 2008 27 1 60 10.1186/1756‑9966‑27‑60 18983651
    [Google Scholar]
  70. Rüegg C. Peters S. Thalidomide in small cell lung cancer: Wrong drug or wrong disease? J. Natl. Cancer Inst. 2009 101 15 1034 1035 10.1093/jnci/djp208 19608998
    [Google Scholar]
  71. Raskov H. Orhan A. Christensen J.P. Gögenur I. Cytotoxic CD8+ T cells in cancer and cancer immunotherapy. Br. J. Cancer 2021 124 2 359 367 10.1038/s41416‑020‑01048‑4 32929195
    [Google Scholar]
  72. Koh C.H. Lee S. Kwak M. Kim B.S. Chung Y. CD8 T-cell subsets: Heterogeneity, functions, and therapeutic potential. Exp. Mol. Med. 2023 55 11 2287 2299 10.1038/s12276‑023‑01105‑x 37907738
    [Google Scholar]
  73. Wang X. Shen Y. Li S. Lv M. Zhang X. Yang J. Wang F. Yang J. Importance of the interaction between immune cells and tumor vasculature mediated by thalidomide in cancer treatment (Review). Int. J. Mol. Med. 2016 38 4 1021 1029 10.3892/ijmm.2016.2724 27599781
    [Google Scholar]
  74. Du W. Hattori Y. Hashiguchi A. Kondoh K. Hozumi N. Ikeda Y. Sakamoto M. Hata J. Yamada T. Tumor angiogenesis in the bone marrow of multiple myeloma patients and its alteration by thalidomide treatment. Pathol. Int. 2004 54 5 285 294 10.1111/j.1440‑1827.2004.01622.x 15086832
    [Google Scholar]
  75. Yang T. Xiao H. Liu X. Wang Z. Zhang Q. Wei N. Guo X. Vascular normalization: A new window opened for cancer therapies. Front. Oncol. 2021 11 719836 10.3389/fonc.2021.719836 34476218
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010319495241218114812
Loading
/content/journals/cpb/10.2174/0113892010319495241218114812
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: thalidomide ; suppressing neovascularization ; PD-1 mAb ; Immune checkpoint inhibitor
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test