Skip to content
2000
image of CAR-T Cell Therapy: Pioneering Immunotherapy Paradigms in Cancer Treatment

Abstract

The world's one of the major causes of death are cancer. Cancer is still a complex disease over the years that needs to be cured. Traditional cytotoxic approaches, although they have been implemented for years for treating neoplastic diseases, yet are limited due to the intricacy and low efficiency of cancer cells. Researchers are thus compelled to seek more potent therapeutic strategies. Chimeric antigen receptor (CAR-T) cell therapy is one such innovative insight where T lymphocytes are altered genetically to target cancer cells. Despite the outstanding accomplishment in patients with haematological malignancies, CAR-T cell treatment has demonstrated minimal impact on solid tumours due to a number of obstacles, including proliferation, stability, trafficking, and fate within tumors. Furthermore, interactions between the host and tumour microenvironment with CAR-T cells significantly alter CAR-T cell activities. Designing and implementing these treatments additionally also requires a complex workforce. Overcoming these significant challenges, there is a requirement for innovative strategies for developing CAR-T cells with greater anti-tumour efficacy and reduced toxicity. In this chapter, the current advancement in CAR-T cell technology in order to increase clinical efficacy in both solid tumors and haematological, as well as possibilities to conquer the limits of CAR-T cell therapy in both solid and haematological tumours has been discussed.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010330322241113062555
2025-01-01
2025-01-19
Loading full text...

Full text loading...

References

  1. Bray F. Ferlay J. Soerjomataram I. Siegel R.L. Torre L.A. Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018 68 6 394 424 10.3322/caac.21492 30207593
    [Google Scholar]
  2. All cancers. 2022 Available from: https://gco.iarc.who.int/media/globocan/factsheets/cancers/39-all-cancers-fact-sheet.pdf(Accessed on: 22 July 2020)
  3. Dandona L. Dandona R. Kumar G.A. Shukla D.K. Paul V.K. Balakrishnan K. Prabhakaran D. Tandon N. Salvi S. Dash A.P. India state-level disease burden initiative collaborators. Nations within a nation: Variations in epidemiological transition across the states of India, 1990-2016 in the global burden of disease study. Lancet 390 2437 2460 2022
    [Google Scholar]
  4. Jackson H.J. Rafiq S. Brentjens R.J. Driving CAR T-cells forward. Nat. Rev. Clin. Oncol. 2016 13 6 370 383 10.1038/nrclinonc.2016.36 27000958
    [Google Scholar]
  5. Titov A. Zmievskaya E. Ganeeva I. Valiullina A. Petukhov A. Rakhmatullina A. Miftakhova R. Fainshtein M. Rizvanov A. Bulatov E. Adoptive immunotherapy beyond CAR T-cells. Cancers (Basel) 2021 13 4 743 10.3390/cancers13040743 33670139
    [Google Scholar]
  6. Rohaan M.W. Wilgenhof S. Haanen J.B.A.G. 2019 Adoptive cellular therapies: The current landscape. Virchows Arch. 474 4 449 461 10.1007/s00428‑018‑2484‑0 30470934
    [Google Scholar]
  7. Lin B. Du L. Li H. Zhu X. Cui L. Li X. Tumor-infiltrating lymphocytes: Warriors fight against tumors powerfully. Biomed. Pharmacother. 2020 132 110873 10.1016/j.biopha.2020.110873 33068926
    [Google Scholar]
  8. Mullard A. FDA approves first-in-class AKT inhibitor. Nat. Rev. Drug Discov. 2023 23 1 9 10.1038/d41573‑023‑00163‑0 38049466
    [Google Scholar]
  9. Tsimberidou A.M. Van Morris K. Vo H.H. Eck S. Lin Y.F. Rivas J.M. Andersson B.S. T-cell receptor-based therapy: An innovative therapeutic approach for solid tumors. J. Hematol. Oncol. 2021 14 1 102 10.1186/s13045‑021‑01115‑0 34193217
    [Google Scholar]
  10. Miliotou A.N. Papadopoulou L.C. CAR T-cell therapy: A new era in cancer immunotherapy. Curr. Pharm. Biotechnol. 2018 19 1 5 18 10.2174/1389201019666180418095526 29667553
    [Google Scholar]
  11. Perica K. Varela J.C. Oelke M. Schneck J. Adoptive T cell immunotherapy for cancer. Rambam Maimonides Med. J. 2015 6 1 e0004 10.5041/RMMJ.10179 25717386
    [Google Scholar]
  12. Leon E. Ranganathan R. Savoldo B. Adoptive T cell therapy: Boosting the immune system to fight cancer. Semin. Immunol. 2020 49 101437 10.1016/j.smim.2020.101437 33262066
    [Google Scholar]
  13. Sterner R.C. Sterner R.M. CAR-T cell therapy: Current limitations and potential strategies. Blood Cancer J. 2021 11 4 69 10.1038/s41408‑021‑00459‑7 33824268
    [Google Scholar]
  14. Ahmad U. Khan Z. Ualiyeva D. Amissah O.B. Noor Z. Khan A. Zaman N. Khan M. Khan A. Ali B. Chimeric antigen receptor T cell structure, its manufacturing, and related toxicities; A comprehensive review. Adv. Cancer Biol. Metastasis 2022 4 100035 10.1016/j.adcanc.2022.100035
    [Google Scholar]
  15. Lee Y.H. Kim C.H. Evolution of chimeric antigen receptor (CAR) T cell therapy: Current status and future perspectives. Arch. Pharm. Res. 2019 42 7 607 616 10.1007/s12272‑019‑01136‑x 30830661
    [Google Scholar]
  16. Schäfer D. Henze J. Pfeifer R. Schleicher A. Brauner J. Mockel-Tenbrinck N. Barth C. Gudert D. Al Rawashdeh W. Johnston I.C.D. Hardt O. A novel siglec-4 derived spacer improves the functionality of CAR T cells against membrane-proximal epitopes. Front. Immunol. 2020 11 1704 10.3389/fimmu.2020.01704 32849600
    [Google Scholar]
  17. Mavi A.K. Gaur S. Gaur G. Babita Jindal P. Kumar N. Kumar U. CAR T-cell therapy: Reprogramming patient’s immune cell to treat cancer. Cell. Signal. 2023 105 110638 10.1016/j.cellsig.2023.110638 36822565
    [Google Scholar]
  18. Muller Y.D. Nguyen D.P. Ferreira L.M.R. Ho P. Raffin C. Valencia R.V.B. Congrave-Wilson Z. Roth T.L. Eyquem J. Van Gool F. Marson A. Perez L. Wells J.A. Bluestone J.A. Tang Q. The CD28-transmembrane domain mediates chimeric antigen receptor heterodimerization with CD28. Front. Immunol. 2021 12 639818 10.3389/fimmu.2021.639818 33833759
    [Google Scholar]
  19. Gross G. Gorochov G. Waks T. Eshhar Z. Generation of effector T cells expressing chimeric T cell receptor with antibody type-specificity. Transplant. Proc. 1989 21 1 Pt 1 127 130 2784887
    [Google Scholar]
  20. Eshhar Z. Waks T. Gross G. Schindler D.G. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc. Natl. Acad. Sci. USA 1993 90 2 720 724 10.1073/pnas.90.2.720 8421711
    [Google Scholar]
  21. Figueroa J.A. Reidy A. Mirandola L. Trotter K. Suvorava N. Figueroa A. Konala V. Aulakh A. Littlefield L. Grizzi F. Rahman R.L. Jenkins M.R. Musgrove B. Radhi S. D’Cunha N. D’Cunha L.N. Hermonat P.L. Cobos E. Chiriva-Internati M. Chimeric antigen receptor engineering: A right step in the evolution of adoptive cellular immunotherapy. Int. Rev. Immunol. 2015 34 2 154 187 10.3109/08830185.2015.1018419 25901860
    [Google Scholar]
  22. Jayaraman J. Mellody M.P. Hou A.J. Desai R.P. Fung A.W. Pham A.H.T. Chen Y.Y. Zhao W. CAR-T design: Elements and their synergistic function. EBioMedicine 2020 58 102931 10.1016/j.ebiom.2020.102931 32739874
    [Google Scholar]
  23. Zhang C. Liu J. Zhong J.F. Zhang X. Engineering CAR-T cells. Biomark. Res. 2017 5 1 22 10.1186/s40364‑017‑0102‑y 28652918
    [Google Scholar]
  24. Hillerdal V. Essand M. Chimeric antigen receptor-engineered T cells for the treatment of metastatic prostate cancer. BioDrugs 2015 29 2 75 89 10.1007/s40259‑015‑0122‑9 25859858
    [Google Scholar]
  25. Pang Y. Hou X. Yang C. Liu Y. Jiang G. Advances on chimeric antigen receptor-modified T-cell therapy for oncotherapy. Mol. Cancer 2018 17 1 91 10.1186/s12943‑018‑0840‑y 29769134
    [Google Scholar]
  26. Zhang X. Zhang H. Lan H. Wu J. Xiao Y. CAR-T cell therapy in multiple myeloma: Current limitations and potential strategies. Front. Immunol. 2023 14 1101495 10.3389/fimmu.2023.1101495 36891310
    [Google Scholar]
  27. Lu J. Jiang G. The journey of CAR-T therapy in hematological malignancies. Mol. Cancer 2022 21 1 194 10.1186/s12943‑022‑01663‑0 36209106
    [Google Scholar]
  28. George P. Dasyam N. Giunti G. Mester B. Bauer E. Andrews B. Perera T. Ostapowicz T. Frampton C. Li P. Ritchie D. Bollard C.M. Hermans I.F. Weinkove R. Third-generation anti-CD19 chimeric antigen receptor T-cells incorporating a TLR2 domain for relapsed or refractory B-cell lymphoma: A phase I clinical trial protocol (ENABLE). BMJ Open 2020 10 2 e034629 10.1136/bmjopen‑2019‑034629 32041862
    [Google Scholar]
  29. Karlsson H. Svensson E. Gigg C. Jarvius M. Olsson-Strömberg U. Savoldo B. Dotti G. Loskog A. Evaluation of intracellular signaling downstream chimeric antigen receptors. PLoS One 2015 10 12 e0144787 10.1371/journal.pone.0144787 26700307
    [Google Scholar]
  30. Abate-Daga D. Lagisetty K.H. Tran E. Zheng Z. Gattinoni L. Yu Z. Burns W.R. Miermont A.M. Teper Y. Rudloff U. Restifo N.P. Feldman S.A. Rosenberg S.A. Morgan R.A. A novel chimeric antigen receptor against prostate stem cell antigen mediates tumor destruction in a humanized mouse model of pancreatic cancer. Hum. Gene Ther. 2014 25 12 1003 1012 10.1089/hum.2013.209 24694017
    [Google Scholar]
  31. Chmielewski M. Abken H. TRUCKs: The fourth generation of CARs. Expert Opin. Biol. Ther. 2015 15 8 1145 1154 10.1517/14712598.2015.1046430 25985798
    [Google Scholar]
  32. Kim D. Cho J.Y. Recent advances in allogeneic CAR-T cells. Biomolecules 2020 10 2 263 10.3390/biom10020263 32050611
    [Google Scholar]
  33. Zhang Q. Zhang Z. Peng M. Fu S. Xue Z. Zhang R. CAR-T cell therapy in gastrointestinal tumors and hepatic carcinoma: From bench to bedside. Oncoimmunology 5 12 e1251539 2016 10.1080/2162402X.2016.1251539 28123893
    [Google Scholar]
  34. Liang Z. Zhang H. Shao M. Cui Q. Wu Z. Xiao L. Huang H. Hu Y. Lymphodepletion chemotherapy revitalizes chimeric antigen receptor T cells contributing to regression of relapsed B-cell lymphoma: A case report. Medicine (Baltimore) 99 43 e22510 2015 10.1097/MD.0000000000022510 33120740
    [Google Scholar]
  35. Alnefaie A. Albogami S. Asiri Y. Ahmad T. Alotaibi S.S. Al-Sanea M.M. Althobaiti H. Chimeric antigen receptor T-cells: An overview of concepts, applications, limitations, and proposed solutions. Front. Bioeng. Biotechnol. 2022 10 797440 10.3389/fbioe.2022.797440 35814023
    [Google Scholar]
  36. Brown C.E. Adusumilli P.S. Next frontiers in CAR T-cell therapy. Mol. Ther. Oncolytics 2016 3 16028 10.1038/mto.2016.28 27990476
    [Google Scholar]
  37. Guedan S. Calderon H. Posey A.D. Maus M.V. Engineering and design of chimeric antigen receptors. Mol. Ther. Methods Clin. Dev. 12 145 156 10.1016/j.omtm.2018.12.009 30666307
    [Google Scholar]
  38. Wang X. Rivière I. Clinical manufacturing of CAR T cells: Foundation of a promising therapy. Mol. Ther. Oncolytics 2016 3 16015 10.1038/mto.2016.15 27347557
    [Google Scholar]
  39. Singh H. Moyes J.S.E. Huls M.H. Cooper L.J.N. Manufacture of T cells using the Sleeping Beauty system to enforce expression of a CD19-specific chimeric antigen receptor. Cancer Gene Ther. 2015 22 2 95 100 10.1038/cgt.2014.69 25591810
    [Google Scholar]
  40. Krug C. Wiesinger M. Abken H. Schuler-Thurner B. Schuler G. Dörrie J. Schaft N. A GMP-compliant protocol to expand and transfect cancer patient T cells with mRNA encoding a tumor-specific chimeric antigen receptor. Cancer Immunol. Immunother. 2014 63 10 999 1008 10.1007/s00262‑014‑1572‑5 24938475
    [Google Scholar]
  41. Wiesinger M. März J. Kummer M. Schuler G. Dörrie J. Schuler-Thurner B. Schaft N. Clinical-scale production of CAR-T cells for the treatment of melanoma patients by mRNA transfection of a CSPG4-specific CAR under full GMP compliance. Cancer 11 8 1198 10.3390/cancers11081198
    [Google Scholar]
  42. Harrison R.P. Zylberberg E. Ellison S. Levine B.L. Chimeric antigen receptor–T cell therapy manufacturing: Modelling the effect of offshore production on aggregate cost of goods. Cytotherapy 2019 21 2 224 233 10.1016/j.jcyt.2019.01.003 30770285
    [Google Scholar]
  43. Turtle C.J. Hanafi L.A. Berger C. Gooley T.A. Cherian S. Hudecek M. Sommermeyer D. Melville K. Pender B. Budiarto T.M. Robinson E. Steevens N.N. Chaney C. Soma L. Chen X. Yeung C. Wood B. Li D. Cao J. Heimfeld S. Jensen M.C. Riddell S.R. Maloney D.G. CD19 CAR–T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin. Invest. 2016 126 6 2123 2138 10.1172/JCI85309 27111235
    [Google Scholar]
  44. Zhao L. Cao Y.J. Engineered T cell therapy for cancer in the clinic. Front. Immunol. 2019 10 2250 10.3389/fimmu.2019.02250 31681259
    [Google Scholar]
  45. Newick K. O’Brien S. Moon E. Albelda S.M. CAR T cell therapy for solid tumors. Annu. Rev. Med. 2017 68 1 139 152 10.1146/annurev‑med‑062315‑120245 27860544
    [Google Scholar]
  46. Zhao Z. Chen Y. Francisco N.M. Zhang Y. Wu M. The application of CAR-T cell therapy in hematological malignancies: Advantages and challenges. Acta Pharm. Sin. B 2018 8 4 539 551 10.1016/j.apsb.2018.03.001 30109179
    [Google Scholar]
  47. Lemal R. Tournilhac O. State-of-the-art for CAR T-cell therapy for chronic lymphocytic leukemia in 2019. J. Immunother. Cancer 2019 7 1 202 10.1186/s40425‑019‑0686‑x 31370892
    [Google Scholar]
  48. Fraietta J.A. Lacey S.F. Orlando E.J. Pruteanu-Malinici I. Gohil M. Lundh S. Boesteanu A.C. Wang Y. O’Connor R.S. Hwang W.T. Pequignot E. Ambrose D.E. Zhang C. Wilcox N. Bedoya F. Dorfmeier C. Chen F. Tian L. Parakandi H. Gupta M. Young R.M. Johnson F.B. Kulikovskaya I. Liu L. Xu J. Kassim S.H. Davis M.M. Levine B.L. Frey N.V. Siegel D.L. Huang A.C. Wherry E.J. Bitter H. Brogdon J.L. Porter D.L. June C.H. Melenhorst J.J. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat. Med. 2018 24 5 563 571 10.1038/s41591‑018‑0010‑1 29713085
    [Google Scholar]
  49. Mancikova V. Smida M. Current state of CAR T-cell therapy in chronic lymphocytic leukemia. Int. J. Mol. Sci. 2021 22 11 5536 10.3390/ijms22115536 34073911
    [Google Scholar]
  50. Singh N. Frey N.V. Grupp S.A. Maude S.L. CAR T cell therapy in acute lymphoblastic leukemia and potential for chronic lymphocytic leukemia. Curr. Treat. Options Oncol. 2016 17 6 28 10.1007/s11864‑016‑0406‑4 27098534
    [Google Scholar]
  51. Todorovic Z. Todorovic D. Markovic V. Ladjevac N. Zdravkovic N. Djurdjevic P. Arsenijevic N. Milovanovic M. Arsenijevic A. Milovanovic J. CAR T cell therapy for chronic lymphocytic leukemia: Successes and shortcomings. Curr. Oncol. 2022 29 5 3647 3657 10.3390/curroncol29050293 35621683
    [Google Scholar]
  52. Ramos C.A. Heslop H.E. Brenner M.K. CAR-T cell therapy for lymphoma. Annu. Rev. Med. 2016 67 1 165 183 10.1146/annurev‑med‑051914‑021702 26332003
    [Google Scholar]
  53. Haslauer T. Greil R. Zaborsky N. Geisberger R. CAR T-cell therapy in hematological malignancies. Int. J. Mol. Sci. 2021 22 16 8996 10.3390/ijms22168996 34445701
    [Google Scholar]
  54. Gagelmann N. Riecken K. Wolschke C. Berger C. Ayuk F.A. Fehse B. Kröger N. Development of CAR-T cell therapies for multiple myeloma. Leukemia 2020 34 9 2317 2332 10.1038/s41375‑020‑0930‑x 32572190
    [Google Scholar]
  55. Marofi F. Tahmasebi S. Rahman H.S. Kaigorodov D. Markov A. Yumashev A.V. Shomali N. Chartrand M.S. Pathak Y. Mohammed R.N. Jarahian M. Any closer to successful therapy of multiple myeloma? CAR-T cell is a good reason for optimism. Stem Cell Res. Ther. 2021 12 1 1 21 33397467
    [Google Scholar]
  56. Amini L. Vollmer T. Wendering D.J. Jurisch A. Landwehr-Kenzel S. Otto N.M. Jürchott K. Volk H.D. Reinke P. Schmueck-Henneresse M. Comprehensive characterization of a next-generation antiviral T-cell product and feasibility for application in immunosuppressed transplant patients. Front. Immunol. 2019 10 1148 10.3389/fimmu.2019.01148 31191530
    [Google Scholar]
  57. Kondo T. Imura Y. Chikuma S. Hibino S. Omata-Mise S. Ando M. Akanuma T. Iizuka M. Sakai R. Morita R. Yoshimura A. Generation and application of human induced‐stem cell memory T cells for adoptive immunotherapy. Cancer Sci. 2018 109 7 2130 2140 10.1111/cas.13648 29790621
    [Google Scholar]
  58. Hort S. Herbst L. Bäckel N. Erkens F. Niessing B. Frye M. König N. Papantoniou I. Hudecek M. Jacobs J.J.L. Schmitt R.H. Toward rapid, widely available autologous CAR-T cell therapy - Artificial intelligence and automation enabling the smart manufacturing hospital. Front. Med. (Lausanne) 2022 9 913287 10.3389/fmed.2022.913287 35733863
    [Google Scholar]
  59. Mock U. Nickolay L. Philip B. Cheung G.W.K. Zhan H. Johnston I.C.D. Kaiser A.D. Peggs K. Pule M. Thrasher A.J. Qasim W. Automated manufacturing of chimeric antigen receptor T cells for adoptive immunotherapy using CliniMACS Prodigy. Cytotherapy 2016 18 8 1002 1011 10.1016/j.jcyt.2016.05.009 27378344
    [Google Scholar]
  60. Haque T. Wilkie G.M. Jones M.M. Higgins C.D. Urquhart G. Wingate P. Burns D. McAulay K. Turner M. Bellamy C. Amlot P.L. Kelly D. MacGilchrist A. Gandhi M.K. Swerdlow A.J. Crawford D.H. Allogeneic cytotoxic T-cell therapy for EBV-positive posttransplantation lymphoproliferative disease: Results of a phase 2 multicenter clinical trial. Blood 2007 110 4 1123 1131 10.1182/blood‑2006‑12‑063008 17468341
    [Google Scholar]
  61. Melenhorst J.J. Leen A.M. Bollard C.M. Quigley M.F. Price D.A. Rooney C.M. Brenner M.K. Barrett A.J. Heslop H.E. Allogeneic virus-specific T cells with HLA alloreactivity do not produce GVHD in human subjects. Blood 2010 116 22 4700 4702 10.1182/blood‑2010‑06‑289991 20709906
    [Google Scholar]
  62. Cai T. Galetto R. Gouble A. Smith J. Cavazos A. Konoplev S. Lane A.A. Guzman M.L. Kantarjian H.M. Pemmaraju N. Konopleva M. Pre-clinical studies of anti-CD123 CAR-T cells for the treatment of blastic plasmacytoid dendritic cell neoplasm (BPDCN). Blood 2016 128 22 4039 10.1182/blood.V128.22.4039.4039
    [Google Scholar]
  63. Gouble A. Schiffer-Mannioui C. Thomas S. Gautron A.S. Poirot L. Smith J. Abstract 3763: UCART22: Allogenic adoptive immunotherapy of leukemia by targeting CD22 with CAR T-cells. Cancer Res. 2017 77 Suppl 13 3763 10.1158/1538‑7445.AM2017‑3763
    [Google Scholar]
  64. Galetto R. Chion-Sotinel I. Gouble A. Smith J. Abstract 2289: Allogenic TCRa/CS1 double knockout T-cells bearing an anti-CS1 chimeric antigen receptor: An improved immunotherapy approach for the treatment of multiple myeloma. Cancer Res. 2016 76 Suppl 14 2289 10.1158/1538‑7445.AM2016‑2289
    [Google Scholar]
  65. Drent E. Groen R.W. Noort W.A. Themeli M. van Bueren J.J. Parren P.W. Kuball J. Sebestyen Z. Yuan H. de Bruijn J. van de Donk N.W. Pre-clinical evaluation of CD38 chimeric antigen receptor engineered T cells for the treatment of multiple myeloma. Haematologica 2016 101 5 616 625 10.3324/haematol.2015.137620 26858358
    [Google Scholar]
  66. Mohanty R. Chowdhury C. Arega S. Sen P. Ganguly P. Ganguly N. CAR T cell therapy: A new era for cancer treatment (Review). Oncol. Rep. 2019 42 6 2183 2195 10.3892/or.2019.7335 31578576
    [Google Scholar]
  67. Manier S. Ingegnere T. Escure G. Prodhomme C. Nudel M. Mitra S. Facon T. Current state and next-generation CAR-T cells in multiple myeloma. Blood Rev. 2022 54 100929 10.1016/j.blre.2022.100929 35131139
    [Google Scholar]
  68. Li C. Mei H. Hu Y. Applications and explorations of CRISPR/Cas9 in CAR T-cell therapy. Brief. Funct. Genomics 2020 19 3 175 182 10.1093/bfgp/elz042 31950135
    [Google Scholar]
  69. Abbasi M.H. Riaz A. Khawar M.B. Farooq A. Majid A. Sheikh N. CAR-T-Cell therapy: Present progress and future strategies. Biomed. Res. Ther. 2022 9 2 4920 4929 10.15419/bmrat.v9i2.726
    [Google Scholar]
  70. Zhang X. Zhu L. Zhang H. Chen S. Xiao Y. CAR-T cell therapy in hematological malignancies: Current opportunities and challenges. Front. Immunol. 2022 13 927153 10.3389/fimmu.2022.927153 35757715
    [Google Scholar]
  71. Rodrigo S. Senasinghe K. Quazi S. Molecular and therapeutic effect of CRISPR in treating cancer. Med. Oncol. 2023 40 2 81 10.1007/s12032‑022‑01930‑6 36650384
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010330322241113062555
Loading
/content/journals/cpb/10.2174/0113892010330322241113062555
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: CAR-T cells ; T-lymphocytes ; Cancer ; immunotherapy ; haematological malignancies
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test